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The basic ideas underlying the production dynamics and search tech-
niques for disoriented chiral condensate are described.

1. Introduction

These notes are an abbreviated version of lectures given at the 1997
Zakopane School. They contain two topics. The �rst is a description in
elementary terms of the basic ideas underlying the speculative hypothesis
that pieces of strong-interaction vacuum with a rotated chiral order pa-
rameter, disoriented chiral condensate or DCC, might be produced in high
energy elementary particle collisions. The second topic is a discussion of
the phenomenological techniques which may be applied to data in order to
experimentally search for the existence of DCC.

Two other topics were discussed in the lectures but will not be men-
tioned in these notes other than in this introduction. One was a review
of the experimental situation regarding DCC searches. There are so far
only two such attempts. One has been carried out at the Fermilab TeVa-
tron collider by test/experiment T864 (MiniMax). Preliminary results, all
negative, have been presented at a variety of conferences[1]. No new infor-
mation is available now, and the interested reader is invited to consult the
references[2]. The other experiment, WA98, is in the �xed-target heavy-ion
beam at CERN. Again there is no evidence of DCC production[3]. The
analysis methods are at present being re�ned by that group and are dif-
ferent than for MiniMax, because they are blessed with a relatively large
phase-space acceptance. A recent status report is given by Nayak[4].

The other omitted topic is quite separate, and has to do with the ini-
tiative called FELIX. It is a proposal for a full-acceptance detector and

� Work supported by the Department of Energy under contract number DE-AC03-
76SF00515.



2 slac-pub-7720 printed on December 18, 1997

experimental program for the LHC dedicated to the study of QCD in all
its aspects|hard and soft, perturbative and non-perturbative. Much has
happened since Zakopane with respect to FELIX. Especially noteworthy is
the production of a lengthy and detailed Letter of Intent[5], which provides
much more detail than was possible in the lectures on what it is about, and
in any case provides guidelines for all LHC experiments on interesting issues
and opportunities in QCD worthy of study. Unfortunately, at this time of
writing, the initiative has run into di�culties with the CERN committees
and management, with its future at present uncertain.

2. Theory of DCC Production

2.1. Light-quark e�ective theory (LQET)

We accept without question that the usual QCD Lagrangian provides
a correct description of the strong interactions. Nevertheless, at large dis-
tances the spectrum of the theory is that of colorless hadrons, not color-
ful quarks and gluons. The con�nement mechanism responsible for this
situation is only part of the story. In addition there is an approximate
chiral SU(2)L � SU(2)R avor symmetry which is spontaneously broken.
The pions are the collective modes, or Goldstone bosons, associated with
this phenomenon of spontaneous symmetry breaking. In addition, in this
low-energy world where hadron resonances are a dominant feature, the con-
stituent quark model works quite well, with an interaction potential which
does not involve in any explicit way the gluons; direct gluonic e�ects seem
to be quite muted[6].

There are a variety of low-energy e�ective Lagrangians which are in use,
associated with this regime. And they are quite well-motivated, with a
starting point being the fundamental QCD short-distance Lagrangian. The
procedure of starting at short distances and ending up with a large-distance
e�ective theory depends strongly upon taking into consideration the e�ects
of instantons[7]. These lectures are not the place to go into what instantons
are, and it has to be assumed that the uneducated reader will search else-
where to �nd out[8]. It is rather clear on phenomenological grounds, and is
supported by detailed variational calculations, that the important instan-
tons have a size characterized by a momentum scale of about 600 MeV and
that the size distribution is quite sharply peaked about this value[9]. The
instantons form a dilute liquid in (Euclidean) space-time, with a packing
fraction of only 10%. Nevertheless, the interactions between them, and the
e�ects of the instantons on the Fermi sea of light quarks, are very important.
There are light-Fermion \zero modes" surrounding the instantons, and their
correlations are such as to rearrange the Fermi sea of light quarks in just
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the right way to create the chiral symmetry breaking.
Assuming that these instantons are indeed the most important gluonic

con�gurations at the 600 MeV scale, their main e�ect when \integrated
out" of the QCD path integrals, is to leave behind an e�ective action of
the Nambu-Jona-Lasinio type between the light quarks. This e�ective ac-
tion, to be applied at momentum scales below 600 MeV, does indeed im-
ply spontaneous chiral symmetry breaking and the existence of the pionic
Goldstone bosons, which emerge as composites of the quark-antiquark de-
grees of freedom. It also constitutes a de�nite starting point in general for
constituent-quark spectroscopy. An extensive amount of work utilizing this
e�ective action is quite successful phenomenologically[9].

At still lower momentum scales, or larger distance scales, the constituent-
quarks themselves can be \integrated out" of the e�ective action. They are
replaced by the pionic degrees of freedom, comprising the lowest mass scale,
or largest distance scale, in the strong interactions. The e�ective action
looks then very much like the one used for the Higgs sector. However the
action of this e�ective theory need not be restricted to be renormalizable.
There will be, in addition to the quadratic free-particle term and quartic in-
teraction, terms of higher polynomial order, some with derivative couplings
depending upon the choice of description. This is just the purely chiral
e�ective action studied in great detail by Gasser and Leutwyler, among
others[10].

Simpli�ed versions of the chiral e�ective theory are the linear and non-
linear sigma models. The linear sigma model is what is isomorphic to the
usual Higgs theory; the nonlinear sigma model essentially "integrates out"
the massive sigma degree of freedom (analogous to the massive Higgs boson
of standard-model electroweak theory), leaving only the pionic degrees of
freedom in the e�ective action. In what follows, these e�ective actions are
what are relevant for the description of DCC because, as we shall see, the
space-time scale for the DCC system is assumed to be \macroscopic", i.e.
have dimensions large compared to 1 fermi. However, we should emphasize
here that the use of sigma models, be they linear or nonlinear, is only a rough
approximation to the true situation at best, because the Yukawa couplings
of the Goldstone system of pions and sigma to constituent quarks are large
and should not be ignored, except perhaps at the very lowest momentum
scales.
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2.2. DCC Production Scenarios

As we have mentioned in the introduction, DCC is by assumption a
\macroscopic" region of space-time within which the chiral order parameter
is not oriented in the same direction in the internal O(4) = SU(2)� SU(2)
space as the ordinary vacuum. If we use for simplicity the language of the
linear sigma model, the sigma and pion �elds form a four-vector � in the
O(4) space, and in the vacuum there is a nonvanishing value of � in the �
direction.

What we shall assume is that in a high energy collision, there are regions
of space-time where h�i, essentially a classical quantity, is rotated away from
the � direction. At late times, of course, this \chirally rotated vacuum" must
relax back to ordinary vacuum. The mechanism will clearly be the radiation
of the collective modes, the pions, via a semiclassical mechanism. It should
be clear that, if indeed this happens, it is quite an interesting phenomenon,
because it would provide a rather direct look into the properties of the QCD
vacuum itself.

How might the DCC be produced? In hadron-hadron collisions, most
models of particle production, be they stringy or partonic, put the bulk of
the space-time activity near the light cone. That is, the ow of produced
quanta is concentrated in a rather thin shell expanding from the collision
point at the speed of light. But what happens within the interior of this
shell? If it rapidly relaxes to vacuum, then it is hard to see why the normal
vacuum must be chosen, because the interior region is separated from the
exterior true vacuum by a \hot" shell of expanding partons. And as we
shall see, the time scale for the true vacuum to be selected via the small
chiral-symmetry-breaking e�ects associated with nonvanishing pion mass is
quite long.

It is this \Baked-Alaska" scenario which will be the main thrust of this
discussion[11]. However, there is a second space-time scenario relevant to
heavy ion collisions. The idealized case is that of in�nite pancakes colliding
with each other at the speed of light, with quark-gluon plasma produced in
between the pancakes at early times. But at late times, after this plasma
goes through the decon�ning/chiral phase transition, the possibility of DCC
formation also exists[12] and has been rather extensively studied[13]. The
geometry in this idealized situation is that of a boost-invariant 1+1 dimen-
sional expanding system, and is the most tractable case to consider from a
calculational point of view. We shall review a simple example studied by
Blaizot and Krzywicki in the next section.

Can one actually predict that DCC should be produced under these
circumstances? Certainly not. On the other hand can the possibility of DCC
production be excluded theoretically? Again, certainly not. The subject
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needs to be data driven. This is the reason that both Cyrus Taylor and I
decided to go into experimental physics and make an experimental search
at the TeVatron collider. While the MiniMax experiment which emerged is
very modest, and while the results so far are negative, the experience gained
has been invaluable in learning how to construct good search strategies, and
in determining what is necessary in order to do a better experimental job
in the future.

2.3. Sigma models

The space-time scenario for DCC production begins at an early proper
time, i.e. near the light cone, when the energy density becomes low enough
that the chiral order parameter is nonvanishing. The proper time scale
here is plausibly somewhere between 0.3 and 0.8 fermi. At this point one
must assume initial conditions for the chiral �eld, which then evolves, at
the simplest level of approximation, according to the classical equations of
motion. A natural hypothesis is, in the context of the linear sigma model,
that the chiral �eld initially vanishes (at least on average). This means it is
initially on top of the \Mexican hat", and rolls o� the hat into the region of
the minimum. During this initial roll, the linear sigma model, at the least,
should be used for the proper-time evolution of the vacuum condensate. As
we shall see, this evolution can go on for anywhere from one to �ve fermi of
proper time. The formalism is as follows. The chiral �elds can be written
as

� = (�;�!� ) i = 1; : : : 4 (1)

or alternatively as a 2� 2 matrix of �elds

� = � + i�!� � �!� (2)

with the Lagrangian for the former case being

L =
1

2
j@��j2 �

�

4

�
� 2 � f2

�

�2
: (3)

At late times, when the chiral �eld is near the minimum of the Mexican-
hat potential radially, but is still rolling around azimuthally, the nonlinear
sigma model can be used. One writes, in the 2� 2 notation

� = Rei
�!� �
�!� (4)

and freezes out the radial degree of freedom

R � f� : (5)
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If one further writes as a special case

� = f�e
i�3�3(x) (6)

it follows that the pion �eld which appears in the exponential can be shown
to obey free-�eld equations of motion.

2�3(x) = 0 : (7)

This can be extended using a general, global SU(2) � SU(2) rotation to a
class of solutions (\Anselm class"[14]):

�! UL�U
y

R : (8)

It is important to keep in mind in what follows that the linear sigma model
leads to nonlinear equations of motion, while the nonlinear sigma model
here leads to linear equations of motion.

While this discussion has been only at the classical level, there has been
a lot of work, especially by those interested in the heavy-ion DCC, in going
beyond this approximation. The state of the art is to incorporate quan-
tum corrections to the linear sigma model in the mean-�eld (or Hartree, or
large-N, or \random-phase") approximation[15]. This amounts essentially
to inclusion of tadpole contributions to self-energy parts or geometrical-
series bubble summations to appropriate propagators. While this level of
computation is simple in translationally-invariant systems, it is not at all
simple in cases like this, where the space-time geometry of sources is quite
nontrivial. So far, the inclusion of quantum e�ects is important quanti-
tatively but has not seriously changed the qualitative properties. In this
discussion we shall remain within the classical approximation.

2.4. The Blaizot-Krzywicki model

A very easy application can be made of the above considerations[16].
Consider boost-invariant solutions of the nonlinear sigma-model equations
within in�nitely large heavy-ion disks receding from each other at the speed
of light after a central collision. The equation of motion 

@2

@t2
� @2

@z2

!
� = 0 (9)

leads to the solution
� = � `n � + const: (10)
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with
�2 = t2 � z2 (11)

and
� = f�

�
UL e

i��3`n � U
y

R

�
: (12)

We see that in general the chiral angle in isospin space precesses with in-
crease of proper time, provided the left-handed global rotation di�ers from
the right-handed one. This curious feature depends on the choice of geom-
etry, however, and does not generalize to the Baked-Alaska scenario.

These calculations have been extended to the case of the linear sigma
model, with qualitatively similar results.

2.5. Baked Alaska

The simplest case of the Baked-Alaska scenario again utilizes the nonlin-
ear sigma model. Inside the future light cone one assumes spherical symme-
try. In addition, it is assumed that for 0 < t < T , with T some \decoupling
time", there is chirally rotated vacuum within the light cone, i.e.

� = (0; f�; 0; 0) : (13)

We have taken, without much loss of generality, the chiral orientation to be
purely in the �0 direction, because other cases can be obtained via global
chiral rotations. With this hypothesis, the free equation of motion for the
pion �eld can be used for times t > T , using the boundary conditions for
the �eld at t = T . When the pion mass is neglected, the form of the solution
must be that of a right-moving plus left-moving pulse:

r�(r; t) = f(r � t) + g(r + t)) f(r � t)� f(r + t) (14)

and the shape of the function f is easily found to be a triangular pulse of
width 2T and maximum height f�T .

r�(r; t) =
f�

2
[(2T � t+ r)�(2T � t+ r)�(t� r)� (2T � t� r)�(2T � t� r)] :

(15)
Thus for times t > 2T there is only a triangular pulse of pion �eld (actu-
ally r�) radiated outward at the speed of light, which comprises the decay
products of the initially formed DCC.

The calculations and formalism for this example have been laid down
in considerable detail in a recent paper[17], to which the interested reader
is referred for details. In particular, the calculations have been redone for
nonvanishing pion mass, as well as for the linear sigma model. An important
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feature of this class of solutions is that, when one generalizes them away
from the production of �0 �eld by applying a global SU(2)�SU(2) rotation,
the right-handed and left-handed SU(2) rotations (cf. Eq. (8)) must be the
same in order that the vacuum at large times inside the light cone is the
same as the ordinary vacuum.

Another way of looking at all this is in terms of sources. The free wave
equation does not hold on the light cone for times t < T . It is in that region
that the hot shell of expanding partons or other quanta separates the DCC
vacuum on the inside from the true vacuum on the outside. So one has,
everywhere in spacetime

2�(x) = J(x) ; (16)

with the source J having support only on the light cone. A careful look
at the discontinuity of the vacuum �elds across the light cone leads to the
expression

J(x) =
�f�

r
�(t � r)�(T � t) : (17)

Now there is a relation, well-known from the Bloch-Nordsieck treatment of
semiclassical electromagnetic radiation, between the source which creates a
classical �eld and the spectrum of quanta produced by the source. In this
case[18] it is

2E
dN

d3p
=

1

(2�)3

��� ~J(p)���2 (18)

where ~J is the Fourier transform of J , put on mass shell.

~J(p) =

Z
d4x eip�xJ(x) p2 = m2

� : (19)

It follows that, with pion mass neglected, the expression for ~J is

~J(x) =
4�2f�

jpj
Z T

0

dt eipt sin pt : (20)

One readily checks that this agrees with the spectrum calculated explic-
itly from the equations of motion. Note that the spectrum has a high-
momentum tail coming from the delta-function support on the light cone,
but that the typical momentum scale is of order 1=T .

It is an important feature of this radiation that it is coherent, which
means that for a speci�c choice of source the multiplicity distribution of
produced particles is Poisson-distributed, and that there is no Bose-Einstein
enhancement. However, upon averaging over sources, in particular their
chiral orientations, these simple features undergo essential complications.
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2.6. Radially Boost-invariant Baked Alaska

Another simple and interesting example of DCC production has been
considered by Lampert, Dawson, and Cooper[19] (hereafter LDC). They
assume a Baked-Alaska scenario, within the linear sigma model, which has
full boost invariance. In other words, the chiral �elds existing within the
light cone depend only upon the proper time. This scenario cannot be
regarded as realistic, because the particle distribution must look the same
in all reference frames, and hence cannot have a limited spectrum of energies.
They argue that one can extract the physics by sampling the distribution
at large proper times within a small space-time region. However, this is not
a faithful description of what a real piece of experimental apparatus would
see.

A better strategy in my opinion is to use their solutions up to time T,
and then assume, as was done in the previous section, that there is at later
times no explicit source on the light cone. In other words the LDC solution
at time T is evolved via the source-free linear sigma-model equations of
motion, in order to generate the asymptotic �elds. Some work has been
done along these lines[20], but not enough to report here.

However, let us return to the simpli�ed version of LDC. At the classical
level the �eld equations become ordinary coupled di�erential equations, and
can be easily solved numerically:�

1

�3
d

d�
�3

d

d�
+ �(�2 + �2 � f2

�)

�  
�

�

!
=

 
f�m

2
�

0

!
: (21)

However LDC do better, and include the mean-�eld quantum corrections.
It has been found, however, that the quantum e�ects do not qualitatively
or even quantitatively make a big di�erence[17].

What is noteworthy about the solutions is that it takes a rather long
proper time for the initial chiral �elds to \roll" into the minimum of the
potential; the time taken for the sigma �eld to settle down to near its vacuum
value is about 5 fermi. This long proper-time interval, even in the presence
of pion mass, would indicate the credibility of scenarios which create DCC
from deep within the light cone. However, the �nite extent of the source on
the light cone needs to be investigated, as well as the e�ect of considering a
statistical ensemble of initial conditions for the initial \roll", before drawing
serious conclusions.

2.7. Doing better

All the theoretical attempts we have described are extremely idealized.
There does exist some numerical simulation work which attempts less ideal-



10 slac-pub-7720 printed on December 18, 1997

ized scenarios[21], but I think it fair to say that none of it is yet very near to
what is needed for, say, Monte-Carlo input appropriate to real experimental
searches. There are many issues to be addressed.

Perhaps the most important de�ciency is that the idealized cases very
likely have far too much symmetry. Looking at the Baked-Alaska scenario
from the source point of view, it is probably the case that in a given event not
only the source strength but also the chiral orientation of the source depends
upon where in the lego phase-space one is. Since the chiral dynamics is
spin-zero, the correlations in the lego phase-space are most probably short-
range, of order one to two units. This means that on the sphere, near 90
degrees relative to the beam, only a steradian at a time may have the rather
symmetrical structure of the classical solutions we have considered.

There is another way of looking at this. Suppose DCC is produced
and observed. It almost by de�nition will consist of a cluster of pions of
almost identical momenta. This cluster will have a rest frame, and in that
rest frame the classical radiation �eld associated with this cluster will in
fact have approximate spherical symmetry. However in general, this frame
of reference is related to the observer's frame of reference by not only a
longitudinal Lorentz boost, but probably also by a transverse boost. It is
in fact reasonable to assume a distribution of transverse velocities of DCC
such that the mean is semirelativistic, say somewhere between 0.4 and 0.8.
If this is the case, and the internal relative velocities of the pions within
the DCC cluster are smaller or at least no larger, then it will often be the
case that the DCC in the laboratory frame will look like a coreless minijet.
In fact DCC searches within minijets, using the techniques sketched in the
next section, might be very fruitful.

In any case, these pieces of transversely boosted DCC, in reference
frames where the longitudinal velocity is zero or small, will typically oc-
cupy of order a steradian of solid angle, indicating again that perhaps the
natural correlation length for DCC is of order 1{2. However, there is an
unsolved theoretical issue here. Suppose one has a piece of DCC centered
at rapidity of + 1, and another centered at � 1 with a di�erent chiral
order parameter. They will have some small overlap at rapidity 0. How
do the two pieces interact? Will there be a tendency to create a common
alignment, or will they form independent domains? I believe this to be an
important fundamental question; it has not yet received serious attention
by theorists. The classical linear sigma model should be su�cient as the
fundamental theoretical tool; the problem is the introduction of a realistic
collision-geometry scenario which is still computationally tractable.

There is even a remote possibility that the nonlinearities of the lin-
ear sigma model are strong enough to promote long-range correlations in
rapidity, i.e. to create a semiclassical structure which produces the phe-
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nomenology of a soft Pomeron. For example it looks not at all out of the
question that a ladder built from pions on the sides and sigmas on the rungs,
with couplings dictated by the linear sigma model, could produce a Regge
intercept of unity or larger for forward hadron-hadron scattering. But I do
not know how such a Reggeon ladder could be related to the classical DCC
scenarios we have discussed.

2.8. Charged DCC?

Peter Lipa asked this question and, together with Brigitte Buschbeck, we
have begun to look into this issue[22]. The idea is even more speculative than
ordinary DCC. But if it makes any sense at all, it has the advantage that one
can make the search using data sets containing charged-particle information
only. This is not the case for ordinary DCC, where, as discussed in the next
section, the relationship between charged and neutral pion production is
what is examined. For charged DCC it is the relationship between positive
and negative pion production which is the object of study.

Charged pion �elds are to the real, Cartesian pion degrees of freedom
�1 and �2 as circularly polarized light is to linearly polarized light. And
certainly there are classical sources of circularly polarized light, either as-
sociated with vorticity of the source, or with a 90� phase di�erence of the
sources of the two Cartesian components (or both). So from this point of
view it seems not totally out of the question to imagine a similar possibility
for the pions.

We are presently modeling a space-time scenario where DCC in the �1
direction is produced at positive eta, and DCC in the �2 direction is pro-
duced at negative eta, with a \domain wall" in between. We �nd, in the
spectrum of produced DCC pions, a dipole layer in the lego plot, with an
average positive charge per pion on one side of the domain wall, compen-
sated by negative charge on the other. It is to be emphasized that this is an
average charge per pion at the quantum level. The width of the dipole layer
is 1{2 units of rapidity, as might be anticipated on general grounds. We need
to do a little more work before reporting on its strength and momentum
dependence.

3. DCC Phenomenology

3.1. The inverse square root distribution.

A basic signature of DCC production is the presence of very large event-
by-event uctuations in the fraction of produced pions which are neutral[23,
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14, 11, 12]. Generic production models will give a distribution in the neutral
fraction, de�ned as

f =
N�0

N�0 +N�+ +N��
(22)

which is binomial and peaked at f = 1=3. There will be in the classical
large N limit a very small probability that, for example, all the pions are
neutral. But if the pions are DCC decay products this probability is not at
all so small.

The simplest estimate for the distribution of neutral fraction in DCC
production assumes that the chiral orientation in (Cartesian) isospin space
is random. Then a totally elementary calculation gives the result that the
distribution of neutral fraction is inverse-square-root. With f = cos2 � it
follows that

dn � d(cos �) =
1

2 cos �
d(cos2 �) =

df

2
p
f
: (23)

It is probable however that this component is to some extent immersed in
generic background. Cuts in pt, for example, may be useful in enhancing
the signal.

It is also the case that it appears to be better to use an indirect technique
to test for the presence of the inverse-square-root component[24]. This
utilizes the machinery of multiparticle production dynamics and multiplicity
distributions, to which we now turn.

3.2. Multiplicity distributions and generating functions

In the MiniMax experiment, the phase-space coverage is small, about
1.0 lego-area units. For that analysis it is reasonable to assume that within
the acceptance the chiral order parameter takes a �xed value.

The raw information relevant to DCC physics is the multiplicity dis-
tribution of produced pions. Ideally they should be momentum analyzed,
with the data binned in intervals of pt. However this so far has been not
done experimentally, and we simplify by ignoring the momentum degree of
freedom. Let the probability of producing N pions be P (N), and introduce
the generating function

G(z) =
X
N

zNP (N) (24)

which contains all information about the multiplicity distribution. For a
Poisson distribution, the generating function is an exponential

G(z) = e�(z�1) P (N) =
�Ne��

N !
: (25)
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In the general case it is a superposition of Poisson distributions with positive
semide�nite weight function �

G(z) =

Z
1

0

d� �(�) e�(z�1) : (26)

For the two species of charged and neutral pions, the generalization
is a generating function of two variables, again a superposition of Poisson
distributions. The de�nition of generic pion production is that the only cor-
relation is produced by the aforementioned � for the total pion multiplicity
distribution, so that

G(zch; z0) =
X

P (Nch; N0)z
Nch

ch zN0

0

=

Z
1

0

d� �(�) e�[f(z0�1)+(1�f)(zch�1)] (27)

with the neutral fraction f approximately 1/3.
By expanding things out, one sees that the partition into charged and

neutral pions is governed by a binomial distribution; indeed this could have
been the common-sense starting point. It is also the case that existing
Monte-Carlo codes have the property that the distribution of the neutral
fraction is approximately binomial.

For pure DCC, all one needs do is introduce the inverse square-root
distribution in f as another weight factor:

h i �
Z

1

0

d� �(�))
Z

1

0

d� �(�)

Z 1

0

df

2
p
f
: (28)

One sees that the basic di�erence between generic production and DCC
production is that in the former case the generating function depends only
upon one variable, while for DCC it depends nontrivially upon two. A very
good way of testing for the distinction is via factorial moments[25]. These
are just the derivatives of the generating function with respect to the z's at
z = 1. In the case of only one variable, one has

f1 = hni = @G

@z

����
z=1

f2 = hn(n� 1)i = @2G

@z2

�����
z=1

: (29)

The normalized factorial moments are

Fn =
1

hnin
@2G

@zn

�����
z=1

=
fn

(f1)n
: (30)
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In the case of interest, there is a two-dimensional array of normalized fac-
torial moments which captures the information contained in the joint mul-
tiplicity distribution:

Fij =
1

hnchii hn0ij
@i+jG

@zich@z
j
0

: (31)

However for generic production there are many relations between these,
because the generating function depends upon only one variable:

Fij = F(i+j);0 : (32)

Therefore many ratios of the Fij are expected to be unity

rij =
Fij

F(i+j);0

= 1 (Generic Production) (33)

while for pure DCC they can also be explicitly computed, and are far from
unity:

rij =
Fij

F(i+j);0

=



(1� f)if j

� 

(1� f)j

�
h(1� f)i+ji hf ji =

i!(2j � 1)!!

(i+ j)!
: (34)

There are also experimental reasons why these ratios are useful. First
of all, one can go from �0 production to photon production via convolu-
tion, and the factorial moment method remains robust: one simply replaces
the neutral-pion fugacity z0 by the generating function for the gammas, a
second-order polynomial in the photon fugacity. In addition, if e�ciencies
are not 100 percent, but are uncorrelated with total multiplicity or other
global parameters, they can be incorporated in terms of modi�ed fugaci-
ties. The properties of the resultant factorial moments, which are the direct
observables experimentally, essentially do not change. That is, the bivari-
ate factorial moment ratios directly extracted from data on production of
charged hadrons and of gammas, as in Eqs.(33) and (34), still will be unity
for generic production and far from unity in the case of DCC production.

3.3. Doing better: correlation functions and generating functionals

Once the experimental acceptance becomes large, or if one investigates,
e.g. the pt dependence of the presumed DCC fraction (large at low pt, small
at high pt?), then the correlation structure of the DCC order parameter, and
even the generic particle distributions themselves, becomes of paramount
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importance. Clearly the formalism of generating functions should be pre-
served as closely as possible, and this is in principle a straightforward matter
of replacing generating functions with generating functionals.

In the case of DCC production, the bridge from the classical calculations
to phenomenology is fairly clear. For a given classical solution of, say, the
linear sigma model there will be a source function

(2+ �2)�(x) � J(x) : (35)

As we discussed, the multiplicity distribution is built from the squared
Fourier transform of the source function, put on mass shell,

2E
dN

d3p
=

1

(2�)3

��� ~J(p)���2 : (36)

The uctuations for the classical case are Poissonian, and so the generat-
ing functional is again just an exponential in all the continuous number
of fugacity variables, now parametrized by the particle momenta. Finally
one should average over the choice of source function, which at the least
is parametrized by choices of initial conditions for the classical �eld con-
�gurations (including chiral orientation). This leads to a DCC generating
functional of the form

GDCC =

Z
DJ1 DJ2 DJ3 P(J) exp

X
i

d3p

2E(2�)3

��� ~Ji(p)���2 (zi(p)� 1) : (37)

A generalized DCC distribution of the inverse square root type follows if

P(J)) P(j ~J j2) : (38)

Thus far this generalization is reasonably straightforward, and leaves the un-
known issues mostly at the level of the choice of boundary conditions and
structure of the classical �eld equations considered in the previous section.
However it is not reasonable to assume that the totality of particle pro-
duction originates as DCC. And there is no consensus on what generating
functional to use to describe generic particle production. Many correlation
phenomena exist, some from minijets and perturbative QCD, undoubtedly
some associated with the uctuations in the number of \wounded" con-
stituent quarks per collision, still others associated with impact parameter
dependence, and more associated with resonance production. In addition,
one can consider various ways of combining the generic particle production
with DCC production. Three extreme cases are as follows:

1)
G = Ggeneric +GDCC : (39)
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This means that in a given event either generic particles are produced or
DCC, but not both.

2)
G = Ggeneric �GDCC : (40)

In this case the amount of DCC produced in a given event is not corre-
lated at all with the amount of generic particles.

3)
z = zgeneric + zDCC : (41)

In this case the amount of DCC produced is, up to binomial-distribution
uctuations, in proportion to the amount of generic particle production.

The phenomenological consequences of this distinction are very strong;
a small DCC admixture of the �rst type is much easier to isolate experi-
mentally than a small admixture of the third type. The case of independent
production is intermediate.

3.4. DCC vs. Bose-Einstein, etc.

There is an interesting question of whether observation of the inverse
square-root distribution implies observation of Baked-Alaska DCC. This is
not at all clear. The inverse square-root distribution was discovered in a
di�erent context, namely the production of a cluster of pions in a maximally
symmetric state. The inverse square-root behavior is also a consequence of
the well-known Andreev, Plumer, Weiner (APW) description[26] of Bose-
Einstein correlations. In addition, it has been shown that in the tree-level
expansion of the chiral e�ective theory, the inverse-square root distribu-
tion emerges[27]. But none of these descriptions follows the same line as
the DCC description above. In particular, the part of the APW scenario
which leads to DCC-like behavior assumes a random Gaussian distribution
of source functions, except with respect to the isospin degrees of freedom. In
the DCC description, one computes the sources via the sigma-model equa-
tions of motion and (most probably) a random set of initial conditions. This
would for sure make the distribution of DCC sources non-random function-
als. And the tree-level chiral expansion does not seem to have the possibility
of incorporating the Baked-Alaska physics.

It is probably the case that one should view DCC as a speci�c mechanism
of Bose-Einstein enhancement. There seems to me nothing wrong with this
point of view, because there really is an ongoing problem of describing Bose-
Einstein e�ects from the most general point of view. In any case, for me this
is not a very important issue until there is concrete experimental evidence
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for DCC-like behavior. First of all something needs to be seen. Thereafter
there will be plenty of opportunity for �guring out what it means via further
interaction between follow-on observations and the theory.

3.5. Charged DCC again

The phenomenological description of the charged DCC production dis-
cussed in Section 2.8 is similar to that of the conventional DCC. It is being
worked out by Peter Lipa, Brigitte Buschbeck[22], and myself.

The major change is that the source function in momentum space is
taken to be complex

Ji = ui + ivi (42)

and the real and imaginary parts u and v are each taken as random variables.
In the usual case there is assumed to be complete correlation between u and
v. One �nds

Before:

G =

Z
D3J f(jJ j2) eF )

Z
DJ jJ j2f(jJ j2)

Z 1

0

df

2
p
f
eF (43)

After:

G =

Z
D3u D3v f(jJ j2) eF )

Z
DJ jJ j2f(jJ j2)

Z 1

0

df(1�f)

Z 1

�1

dq eF (44)

with

q =
h(N+ �N�)i
h(N+ +N�)i

: (45)

For the \action" of the generating function one has

F = �

�
(z+ � 1)

�
1 + q

2

�
(1� f) + (z� � 1)

�
1� q

2

�
(1� f) + (z0 � 1) f

�
:

(46)
Again the MiniMax-like ratios of factorial moments can be constructed,
and compared with charged particle data. It appears from a cursory �rst
look that when averaged over all pt the data will be of opposite sign to the
charged-DCC expectation. Charge tends to be locally neutralized in the
lego plot, more than it would from a random throwing of charge into phase
space. This to be expected in both the string and parton cascade pictures;
there is very little charge separation and ow in the space-time evolution.

However when the pt's are low, the experimental situation changes. It
is here that the charged-DCC hypothesis is not ruled out, and the detailed
phenomenology of this region of phase-space may turn out to be interesting.
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The assumption of complete randomness of u and v is an extreme one.
There are evidently interpolations between the extremes of no correlation
and complete correlation which can be easily constructed. Study of the
structure of the classical models as outlined in Section 2.8 will help in choos-
ing a reasonable starting hypothesis.
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