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We propose examples, which involve orbifolds by elements of the U-duality group, 

with M-theory moduli fixed at the eleven-dimensional Planck scale. We begin by reviewing 

asymmetric orbifold constructions in perturbative string theory, which fix radial moduli at 

the string scale. Then we consider non-perturbative aspects of those backgrounds (brane 

probes and the orbifold action from the eleven-dimensional point of view). This leads 

us to consider mutually non-perturbative group actions. Using a combination of dualities, 

matrix theory, and ideas for the generalization of the perturbative orbifold prescription, we 

present evidence that the examples we construct are consistent M-theory backgrounds. In 

particular we argue that there should be consistent non-supersymmetric compactifications 

of M-theory. 
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1. Introduction 

One of the most interesting issues in M theory is the question of how the moduli 

become fixed. The natural length scale for the various radii is the eleven-dimensional 

Planck scale, Zp. Generic geometrical M-theory backgrounds preserving supersymmetry 

have either a moduli space of vacua, or develop a superpotential which vanishes at a 

supersymmetric solution which exists at infinity in some direction in moduli space [l]. 

In string theory, a set of non-geometrical backgrounds was introduced in [2] in which 

many moduli are projected out from the start. This rather economical method can elim- 

inate radial moduli, though not the dilaton, in string the0ry.i The radii become fixed 

at the string scale, 1s. In this paper we study how these compactifications work non- 

perturbatively. We go on to argue that it is possible to generalize these constructions to 

orbifolds in M theory which freeze moduli at their natural scale, Zp. In the simplest exam- 

ple of this kind, the orbifold group breaks all the supersymmetry. Thus the perturbative 

problem that non-supersymmetric models are unstable (i.e. develop a dilaton tadpole) 

may be overcome. 

The basic idea behind the asymmetric orbifold construction of [2] is as follows. String 

backgrounds, such as tori, have discrete symmetries, such as T-duality. At generic points 

in the moduli space, the symmetry is broken, but at special points it is restored. At these 

points, one can orbifold by this symmetry (perhaps combined with other symmetries of 

the system) as long as level-matching constraints are satisfied. * 

It is interesting to then consider non-perturbative aspects of the physics of these 

backgrounds. Because we know how T-duality acts on the various branes in the theory, 

we can determine how the orbifold group acts on the non-perturbative spectrum (at least 

the BPS spectrum). 

The orbifold acts differently on left and right-movers on the string worldsheet. This, as 

well as the fact that the radii are fixed at the string scale, suggest that these backgrounds 

are not geometrical [2]. It is interesting to consider then what the moduli spaces of brane 

probes look like in these theories. We find that the branes do have non-trivial moduli 

spaces. 

These backgrounds fix radial moduli in string theory. As for the problem of fixing the 

dilaton, string-string duality (or U-duality) suggests an answer: construct an orbifold by 

S-duality at the self-dual coupling. Modding out by U-duality symmetries was discussed 

in [4] [5], where a number of interesting examples can be found. 

’ One can eliminate the dilaton in compactifications down to two dimensions [3], but in four 

dimensions the dilaton vertex operator ‘remains invariant under perturbative string orbifolds that 

preserve the 4d Lorentz group. 
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Four-dimensional string-string duality maps T-duality to S-duality [6]. So the exis- 

tence of a theory obtained by modding out by T-duality on one side implies that there is a 

sensible theory obtained by modding out by S-duality on the dual side (since there is only 

one theory involved, which happens to have two dual descriptions). Roughly speaking, 

modding out by both S and T dualities should fix all the moduli. 

Another motivation for studying these somewhat exotic compactifications is matrix 

theory. For ordinary toroidal backgrounds, the matrix description one derives at finite 

discrete light cone momentum N does not decouple from gravity when the background 

has > 6 compact dimensions [7][8]. It will be interesting to see what the situation is for 

non-geometrical backgrounds such as those discussed here. 

This paper is organized as follows. In $2 we review asymmetric orbifolds and discuss 

branes and their moduli spaces on these backgrounds. This leads us to try to develop 

a more abstract formulation of orbifold theories than that which was developed for the 

perturbative string limits. In 53 we present an example in which we orbifold by two 

mutually non-perturbative symmetries, fixing the moduli and breaking supersymmetry. 

We use the matrix theory formulation of the orbifolds to argue for consistency. In $4 

we give a preliminary discussion of the low-energy physics of these models, and in $5 we 

conclude by discussing several interesting open issues. 

For other discussions of duality and supersymmetry breaking, see [9]. 

. 

2. Branes and Asym-metric Orbifolds 

Let us consider the following asymmetric orbifold in the perturbative type IIA string 

theory on T4. Take a square torus with radii 

RI = Ra = RS = R4 = Is 

and no B field. Then we can mod out by a symmetry generated by 

(2-l) 

acting on the left and right moving bosons on the string world sheet. The action on the 

RNS fermions is determined by worldsheet supersymmetry. In this model as it stands, 

half of the left-moving supersymmetries in the untwisted sector are projected out, but the 

supersymmetry returns in the twisted sector. But if we combine this symmetry with an 

action (-l)F”, then one obtains no supersymmetry from the twisted sector. 



*. 

iFrom the expressions for the left and right moving momenta (zero modes of 

x$&i = 1)“‘) 4) 

p$&ni; 
S 

p&$+n$ 

S 

(2.3) 

(2.4) 

we see that the symmetry (2.2), at the self-dual radii (2. l), exchanges winding number n 

and momentum number m. The orbifold is then a modding out by T-duality, combined 

with additional action on fermionic degrees of freedom. One can compute the complete 

perturbative string spectrum following the methods in [2]. 

Let us consider the spectrum of branes in this background. For that we simply need to 

consider the action of T-duality on the branes. For D-branes, T-duality exchanges Dirichlet 

with Neumann boundary conditions for the open strings living on their worldvolumes [lo]. 

So for example a DO-brane turns into a D4-brane wrapped on the T4. The invariant states 

will then consist of Ic DO-branes and Ic DPbranes. 

How does this all look in eleven dimensions? The DO-brane is a momentum mode pll 

in the eleventh dimension, and the D4-brane is a longitudinal M-5-brane. So the orbifold 

exchanges momentum and winding in the eleventh dimension as well as in zl, . . . , x4! The 

constraint on the moduli, (2.1), is 

(2.5) 

So the M-5-brane wrapped on x1,. . . ,x4, z” indeed has the same energy, l/Rll, as the 

momentum mode ~11. 

Let us now consider the moduli spaces of these branes. First consider the untwisted 

sector. The O-O strings map to 4-4 strings, while the O-4 strings map to 4-O strings. 

The positions of the DO-branes map to Wilson lines in the D4-brane field theory. So the 

combined DO/D4-brane bound state still has a moduli space whose Coulomb branch is k 

copies of the torus. In addition, there are Higgs branches in which the O-4 and 4-O strings 

get VEVs. 

This is rather analogous to what happens for D-brane states on symmetric orbifolds. 

For example, consider DO-branes on the symmetric orbifold R4/Z2 [ll]. There one intro- 

duces “mirror” DO-branes at the &-reflected points on R4. There is then a branch of the 

moduli space which is just R2/22. In addition, there is another branch which emanates 

from the orbifold fixed point. When the mirror pair of DO-branes sits there, they can 

separate in the transverse directions without spoiling the 22 symmetry. This branch is 
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related to the twisted states which live at the orbifold fixed point. The “twisted states” of 

the orbifold correspond here to bound states of the DO-branes stuck at the orbifold fixed 

point. In our case, the “mirror” of the DO-brane is the D4-brane. 

In the asymmetric case we are considering, there are also extra open string sectors, 

analogous to the Ramond and Neveu-Schwarz sectors one has in imposing the GSO projec- 

tion. These sectors yield new open string moduli replacing those that were projected out 

from the untwisted sector. (This had to happen in the case of the orbifold by (2.2) without 

the additional ( -l)FR action, since this model is equivalent to the original unorbifolded 

theory. It also happens to be true for the theory with the extra (-l)FR action as well.) 

2.1. 3d + 4d? 

One might stop at this point and consider the strong-coupling limit of the perturbative 

string asymmetric orbifold as a way to fix the moduli even in M-theory, by taking RI1 to 

be the radius of the 4th dimension (i.e. by considering an asymmetric orbifold of IIA 

on T7). This may be related to the proposal of [12] for supersymmetry breaking. In 

particular, by taking appropriate combinations of the action (2.2), shifts, and (-l)FR on 

the T7, one can construct examples with 3d N = 1 supersymmetry, whose strong coupling 

(four-dimensional) limit may have no supersymmetry. One example of such an orbifold 

group is generated by the following elements acting on the T7: 

a1 a2 a3 

(-171) shift (-14 

(-171) shift shift 

(-14 (-171) (-171) 

6171) (-171) shift 

shift (-171) (-14 

shift (-14 shift 

shift shift (-14 

(-l)F” 

The shift here is symmetric between left and right-movers: it is a shift by half a momentum 

lattice vector (with no winding component). This orbifold level matches in all sectors, 

and preserves 3d N = 1 supersymmetry. There is no twisted supersymmetry or twisted 

scalars. The physics is very subtle here, because the orbifold has naively violated the 

Lorentz symmetry between the fourth dimension and the other three, and because the 

radii of the T7 shrink to zero size (2.5) in the limit RI1 + co. There is some nonlocality 

in the physics, since as discussed above momentum in the eleventh (i.e. fourth) dimension 

is accompanied by a wrapped M-5-brane. We hope to pursue this further in future work. 

4 
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2.2. Toward a non-perturbative definition of orbifolding 

In ref. [13], a precise prescription for constructing orbifold models in perturbative 

string theory was developed. Call the orbifold group G. The rule is that one keeps all 

G-invariant single particle states of the original theory, and adds in twisted sector states 

obeying a similar condition. It is not clear how to formulate a non-perturbative defini- 

tion of the orbifold. In particular, multi-particle states which are invariant under G are 

discarded if their single-particle components are not invariant. Within the framework of 

string perturbation theory, one can also give a precise set of rules for interactions. 

The fact that it is difficult to give a non-perturbative definition of the orbifold does 

not mean that the orbifold does not make sense at strong coupling. In theories with 

sufficient supersymmetry, starting from the weak coupling construction, it follows that a 

moduli space exists. (For non-supersymmetric theories, as always in string/M theory, the 

- situation is less clear.) Indeed, certain non-perturbative aspects of asymmetric orbifolds 

are accessible to study, as we now show. In the context of string-string dualities, orbifolding 

has been studied extensively following the suggestion in [6]; see [14] for a discussion of the 

rules there. 

1 

. 

Let us consider the type IIA string theory orbifolded by G. In M theory, for each 

perturbative string state-or more accurately, for each ~11 = 0 state-there must be a set 

of DO-brane bound states with the same quantum numbers; i.e. there must exist nonzero- 

pll modes of each state. These should arise, as discussed in the previous section, from 

appropriate bound states of DO-branes. 

So we are led to propose that the spectrum of an M-theory orbifold consists of all the 

G-invariant bound states. This agrees with the prescription in perturbative string theory 

of not keeping all invariant multi-particle states. It also gives a prescription for defining 

the more abstract orbifolds we are interested in here. In particular, we can consider the 

orbifold (2.1)- (2.5) at any value of R11. 

Perturbative string orbifolds must satisfy a set of consistency conditions imposed by 

modular invariance [15]. Th ese level-matching constraints lead to simple conditions on the 

orbifold action. They are sometimes, but not always, equivalent to anomaly cancellation, 

- which has so far been the only condition imposed on M theory orbifolds. Level-matching 

ensures that an orbifold model has a well-defined perturbative string description. It is 

possible that in general it is not a constraint, since one has the possibility of adding space- 

filling branes whose moduli can render a model consistent [14]. (One example is F-theory 

in 8d, where seven branes are included at points in T2/Z2 N P’.) 

One way to get a handle on level-matching conditions is to consider the spectrum 

of D-branes on an orbifold. As discussed after (2.5), in the case of the action (2.2), 

5 
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untwisted states seem to correspond to the DO-brane/DPbrane wavefunction supported 

on the interior of their Coulomb branch, while we expect the twisted states to correspond 

to states localized at the origin of the Higgs and Coulomb branches, in analogy to the 

twisted states of symmetric orbifolds [ll]. 

If we tried to act with -1’s on six left-movers, for example, instead of four, we would 

find that the perturbative string theory does not level-match. Correspondingly, the DO- 

brane/D6-brane system breaks supersymmetry, the branes repel, and there are no ana- 

_ logues of the “twisted states”. So a natural guess is that requiring that each element of the 

orbifold group maps branes to other branes which preserve supersymmetry should ensure 

that the model is consistent. 

In six dimensions, i.e. M theory on T5, one can use matrix theory to define the 

orbifold models. There the consistency conditions are somewhat cleaner, since in that case 

_ U-duality becomes T-duality of the defining matrix theory (as we will review below) [16]. 

This will give us one set of models. We will then move on to consider four-dimensional 

examples where matrix theory is no longer helpful but we can at least ensure that the 

group elements map branes to other mutually supersymmetric branes. 

-- 

3. Fixing the Dilaton: Mutually Non-perturbative Orbifold Groups 

A perturbative string orbifold does not fix all the M-theory moduli (at best it relates 

them to Rrr as in (2.5).). In th is section we will generalize the asymmetric orbifold con- 

struction to construct orbifolds of M theory which fix radii at Zp. We will first study a 

six-dimensional example because there we can use the matrix formulation of [16] [17] to 

get a handle on the consistency conditions. Then we will generalize the construction to 

four dimensions. In $4 we will discuss aspects of the low energy physics of the examples, 

including subtleties pertaining to the question of stability. 

3.1. 6d Example 

Let us begin as in $2 with M theory on 2’ 5. In the matrix theory this is given by the 

(2,0) supersymmetric 6d string theory of [18][17] compactified on another five-torus F5. 

This torus has radii Cr , . . . , X5, which are related to the radii Lr , . . . , L5 of the spacetime 

T5 as 
l3 

xi = - 
RPLi’ 

i = 1,...,4 (34 

c5 = 
P P 

R’hL2L3L4 
(3.2) 
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z2 = R2-hL2L3L4L5 
S 

zg 
P-3) 

P 

-- 

- 
where R is the longitudinal radius and iUs is the string scale of the (2,0) string theory. 

This theory was obtained [17] by considering the limit of vanishing string coupling in 

the background of a symmetric fivebrane [18]. Th ere is evidence [19] that although the 

theory decouples from gravity, it includes the full conformal field theory describing strings 

propagating on the throat of the solution [18] as well as along the five Poincare-invariant 

dimensions. 

What we will need of this background is the fact that it has a T-duality symmetry 

SO(5,5,Z) t g ac in on the moduli of the F5. In general, because this string theory is strongly 

coupled, we cannot quantize the strings in the usual manner of perturbative string theory. 

However, in [19] it was observed that there is a regime in which this theory has weakly 

coupled strings. Here we will first discuss the orbifold action in this regime, where the 

strings are weakly coupled, and ensure there that the orbifold satisfies the level-matching 

conditions. In particular, let us consider the following orbifold group G, generated as 

follows by elements f and g, in the (2,0) string theory: 

f g fg 

(-1,l) -- w (-14 

(-171) (L-1) (-1,-l) 

(-171) (1,-l) (-L-l) 

(-14 (17-l) (-17-l) 

(14 (17-l) (L-1) 

(-1)F” (-1)F” C-1) 
FL+FR 

In the string theory, all group elements level-match. Because there is a weakly coupled 

regime, this is necessary for consistency of the model. Though this is of course not a proof- 

we do not know whether this is sufficient for consistency-we take it as strong evidence that 

the model is consistent. 

The elements f and g together fix 

Cl = c2 = . . . = c5 = 1 

MS 
(3.4) 

This translates in the spacetime theory into the condition 

L1 = L2 = . . . L5 = lp. (3.5) 

In spacetime the orbifold gr0up.G acts as follows. The element f acts as T-duality on 

Lr, L2, Ls, L4, along with (-I)F, in the IIA theory with respect to which L5 corresponds 

7 
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to the “eleventh” dimension. Similarly the element g acts as T-duality on La, L3, L4, L5, 

along with (-l)F, in the IIA theory with respect to which L1 corresponds to the eleventh 

dimension. 

This orbifold kills all the supersymmetries. We start with a 32-component supercharge 

E in eleven dimensions. The element f leaves invariant half of the spinors satisfying E = l?se 

(i.e. left-h an e su ers d d p y mmetries in the IIA theory with respect to which L5 corresponds 

to the eleventh dimension). The element g leaves invariant half of the spinors satisfying 

E = l?re. From the point of view of the original IIA theory, l?r changes the chirality of 

the spinor, so this condition is incompatible with the supersymmetries left invariant by 

g. We could preserve some supersymmetries, at the cost of introducing scalars with flat 

directions in their potential. 

Without supersymmetry, there is an issue of whether the matrix theory has flat direc- 

tions, at least at distances greater than lp, which is required for spacetime to emerge. This 

is not yet clear to us, but the following points are relevant. As discussed above, the matrix 

theory for M theory on T5 has as an analogue model the theory of N NS fivebranes on F5, 

in the limit gs + 0 (where gs is the string coupling). The analogue model for our case 

is the theory of N NS fivebranes on p5 in the IIA theory modded out by the asymmetric 

orbifoldgiven above, in the limit gs + 0. That theory has fivebranes at separate points (as 

. long as the separation is greater than l/Gs = 2$/R) with no force between them. This is 

because the way the force cancels in the supersymmetric theory is by cancellations between 

dilaton, graviton, and antisymmetric tensor exchange. All these fields are projected in by 

the orbifold, so the asymptotic flat directions remain. However, this is not sufficient to 

ensure that we have ordinary gravity. 

Another feature of our model is the absence of tachyons, and the resulting improved 

supersymmetry properties at high mass levels [20][21]. This may be enough to produce 

asymptotic flat directions at the right scale in the potential [22], though we need better 

control over the fivebrane theory in order to analyze this. 

3.2. 4d Example 

We will now consider a 4d M-theory background obtained by orbifolding M-theory on 

T7, with coordinates (xl, 22,23,24, xg=rr, X6, x7=~). The orbifold group H is generated 

by two elements. The first, h 1, can be most easily described by considering M-theory on 

this T7 as a IIA string theory with respect to which x5=11 is the eleventh dimension. Then 

hl acts as T-duality on x1, x2,23, x4, combined with (-1) F. Similarly, we take h2 to be 

T-duality on x3, x4, x5=11, x6 combined with ( -l)F in a 1x theory in which x7=6 is the 

eleventh dimension. This action fixes all the radii of the T7 to be Zp. 

8 
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In this case we do not have a matrix realization to work with. We expect, however, 

that imposing the condition that each orbifold group element maps branes to mutually 

supersymmetric branes is likely to lead to consistent models. We checked this for the 4d 

model just proposed. This is automatic for the elements hl and ha, so one just needs to 

check the products. For example, the M-5-brane wrapped on x1, x2, x3, x4, x5=11 maps 

under h2hl to an M-2-brane wrapped on x5=11, x7,r<. These two objects preserve super- 

symmetry. 

_ J 

4. Low-energy physics of the models 

What can we say about the spectrum of this theory? The first important question 

is whether there are scalars in the low-energy spectrum. We have certainly projected 

- out the untwisted radii, since U-duality is only a symmetry at the self-dual radii. There 

can however in principle be scalars in the “twisted sectors” of our orbifolds. Note that 

while the phrase “twisted sector” refers to the perturbative construction, in fact these 

sectors are distinguished by discrete quantum numbers. Such quantum symmetries[23] are 

exact in perturbative orbifolds, and thus they might be expected to exist in this theory 

. 

. as well. If we preserve enough supersymmetry (e.g. by not including the ( -l)FR actions 

in our orbifolds), this happens because there are scalars in the supermultiplets. With 

enough supersymmetry, these scalars will have flat directions in their potential, and may 

be in general connected.to geometrical models by going out along them, as in some of the 

examples in [24]. 

Without supersymmetry, as in the above examples including the (-l)FR actions, we 

have less control over the orbifold. In order to determine whether there are scalars in the 

twisted sectors, we would need to know the quantum numbers of the bound states of the 

orbifold theory’s Hamiltonian. We can choose the orbifold action so as to ensure that the 

fermionic zero modes which are free and decoupled generate non-trivial representations of 

the Lorentz group and no scalars. But in principle the rest of the degrees of freedom could 

_ interact in such a way as to cause the ground states to have different quantum numbers. 

However, even if there are “twisted” scalars, it is likely that a potential is generated 

which lifts any flat directions they would otherwise have. In particular, the twisted scalars 

will be charged under the quantum symmetry, so the orbifold point will be an extremum 

of the potential. This is to be contrasted with earlier constructions of non-supersymmetric 

backgrounds in weakly-coupled string theory [25], which, though interesting, are generically 

unstable to running off to weak coupling. 
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Note also that we did not project out the graviton state. It corresponds to a diffeomor- 

phism symmetry in the noncompact dimensions which remains unbroken by our orbifold 

action. 

We should stress a subtlety here. As discussed in $2.2, modulo the matrix construction 

we do not have a complete, non-perturbative description of the orbifolding procedure. In 

perturbation theory, the orbifold procedure is not guaranteed to construct a stationary 

solution of string theory. In particular, there are examples where twisted moduli are at 

a maximum, instead of a minimum, of the potential, and untwisted massive fields have 

tadpoles. A well-known example of this phenomenon is provided by the compactification 

of the 0(32) heterotic string on a symmetric orbifold. In this construction, at order g2, 

there is a Fayet-Iliopoulos D-term, and at order g4 there is a dilaton tadpole. At still 

higher orders, one expects to generate tadpoles and curvature for all untwisted moduli 

and charged fields (e.g. masses can be generated at fourth order in the Fayet-Iliopoulos 

parameter). In all known cases, it is possible to shift some charged field so as to cancel 

the D-term and restore supersymmetry. But at the level of the orbifold procedure, it is 

not clear why this is true. In the models we have described, supersymmetry is completely 

broken, and there are no small dimensionless parameters. A priori, then, we might expect 

that, while there are no massless states, there might be tadpoles for massive fields and 

that the true ground state, 2 if any, might lie far away and have quite different properties 

than those suggested by the orbifold construction. 

However, it will always be the case that the orbifold point will be an extremum of the 

potential. We find it likely that for some examples this extremum will be a minimum after 

taking into account any tadpoles of massive fields. In particular, we have presented a matrix 

formulation in $3.1 in terms of fivebranes in a non-supersymmetric string theory with g + 0 

and asymptotic supersymmetry. We find these features promising, but unfortunately the 

strong coupling at the core of the fivebrane precludes a more detailed analysis at present. 

It is important to note that although we have fixed the moduli at Zp, this does not 

necessarily imply that the low-energy effective couplings are strong. In a theory with 

exact electric-magnetic duality, the gauge couplings are necessarily large at the self dual 

point. At such a point, one might worry that the self-dual value of the bare coupling is 

preserved in the effective theory due to degeneracy of electric and magnetic states. When 

2 It is perhaps worth recalling that in ordinary weak coupling string theory, tadpoles for mas- 

sive particles are not important since they are cancelled by small shifts, and are automatically 

taken care of by properly “integrating ‘out;” at strong coupling, the situation is inevitably more 

complicated. 

-- 
10 
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one orbifolds by S-duality, as we essentially do here, this objection is evaded, since the 

orbifold does not leave all the independent electric and magnetic states. 

Finally, and perhaps most crucially, there is still the question of whether there is 

a cosmological constant. In all known examples of perturbative string theories without 

supersymmetry, there is a non-zero cosmological constant at one loop. This might suggest 

that in theories without moduli, one should expect a cosmological constant scaled by 2M,. 

However, there is an important difference between these cases: in weakly coupled theories, 

the l-loop cosmological constant is proportional to a l-loop dilaton tadpole [26]. The 

evolution of the system then tends to drive the cosmological constant to zero. In the 

present case, there is no such tadpole. There are very speculative arguments [27], based 

principally on the holographic principle [28], that such a cosmological term would not 

make sense. Models of the type we have discussed here should be a testing ground for 

these ideas. 

If there is a non-zero cosmological constant, then there may well be a solution of M 

theory of this kind, but there is probably no sense in which one can speak of a “low energy 

theory” at all. For example, terms in the gravitational action involving high powers of the 

curvature, R, will not be suppressed. 
_- 

5. Conclusions and Open Questions 

We have provided evidence that M theory has a set of backgrounds, essentially non- 

perturbative generalizations of asymmetric orbifolds, in which the moduli are projected 

out (fixed at Zp). W e are limited computationally by strong couplings in the construction. 

However, there are many interesting questions this set of models raises. We would like a 

more detailed, direct understanding of what it means to mod out by S-duality, and how it 

works just within quantum field theory. Similarly it would be very nice to derive simple 

and general consistency conditions analogous to level-matching constraints in perturbative 

orbifolds. We would also like to pursue the low-energy physics of these models, in particular 

the 3d + 4d model in $2.1. 
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