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1 Introduction
With the increasing energy available at hadron colliders, electroweak gauge boson pair pro-
duction becomes more and more important. Both experimental collaborations at the Teva-
tron, CDF [l] and DO [2], have performed studies of pair production processes such as
pji + W+tw-, ZZ, W*Z, W*y, or Zy. These studies considered purely leptonic decays of
the massive vector bosons in the pair, as well as decays into two jets plus leptons. Already,
some events have been found above the background, in accordance with Standard Model
predictions. The amount of available data will increase by roughly a factor of 20 at the up-

graded Tevatron, and by a factor of 1000 once the Large Hadron Collider at CERN (LHC)
starts operating. A summary of the present experimental situation and a more complete list
of earlier studies can be found in [3].

These processes are quite interesting in several respects. Most of all, they can be used to
measure the vector boson trilinear couplings predicted by the Standard Model [4]. Any kind
of anomalous couplings, or decays of new particles into vector boson pairs, would result in

deviations from these predictions. In particular, if the Higgs boson is heavy enough it will
decay mainly into W+tW- and 22 pairs [5]. Thus, the search for Higgs bosons in the few
hundred GeV mass range is intimately connected to pair production of vector bosons. A
detailed understanding of these Standard Model processes is therefore mandatory.

Due to its importance, hadronic pair production of electroweak vector bosons has received
a lot of attention in the literature. The tree-level cross-sections for the hadronic production
o f  w+w-, zz, w*Z-, as well as W*y and Zy pairs were computed long ago [6]. The
one-loop (O(a,)) QCD corrections to these cross-sections have been computed in [7, 81 for
ZZ, in [9, lo] for W*Z, in [ll, 121 for W+W-, and in [13, 141 for W*y and Zy. T h e s e
computations were all done with the traditional method of evaluating directly the squared
amplitude through interference (cut) diagrams and evaluating the traces in D = 4 - 2~
dimensions. As a consequence, the computed cross-sections were summed over all W and Z
polarization states.

A more realistic treatment of these processes can be obtained by properly including
the decay of the vector bosons into massless fermions. In fact, vector bosons are identified
through these decay products. Thus, the comparison of theory and experiment is much easier,
since cuts on the kinematics of the decay products can easily be added to the computation.
As one example of the importance of decay-angle correlations, it has been proposed [15, 161 to
search for the Higgs boson at the LHC in the intermediate mass range mH = 155 - 180 GeV
in the channel H + W+tw- + Pve-0. To reduce the continuum WsW- background, one
can exploit [16] the anti-correlation between W helicities for the signal process, as well as the

- strong correlation between the W helicity and the decay lepton direction; the signal peaks
when e+ and !- are nearly collinear, cos 19[+[- M 1, while the background is relatively flat in
this variable. For such a search it is clearly important to understand as well as possible the
background distributions for cos 8e+e- and other kinematic variables.

In the narrow-width approximation, vector boson decay is simple to implement at the
amplitude level. Because the couplings of vector bosons to fermions are spin-dependent
(especially the purely left-handed W couplings), it is natural to employ the helicity method
and compute amplitudes for massless external states of definite helicity. The tree-level



helicity amplitudes for massive vector-boson pair production with subsequent decay into
leptons were first computed in [17]. The authors of [17] also showed that the effects of
decay-angle correlations are significant.

In [18], the above two approaches were merged to get a more complete next-to-leading
order treatment of vector boson pair production. In this work spin correlations were included
everywhere except for the virtual contribution. Furthermore, the calculations were extended
to include also non-standard triple-vector-boson couplings. However, only numerical results
were presented, making it difficult to use these results in future computations.

The present paper closes this gap by presenting all helicity amplitudes required for next-
to-leading order (in the strong coupling a,) hadronic production of a vector boson pair. In
particular, we give the one-loop amplitudes with a virtual gluon for the processes

qq -+ w-w+ + (!Y) + (iv) ) (1.1)
qq-+ z z  + (@ + (iv), (1.2)
ud+ W - Z  + (!Y) + (e”!‘), (1.3)
ud+ W - y  -+ (to) + y, 0.4
44’ ZY + (G) + y. (1.5)

The processes with a WsZ or a IV+7 pair as intermediate state can be obtained from eq. (1.3)
and eq. (1.4) by a CP transformation. The decay of the vector bosons into leptons is included
in the narrow-width ‘approximation. We also present the tree-level amplitudes for the same
processes with an additional gluon radiated off the quark line. (The gluon may also appear
in the initial state. The corresponding amplitudes can be obtained by crossing symmetry.)
Both sets of amplitudes are needed for a complete next-to-leading order computation of the
cross-sections for vector-boson pair production.

In the spinor helicity formalism [19], the tree-level amplitudes are trivial to obtain and
the results are very compact. For the one-loop amplitudes, it was not necessary to do a full
computation. Almost all of the terms could be extracted from one of the helicity amplitudes
for the process e+e- -+ qcjQQ as presented in [20], where q and Q are massless quarks
of different flavor. In fact, knowledge of the ‘primitive amplitude’ (see section 2) for the
subleading-in-color piece of e+e- + qijQ& is sufficient to obtain all one-loop amplitudes
for the processes listed in eqs. (l.l)-(1.3). The amplitude for the process (1.4) can also be
obtained without doing a full computation. It is sufficient to replace the Z in the process (1.3)
by a virtual photon y*. Then the desired amplitude can be extracted from the collinear limit
of the decay products of the virtual photon. Finally, these results allow for the construction

_ of the amplitude for the last missing process, eq. (1.5). This last result could also be obtained
from the known subleading-in-color primitive amplitude for e’e- + qljg [21, 221.

Besides their contribution to next-to-leading order pair production rates, the one-loop
amplitudes also contribute, via their absorptive parts, to kinematic structures which are odd
under ‘naive’ time reversal (the reversal of all momentum and spin vectors in a process).
Such terms are not present at tree level; also, they are washed out if one integrates over all
the leptonic decay angles. Analogous effects were considered quite some time ago, in the
production of W + 1 jet at hadron colliders [23].

In section 2 we exploit the results of [20] in order to obtain certain primitive amplitudes,
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called A” and Ab, which serve as building blocks for the construction of all the one-loop
amplitudes for qtj + WfW-, 22, W*Z -+ 4 leptons. This construction will be performed
in section 3. Section 4 is devoted to the processes with a real photon in the final state.
Finally, in section 5 we compare our results to the literature [8, 10, 12, 131 and present our
conclusions.

2 Primitive amplitudes for W+W-, 22, W*Z

2.1 Preliminaries
It is by now standard to use the helicity method and color ordering of the amplitudes to
simplify one-loop calculations in QCD (for a review see e.g. [24]).  The results for the helicity
amplitudes will be expressed in terms of spinor inner products,

(ij) E (k&q, [ij] E @‘lk;), (2.1)

where I@) is the Weyl spinor for a massless particle with momentum ki. The spinor inner
products are antisymmetric and satisfy (ij) [ji] = 2ki . Icj E sij. For later use we also define

and

s12 = 512 - 534 - s56, 634 = 534  - 512  - s56, b56 = s56 - 5 1 2  - s34, (2.3)

a3 F $2 + s;4 + s;6 - z-%2534  - 2s12s56  - 2s34s56.

For all the processes qtj + VlV2 -+ 4 leptons, where V -i,2 = W* or 2, the color ordering of
the amplitudes is trivial: All diagrams have the same color factor. Thus the full amplitude
can be obtained by taking the one and only subamplitude (partial amplitude) and multiplying

_ it by the overall color factor.
Still, the diagrams which contribute to qtj -+ VII4 -+ 4 leptons naturally fall into two

classes, which can be distinguished by their different dependence on the electroweak coupling
constants, and which therefore are separately gauge invariant. (See Fig. 1.) This decom-
position is analogous to the decomposition of QCD amplitudes into primitive amplitudes
[25]. The first class (diagrams (ai) of Fig. 1) has no triple-electroweak-vector-boson vertex.
There is only one such tree graph, (ao). We call the one-loop box graph (ai) the ‘box-parent’
because the other one-loop graphs in this class, (ai,i) - (a1,3), can be obtained from (ai)
by sliding the virtual gluon line around, while leaving the electroweak vector bosons fixed.
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Figure 1: (ao) box-parent tree graph; (ai) box-parent one-loop graph; (ai,i) ~ (ai,s)  additional
one-loop graphs obtained from the box-parent graph; (bs) triangle-parent tree graph; (bi) triangle-
parent one-loop graph. Solid (dashed) lines represent quarks (leptons). In order to distinguish the
possibly different vector bosons we used zigzag and wavy lines. For the graphs bo and bi we show
the diagrams for the W+tw- intermediate state.

(Bubble graphs where a gluon dresses a massless external quark line are zero in dimensional
regularization.) The tree-level primitive amplitude Atree@ is defined to be just the contri-
bution of the graph (a,,), omitting all coupling constant prefactors. The one-loop primitive
amplitude A” is similarly defined by the sum of graphs (ai) and (ai,i) - (81,s). The second
class (diagrams (bi) of Fig. 1) contains a three-boson vertex. In this class, there are no
further graphs besides the parent graphs. These primitive amplitudes will be denoted by
Atreejb and Ab. Because Ab consists of a single triangle diagram, it is much simpler than A”.

We present amplitudes in the dimensional reduction [26] or four-dimensional helicity [27]
variants of dimensional regularization, which are equivalent at one loop. The conversion to
other variants is straightforward [28].

- 2.2 Relation to subleading-color e+e- + QQQQ amplitude

The one-loop amplitudes for qtj + VIVz --+ 4 leptons can be obtained almost completely
from the subleading-color amplitude A”Q(1,2,3,4)  for the process ese- -+ qQQQ, as given
in eqs. (3.16))(3.21)  of [20]‘. The ‘parent’ graphs for that amplitude are shown in Fig. 2.
Graph (a) is obviously very similar to corresponding box-parent graph (ai) in Fig. 1. The

‘In order to simplify the discussion at this point, we use the labeling of [20] in section 2.2. The labeling
used in the rest of this paper can be obtained from it by the replacement {1,2,3,4,5,6}  -+ {5,6,2,1,3,4}.
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Figure 2: Parent diagrams for A$(l, 2,3,4), i.e. the subleading-in-color part of e+e- --+ qgQ&.
Solid (dotted) lines represent quarks (electrons). Note that the labeling used in this figure and in
section 2.2 corresponds to the one used in ref. [20].

quark pair { 1,2} can be replaced by a lepton pair, and the virtual gluon that connects the
two different quark lines can be replaced by an electroweak vector boson. The fact that the
vector boson can have axial-vector as well as vector couplings, while the gluon has only vector
couplings, can be accounted for in the helicity formalism simply by dressing the graphs with

the appropriate left- and right-handed couplings of fermions to electroweak bosons.
If A;(l, 2,3,4) were truly a primitive amplitude, then one would be able to get qtj +

VIVz + 4 leptons from it with no further information. However, the At(1,2,3,4) as given
in [20] is not truly primitive, for two reasons.

Firstly, the diagrams (a) and (b) in Fig. 2 are combined together in A”Q(  1,2,3,4).  How-
ever, it is no problem to remove diagram (b), because its contribution has been identified
explicitly in [20] (as the terms in the second bracket in eq. (3.19) for Vsl). Both diagrams
(bi) of Fig. 1 and (b) of Fig. 2 are QCD vertex corrections, which evaluate to a universal
factor times the corresponding tree graph. Thus the terms from diagram (b) in Fig. 2, which
appeared multiplied by ATas’ in [20], will reappear here in Ab, multiplied instead by Atreelb.

Secondly, and more non-trivially, another class of graphs has also been included in
A$(l, 2,3,4) in addition to those shown in Fig. 2 - those where the quark pair {5,6}
and the lepton pair {1,2} are exchanged. In the process efe- + qij&Q,  both classes of
graphs have equal weight, but in qQ -+ VlV2 -+ 4 leptons they do not (except for the 22
case). The permutation that generates the ‘exchange’ terms is

exchange: l-6, 2 H 5. (24

We need to delete the ‘exchange’ terms from the (a) terms in At(1,2,3,4).  Since ‘exchange’
takes t123 to ti24, part of this deletion is easy to implement - we want to omit all terms
with a cut in the t124 channel, for example. Also, the second term in the tree amplitude

- A6tree+1 in eq. (3.16) of [20] should clearly be omitted. But this is not enough. There is still
a potential ambiguity about which terms come from the desired graphs, and which terms
from the exchange graphs, in the coefficients of ln(siz), ln(ssG),  ln(ssb) and the three-mass
triangie integral 11m(s12, s34, ss6), as well as the rational-function terms.

Fortunately, it turns out that all of the ambiguous terms, except for the rational-function
terms, were given in eqs. (3.20) and (3.21) of [20] as the contributions of the desired graphs,
not including the exchange. The exchange that was desired for efe- --+ qij&Q was then
added explicitly, at the end of eq. (3.20). This same statement is not true for a second
(simpler) form of A”Q(1,2,3,4),  given in eqs. (12.9)-(12.12)  of [22]. In that form, the exchange
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symmetry was used extensively to simplify the coefficients of ln(siz)  and Ii”, at the cost,
however, of hopelessly entangling the desired graphs with their exchange. (However, we have
managed to significantly simplify even the non-exchange form of these coefficients, as one
may appreciate by comparing eq. (2.16) below to eq. (3.21) of [20].)

We have calculated the desired rational-function terms. We find that P1( 1,2,3,4)  as
given in eq. (3.20) of [20] .is a so valid for the non-exchange case, provided only that the1
final ‘+exchange’ instruction is dropped, and that the following rational-function terms are
added to the existing terms:

1 1
” z -2 (3](1 + 2)]4)

P612 cw2
[12] [56] + (12) (56)

_ 1 w + wNw2+4)ll)
2 ~12 ~56 (31(1  + 2>14> ’

(2.5)

2.3 Virtual primitive amplitudes
After simplifying the coefficients of ln(si2) and Ii”, we can write a fairly compact form for
the required one-loop primitive amplitudes,

A”& 2,3,4,5,6), cl! = a, b. (2.6)

In the application to the processes qq + VlV2  + 4 leptons, the quark and anti-quark will
always be drawn from the set { 1,2}, while the leptonic decay products of a vector boson will
be {3,4.) or {5,6}. However, the exact correspondence depends on the fermion helicity; i.e.,
the same function will appear with various permutations of its arguments (1,2,3,4,5,6) in
section 3. The helicity assignments in eq. (2.6) are (l-, 2+, 33,4+, 5+, 66) (when all particles
are considered outgoing). For the rest of this section the arguments (1,2,3,4,5,6) will be
implicit.

First define the flip symmetry,

flip, : 1 ++ 2, 3 t) 5, 4++ 6, (ab) t) [ab] . (2.7)

The box-parent tree graph is given by

Atree,a = i (13) Lw (W + 5N4
534 s56 t134

The triangle-parent tree graph is given by

A tree,b = s12 s;4 s56 [(13j [=I (W + w4 + P4 (16) w + w] 7

(2.8)

(2.9)

- in a form that agrees with [17].
At one loop, we perform a decomposition into a universal divergent piece V, and finite

pieces ‘Pa,
A” = cr [Atree+V + i Fa] , (2.10)

where QI = a, b, the prefactor is

1
cy =

r?(l + E)r2(1 - 6)
(47r)2-E r(1 - 26) ’

(2.11)
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and we work in dimensional regularization with D = 4 - 2~. The amplitudes presented here
are ultraviolet-finite; all poles in E arise from virtual infrared (soft or collinear) singularities.

The divergent pieces are given by

The finite piece of the triangle-parent contribution vanishes,

Fb=O,

(2.12)

(2.13)

and the corresponding box-parent contribution is given by

F” --[

(13)2 [2512 (2](5 + 6)]4)2(6](2 + 5)]1)2 -2mh

( 3 4 )  [56] t134 (1](5 + 6)]2) - [34] (56) t134 (2](5 + 6)]1)3 Ls-l h27t134’ s34’ “‘)11
+

(6]1]4)2  t134 Ll(fi%) wl4(w2  + W) Lo&)
5 [341(56) (21(5 + 6) II) t;34 + 2 [34] (56) (2](5 + 6)]1) ~34

(16). (26) [1412 tm Lo(%$ 1 (26) [I41 (61(2 + 5)14)
2 [34] (56) (21(5 + 6)lQ2 In

(-h34)(-S12)- - -
[34] (56) (21(5 + 6)11j2 534 (-s34)2

3 . M2 + wo2 (-h34)(-512). . - -
4 [341 (56) t134  (2lc5 + 6)11) In (-s34)2

+ L34/12 ln( 2 - flip1) 1
+

1 (t234612  + 2s34s56)
T 1jm(S12,  s34,  s56) + -

WI2 (W2
2 (21(5 + 6)ll)n3 WI WI + (34 (56)

+  ( 3 6 )  [45] (h34  - t234) 1 @I(2 + 5) 14j2- -
(21(5 + 6)lW3 2 1341 (56) h(21(5 + 6)ll) ’

(2.14)

where ‘flip,’ is to be applied only to the terms inside the brackets ([ 1) in which it appears.
The coefficient of the logarithm reads

3656 (h34  - t234) (31(1 + 2)l4(6l(l + 2)l5)  + 3 (36) [41(1  -t 2)(3 + 4)l51
L34/12 = -2 M(5 + 6) PN 2 M(5 + 6) II>  A3

+ !(3l4l5)[41(5 + 6)(1 + 2>15] + [14] (26) t134  ((36) 612  - 2 (3l45l6))

2 [56] (21(5 + 6)lW3 (56) (a[(5 + 6)11)2A3

1 t134

+ 2(2](5+6)]1)A3 (

(34) WI2 + WI w2
[W (56) - 2 (36) WI)

. (

+ (31(1 + 4)15) _ (34) [14] (26) [45] 612  - 2 [413615]

[561 Gw + w 1 (2K5 + WP3

+ 4 w15H61(1+ w9 + FwwP + 415)
NC5 + 6) lW3

+ 2 (2/(5 :$l)a,
P51 KIC? + 4)15) (36) (W + W)

WI - >(56) ’

(2.15)
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I :

and the three-mass triangle coefficient T is given by

T = 3~12  &2 (h - h)(61(1  + 2>15)(31(1  + 2)]4>
2 (4 (5 + 6) IPM
1(3m  + 2h34)(61(1  + 2)15)(31(1  + 2)14)
2 MC5 + 6) IV3

+ (2&i ::;11j2& [
[I41 (26) ((31615)  b56  - (31415)  634)

- [I51 (23) ((fiw) 656 - (w) 63411

(2.16)

+ (36) [451  sl2 tl34 _ (34) [56] (6](1 + 2)]4j2 + 2 (16) [241((6]5]4)  656  - (61314)  634)

(4 (5 + 6) lW3 MC5 + 6) lW3 [34](56) A3

(6](2 + 5)]4)
+ 2 @I(5 + 6)11)& [

(6]5]2)(2]1]4)  656  - (612ll)(ll3l4) 634  + (6l(2  + 5)]4) ~12612

WI (56)
+ 2 (3l(2  + 6)l5)  5121

_ PI (26) (3lP + 6)15) + 2 Ed (23) w + 5114 M (26) (W + 5114 612
-(S-1(5 + S)]l)” @I(5 + fw2 WI (56) Gl(5 + 6) IO”

1 1
+ 5(2/(5+6)]1) [

3 wwHw9  + w15)(31~15) + PI (16) w51 _ PI (26) (36)
WI (56) (34) [561 WI (56)

+ (23) La51 t3@ _ (13) [151  [451  + 4 (36) ,451
(34 [561 11 1

+ z(ll(5 + 6)]2)
(16)2 [2412 (13)2 [2512 l- 1 [1412 (26j2 (h 612  + 2 534 s56)

[34] (56) - (34) [56] 2 [34] (56) (a](5 + 6)]1)3 ’

For the reader’s convenience we recall the definitions of the functions appearing in eq. (2.14),

Lo(r) E E, L&q E Lo(r) + l
1-r ’

Ls-lh, 7-Z)
7r2

E Liz(l - ?-I) + Li2(l - 7-2) + ln(rr) ln(r2) - 6,

LISTyh (S,t,m;,m;)  = -Lil(l-i;:) -Li2(l-$) (2.17)

- ~ln2(~)+~ln(+)ln(+),

(2.18)

where the dilogarithm is

Liz(z) = - S,’ dyln(lY- ‘) . (2.19)

The analytic structure of the three-mass-triangle integral 1:” is rather complicated in the
general case (see Appendix A of ref. [20]). However, for the production of a vector boson
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1
-

pair VII4 we have A3 = sr2(sr2 - 2MF - 2Mi) + (Mt - I%$)~ > 0, i.e. we are in region (lb)
of [20] and the integral is simply given by

1im(S12, s34,  s56) = -&R@&-w)  + Lkt(-m))  + ln(d ln(pd (2.20)

+ ln(E)ln(z)+g],

where
s12 s34 2s56

2=--, y=-,  p=
656 + I/& ’

(2.21)
s56 s56

The rational-function terms in eq. (2.14) have been rearranged some, so they no longer
look exactly like the permutation of the addition of 6p in eq. (2.5) to the rational-function
terms of eq. (3.20) of [20].

2.4 Real (Bremsstrahlung)  primitive  amplitudes

A full next-to-leading order calculation of vector-boson pair production requires also the
tree-level amplitudes with an additional gluon radiated from the quarks. The corresponding
primitive amplit’udes  are easily calculated. For the case of a positive-helicity gluon with
momentum k7 they are given by:

tree,a  _A, -i iW

(17) s34 s56 t134

(13) WI P51 Rx2 + w? + &x1 + wHw + w9
t256 (74 1 .c2 22)

tree,bA, =
(17) (72) :3/L s56 t127

[- (36) [451(11(5 + 6)(2 + 7111) (2.23)

+ (13) (ll(2 + 7)14)(61(3 + 4)15) - (16) (ll(2 + 7)15)(31(5 + W] .

The case of a negative-helicity gluon is given simply by applying the operation -flip, to
the positive-helicity case, where flip, is defined in eq. (2.7). These amplitudes do have the
appropriate limits when the gluon momentum IQ becomes soft, or becomes collinear with a
quark momentum, Icr or Ic2.

3 Dressing with electroweak couplings for
w + w - ,  zz7 w*z

This section is devoted to the construction of the (squared) amplitudes from the primitive
amplitudes given in the previous section. We will discuss each process in turn. The formulas
are given for the tree-level case with only four leptons in the final state. With some trivial
modifications which will be discussed at the end of this section, the same formulas can be
used for the one-loop (squared) amplitudes and the tree-level (squared) amplitudes with an
additional gluon in the final state.

Concerning the labeling of the external particles: The incoming antiquark always gets
label 1, while the incoming quark always gets label 2. The external gluon, if present, gets

9



I
:

label 7. The final-state lepton labelings correspond to the minimal modifications of the WI+’
case.

w -  + Iv+ + (!, vq) + (i-5 v;>, (3.1)
namely,

z + 2 -+ (-e,&) + (F5 el,>,
If+- + z --+ (-e, 04) + (P5$), (3.2)

and the IV+2 case can be obtained by a CP transformation.
The results will be given in the unphysical configuration where all particles are outgoing.

The momenta have to satisfy C26,i pi = 0. In this configuration the label 1 corresponds to the
outgoing quark; upon crossing to the physical region it becomes the label for the incoming
antiquark. Recall that the helicity of the quarks will change sign under the crossing operation.

3.1 ijq + w-w+ + A?~ e/l+
First consider up-quark annihilation into a W+W- pair. The leptons (anti-leptons) have to
be left-handed (right-handed). If the (outgoing) up-quark is left-handed, the tree amplitude
is -.

where

x [Atree@ ( 1,2,3,4,5,6) + CL,uAtree,b(l, 2,3,4,5,6)] ,
(3.3)

CL,,; 1 = f2Q sin2 8w +
512 (1 F 2Q sin2 0,)

s12 - M; ’ (3.4
8w is the weak mixing angle, and we take Q = 2/3 and the upper sign in eq. (3.4) for the up
quark. The color structure of the amplitude is simply given by 6,:‘) where ii, ~2 are the color
labels of the (anti-)quarks. Note that as ~12 + co, CL,,;1 + 1, and there is a high-energy
cancellation between Atree@  and Atree,b: Atree+  N -Atreeab  as s12 + co. If the up-quark is
right-handed, the tree amplitude is

Pee(uPJg$374;&&)  = s34 s56

a’ 534 - M& + irwMw s56 - M$, + irw Mw
x CR,uAtree,b(2, 1,3,4,5,6),

(3.5)
where

CR,(;) = I-t2Q sin2 8w 1 - s12

5-12 - M; 1. (3.6)
Since CR,,;  1 + 0 as as s12 + 00, the high-energy cancellation is simpler in this case. The
finite width rz of the 2 boson can safely be neglected in eqs. (3.4) and (3.6) because we
have ~12 > 4M$. On the other hand, it is of course crucial to keep the irwMw terms in
the propagators of the W bosons.
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:

The corresponding tree amplitudes for down-quark annihilation are

s34 s56

a’ 534 - M$, + irwMw  s56 - M$, + irwMw

and

x [Atree2a  ( 1,2,6,5,4,3) + CL,dAtree,b(l,  2,6,5,4,3)]

(3.7)

s34 s56

a’ ~34 - M,$ + irwMw s56 - M$, + irwMw
x CR,dAtree,b(2, 1,6,5,4,3)  ,

(3.8)
where we take Q = -l/3 and the lower sign in eqs. (3.4) and (3.6) for the down quark. Note
that because of Cabibbo-Kobayashi-Maskawa mixing and the large mass of the top quark,
we have not done the t-channel exchange of the top quark correctly. Fortunately this error is
proportional to the tiny quantity I&j2 (or or s annihilation, to VtdVtz  times a suppressionf d-
factor for the strange sea quark distribution in the proton).

We can now construct the differential cross-section in the narrow-width approximation.
We normalize the squared amplitudes Mtree such that the integral over center-of-mass angles

for the lepton-pair decay products of both vector bosons only has to be multiplied by the two-
body phase-space factor, in order to obtain the total partonic vector-boson pair production
cross-section multiplied by the leptonic branching ratios,

da2(qq + V,V2) x Be(&) &(V2) = da2 1 d2R1 1 d2R2 Mtree (3.9)

The two-body phase-space factor is given by

da2 = ’~ dcost& ,
167r

where
p = 4~12 - (MI + M2)“)(~12  - (MI - Md2)

and

(3.10)

(3.11)

(3.12)

Here (Or, $r) are the angles of one of the decay leptons, measured in that vector boson VI’s
center-of-mass frame. For equal masses Ml = M2, ,D is the velocity of VI and V2 in the qtj
center-of-mass frame.

We-obtain for the squared Born amplitude for unpolarized uu t WW,

Mtree(ul,  u2; 13, v4; t5, v;) = B;(W)
(sizOw)2 (dj2 8zc

(3.13)

x I (Atreeaa 1, 2, 3, 4, 5, 6) + CL,uAtree,b (1,2,3,4,5,6) I2 + ICR,,Atree>b (2.1;3.4.i:6)~2}  ,
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while for unpolarized dd + WW, we obtain

Mtree(dl,  d,; &, V4; p5, v;) = B;(W)
(si:Ow)’ (&I2 8zc

(3.14)

1, 2,6, 5,4,3) + QdAtreeab (1,2, 6, 5,4, 3)12 + ICR,dAtreejb (2,1,6,5>  4, 3)i2} >

with N, = 3 for &CD. The corresponding expressions for longitudinally-polarized scattering
can be obtained simply by dropping the “unwanted” terms in eqs. (3.13) and (3.14), and
adjusting the normalization appropriately.

--
3.2 Qq + zz -+ ee e’e’
In the Qq + 22 process, only the symmetric combination appears,

A tree,3 = AtreeW, 2,3,4,5,6) + Atreela (1,2,6,5,4,3). (3.15)

(This sum includes the ‘exchange’ graphs just as in A$; hence the simpler form found for this
quantity in [22]-could  be used here, once diagram (b) is removed and the appropriate permu-
tation is applied.) In the 22 case, there are more non-vanishing helicity configurations. We
refrain from writing down all the individual helicity amplitudes in this case, and just present
the di&rential cross-section formulas for the various helicity configurations, normalized as
discussed above:

Mtree(qL QR. !- i+. i+ !-) = pzz T&J;,,  ]Atree,‘(l, 2,3,4,5, 6)12,1, 21 37 47 5, 6

Mtree(qf’, & k’;, i;; it, t’;) = pzz w&&,‘u~,, ]AtreeSs(l, 2,4,3,5, 6)12,

Mtree(qf, ij;; l,, 2:; ?;, t;) = pzz u~,qv~,evR,e2 IAtreeys(l, 2,3,4,6, 5)12,

Mtree(q;, q2”; !;, z;; ?;, t$) = pzz V&J& lAtreets(l, 2,4,3,6,5)1”,

(3.16)

where we defined

(3.17)

The formulas for Mtree(qF, 0:; . . .) can be obtained by replacing v;,~ by z!&,, and interchang-
ing the labels 1 and 2 in eq. (3.16). The unpolarized cross-section, normalized as in eq. (3.9),
is given by the sum over all these M tree’s. In the above, the left- and right-handed couplings

_ to the 2 are
- 1 +  2sin20w 2 sin2 8~

uL,e  = sin 20~ ’ uR,e = sin28w  ’
fl - 2Q sin2 Ow 2Q sin2 8w

(3.18)

UL,q = sin28w ’ ‘uR,q = - sin2f3w  ’
where Q is the charge of quark q in units of e, and the two signs in VL,~ correspond to up
(+) and down (-) type quarks.

12



3.3 ud -+ W-Z + 45, i!‘!’
Finally, for WZ production the down-quark and the lepton e have to be left-handed. The
lepton P which couples to the 2 can have either polarization. If it is left-handed, the cross-
section is proportional to wi,e while for a right-handed !’ it is proportional to v;,~. For the
unpolarized cross-section we have

Mtree(ul,  d,; t3, v3; p4, !l,) = Be(W)B&)~Vud~2
(&)2 (&)24S~2~~i.g.i)

x
i 1

lit,, ZIL,~A~~~~@(~, 2,3,4,5,6) + uL+Atree@(l, 2,6,5,4,3)

- cot OC1,+Atree,b(l; 2,3,4,5,6) 2 (3.19)

+ u;,~ z)L,~A~~~~,~(~,  2,3,4,6,5) + v~,,A~‘~~,~(~, 2,5,6,4,3)

- cot Bw*Atreelb(l, 2,3,4,6,5)

The results for the polarized cross-section can easily be extracted from eq. (3.19).

3.4 Loop and-Bremsstrahlung  amplitudes

The QCD loop corrections to all the amplitudes under consideration are given by a simple
substitution of loop primitive amplitudes for tree primitive amplitudes,

AlOOP -
- g2 (3.20)

where g is the strong coupling, and N, = 3 for &CD. Thus, the next-to-leading order
virtual corrections to the above cross-sections are obtained by replacing (Atree,a)*Atreeaa in
eqs. (3.13), (3.14), (3.16) and (3.19) by 2 Re[(Atree~~)*A~]  and multiplying by g2T =
8m,CF.

The leading high-energy behavior of the loop amplitude cancels in the same way as the
tree amplitude. First note that none of the terms in F” contains the factor A, which is
present in Atree@. Thus the high-energy limit is governed completely by the V pieces. This
ensures that the tree-level cancellation continues to take place at the loop level.

We remark that any non-Standard Model modifications of the three-boson vertex would
only affect the second (b) class of diagrams. The virtual QCD corrections can therefore be
obtained in this case simply by multiplying the modified tree amplitude by the factor V
given in eq. (2.12).

The squared amplitudes for the processes with an additional external gluon can be ob-
tained by a similar change. In this case one has to replace Atree@ and (Atree@)* by A?@ and
(Ayl*)*  respectively and multiply again by g”F. Furthermore, s12 has to be replaced
by ti27 in the expressions for CL,(;)  and cR,{;l, eqs. (3.4) and (3.6), as well as in eq. (3.19).
The normalization is the same as long as the two-body phase-space factor da2 in eq. (3.10)
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is replaced by the three-body phase-space factor dG3. Because eqns. (2.22) and (2.23) for
Apaa are crossing-symmetric, these substitutions are equally valid for processes where the
gluon is in the final state, qij + VlV2g, or in the initial state, gq --+ VlV2q and gq + VlV2~,
provided that the factor coming from the spin-color average is changed accordingly; all three
processes contribute at next-to-leading order.

4 Real photons in the final state
The cases with a single real photon, Wy and Zy, can be handled as well, but the required
primitive amplitudes are different. The one-loop primitive amplitude needed for the Zy case
can be extracted from the existing subleading-in-color primitive amplitude for e+e- + qtjg,
as given in appendix IV of [22]. This helicity amplitude was first calculated in [21]. In the
Wy case, just as for the W+W- and W-2 cases above, the e+e- + qijg amplitude has
to be split further into two ‘fully primitive’ pieces (which in this case are not related by a
symmetry).

4.1 Virtual primitive amplitudes for qtj -+ Vly
For qtj + V,y there is no ‘exchange’ symmetry to relate the contributions with the reversed
ordering of VI and the photon on the quark line. On the other hand, under an on-shell gauge
transformation for the photon (i.e., substitution of its polarization vector by its momentum),
the diagrams where the photon is radiated from the quark line mix with those where it is
radiated from the VI = W line. Let the photon be leg 5, the qij pair be {1,2},  and the
leptonic decay products of

where A; (Ajt) includes all

VI be {3,4}.  Then we again define two primitive amplitudes,

A;(l-, 2+, 3X,4+, 5+), Q = a, b, (44

ordered diagrams where the photon is on the leg 2 (leg 1) side of
the diagram. The negative-helicity photon cases are obtained by another ‘flip’ permutation,

A;(l-, 2+, 3-, 4’, 55) = flip, [A:(1,2’, 3X,4’, 5’)] ,

At(l-, 2’, 3X,4+, 55) = flip, [A;(l-, 2’, 3X,4’, 5’)] ,

where
flip, : 1 * 2) 3 H 4) (cd) * [ab] .

_ Therefore we present only the positive-helicity photon case below.
The tree amplitudes are given by

(4.2)

(4.3)

*tree,a = --a w2 PIY (34) (25) (si2 - s34) ’
(4.4

Atree,b  _ (W2 P51Y a
( 3 4 )  (15) (s12 - s34) ’

(4.5)

where ~34 should be set equal to MCI in accordance with the narrow-width approximation.
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For the one-loop photon amplitudes we use the same decomposition (2.10) into a divergent
part V, and finite parts F which are given by

w2
Fy” = (15) (34) (25)

1 (12) (35) [45] [25] L1 (z)
Ls-,(Z, 2) + 5

(25) 5112

3 (13) [45] Lo(z) 1 [24] [45]- -
2 (25) 312 2 [12] [34] (25) ’

(12)2 (35)2
Fy” = (34) (15) (25)3

(23)2 [2512 (15) Li (z)
(34) (25) ST5

+ (23) [251((12)  (35) + (13) (25)) Lo(z$
P-9 w2 s15

1 (12)2 (35)2 [25]

2 (34) (15) (25)2 ‘15
Ll(Z) s12

$2

+ 3 Lo(?)

512 1
1 (23) P5lW 1 PI WI WI- - - -

’-. 2 [12] (34) (25)2 2 [12] [34] [15] (25)

(4.6)

(4.7)

The integral functions appearing in the above equations are defined in eqs. (2.17).
These amplitudes can be extracted from the collinear limit of the virtual-photon case,

qQ -+ WY*,  when the momenta of the virtual photon’s decay leptons 5 and 6 become parallel.
The relevant primitive-amplitude combination is A” + s12s~~34Ab (see eq. (3.19)). In the
collinear limit, with kp E k5 + !$j, it becomes

A” + 512 (4.8)
s12 - 534

Ab 2 r,Z,1- A;(l-, 2+, 3X,4+, P’) + +f *;(I-, 2+, 3-, 4+, P-) .

Using the ‘flip’ relation, we can read off the two independent photon amplitudes.
The sum of A; and A; (which is all that is required for the case qcj + Zy) reproduces,

after relabelings, the existing subleading-in-color primitive amplitude for e+e- + qijg, as
given in appendix IV of [22].

4.2 Real (Bremsstrahlung)  primitive  amplitudes
The tree-level amplitudes with an additional gluon radiated from the quarks, qq -+ Vlyg,

_ can similarly be obtained from the collinear limit of the qq t Vly*g case, which is described
by  A4’““l” + t12t;1t;31Ayab. Let the gluon label be 6. In analogy to the definitions for the
virtuar case, Aky3a (AFFjb) includes all ordered diagrams where the photon is on the leg 2
(leg 1) side of the diagram. The results are

A~~~“(l-, 2+, 3X,4’, 5+, 6’) = i w2 cw + 415)
(34) (25) (16) (62) (h26 - 534) ’

(4.9)
A;yJa(l-, 2+, 3-, 4+, 55,6+) = (4.10)
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-i (13) [621(51(1 + 3)14) + (ll(2  + 6)14)((34)  (15) [421 + (35) (16) [621)
s34 [25] (62) t134 534 [=I (16) (62) h26 - ~34) 1 ’

Aty’b(l-, 2+, 3X,4’, 5+, 6’) = -i w (W + 4115)
(34)(15)(16)(62)  (h26 - 5 3 4 )  ’

(4.11)

A;y’b(l-; 2+, 3-, 4+, 5-, 6+) = (4.12)

i (15) [24, @I(1 + 5116) + (11(2+ 6)14)((51(2  + 6)413)  + (53) s26)

5 3 4  [15](16)  t234 ~34 [15] (16) (62) (h26  - 5 3 4 ) 1 ’

The cases where the gluon has negative helicity are obtained by applying +flip, to the above
amplitudes (which simultaneously reverses the photon helicity).

4.3 Dressing with electroweak  couplings

As in the case of two massive vector bosons, we present the fully dressed amplitudes and
differential cross-sections at tree level. The substitutions required to obtain the one-loop
(squared) amplitudes and tree-level (squared) amplitudes with an additional gluon are ex-
actly the same as those described in section 3.4.

-.
4.3.1 tid+ W-y-+&y

For the-process iid i W-y, the lepton (anti-lepton) has to be left-handed (right-handed),
and the (outgoing) up-quark must also be left-handed. The tree amplitude is

-‘@ree(Ul,  d,; -e3, c4; 7,‘) = h V,d 6,; s34

s34 - M,$ + irwMw

x [Q~A~~(l,2,3,4,5*)+Q1A1’R.~b(l,2,3,4,5*)] ,
(4.13)

w h e r e  Q1 = 2/3 (Q2 = -l/3) is the up (down) quark charge. iFrom this amplitude we
obtain the spin-summed squared amplitude,

Mtree(ul,  d,; t3,.94; 75) = (4.14)

The normalization of this cross-section is the same as in the WfW- case, eq. (3.9), except
T that the integral J d2R2 and the factor Be, (V2) should be omitted.

4.3.2 . qq + zy + eey

In the Qq + Zy process, only the symmetric combination appears,

Ap+(l, 2,3,4,5*) = Ay,a(l, 2,3,4,5*) + Apjb(l, 2,3,4,5*). (4.15)
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We again refrain from writing down all the individual helicity amplitudes here, and just
present the differential cross-section formulas for the various helicity configurations, normal-
ized as discussed above:

Mtree(qf’, q;;!;, ?;; 7,‘) = pz-, Q2u;,,w;,,  lA~~s(l, 2,3,4, 5*)j2,
Mtree(qf, ij;; e;, ?i; r,‘) = pzy Q2~;,q~;,, IAF’yi, 2,4,3, 5*)12 , (4.16)

where we defined
(4.17)

The formulas for Mtree(qF, qt; . . .) can be obtained by replacing wi,, by V& and interchang-
ing the labels 1 and 2 in eq. (4.16).

5 Concluding remarks
We have presented all helicity amplitudes which are needed for a complete computation of
the next-to-leading order QCD corrections to the production of a 2 2, W+W-, W*Z, W*y
or Zy pair at hadron colliders, where the spin correlations are fully taken into account. The
subsequent decay of each massive vector boson into a lepton pair is included in the narrow-
width approximation.

The’above cross-sections have been “integrated” over the lepton decay angles, after which
they reproduce the previously published analytic formulae for the virtual corrections of
refs. [8, 10, 12, 131 to 30 digits accuracy. Such a high accuracy can be achieved because
the true integration can be replaced by 6 x 6 = 36 numerical evaluations, in which each
leeton is emitted along three orthogonal axes (both positive and negative directions) in
the corresponding vector-boson center-of-mass frame. As a check of the bremsstrahlung
amplitudes we compared in the same way the real contribution in the WsW- case to ref. [12]
and found full agreement.

Of course the new information provided by the above cross-sections is not the total cross-
section, but rather the correlations between the lepton decay angles (or lab-frame momenta).
There are at least two different ways to access this information at next-to-leading order:
(1) Construct a general purpose Monte Carlo program directly in terms of the lepton mo-
menta.
(2) Compute the elements of the density matrix D~l,~2;jl,j2 (s, . . .). These are the amplitude
interferences for the production of a vector boson VI with helicity ir or jr = -1, 0, +1 along

T its direction of motion (in the qij + V,V2 frame, for example), and V, with helicity i2 or
j2. The complete c3(o,) density matrix for polarized vector boson production can easily
be computed using the results presented in this paper. One simply has to carry out the
integration over the angles of the lepton pair, except that one now weights the numerical
evaluations with an additional projection operator, exp[i( -il+ j,)& + i( -i2 + j2)42], where
$1,2 is the azimuthal angle of a decay lepton with respect to the direction of motion of Vl,2.
One can then fold the computed production density matrix with the decay density matrices.
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A possible advantage of the second approach is that it is straightforward to include the
additional QCD corrections that are present for hadronically decaying vector bosons, such
as those computed in [29] for the W boson.

For this latter application, to processes such as qq + W+W- + q’q” f!Ve (and neglecting
interferences with non-resonant processes), the required amplitudes may be obtained from
those described in this paper by appropriate modifications of the coupling constant factors.
(At O(a,), gluon exchange between the initial and final quark lines gives a vanishing cor-
rection.) Because quark final states are phenomenologically somewhat less relevant, these
amplitudes have not been explicitly presented here. Similarly, one can easily extend these
results to cover the cases where the lepton pair coming from an on-shell 2 boson is replaced
by a Drell-Yan pair of arbitrary invariant mass from an intermediate virtual photon plus 2.

The amplitudes presented here can easily be implemented in a Monte Carlo program.
This would extend previous results [18] in that the spin correlations of the virtual part
would also be fully included. Furthermore, the simplicity of the amplitudes should aid in
the next-to-leading-order study of the effects of non-standard triple-gauge-boson couplings.
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