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Abstract 

A clean determination of the angle CY of the unitary triangle from B -+ 7~ 

decays requires an isospin analysis. If the B + TOT and B + 7r”~o decay 

rates are small it may be hard to carry out this analysis. Here we show that 

an upper bound on the error on sin2o due to penguin diagram effects can 

__ be obtained using only the measured rate BR(B* + x*x0) and an upper 

bound on the combined rate BR(B + TOT’) + BR(B + x0x0). Since no b 

flavor tagging is needed to measure this combined rate, the bound that can 

be achieved may be significantly better than any approach which requires 

separate flavor-tagged neutral pion information. 

Submitted to Phys. Rev. D 

Research supported by the Department of Energy under contract DEAC03-76SF00515 



*_ 

I. INTRODUCTION 

The extraction of the angle a! of the unitary triangle from a measurement of the time 

dependence CP asymmetry in B + 7rrs7r- is plagued with uncertainty due to penguin 

diagrams [I]. This problem can in principle be solved, up to certain discrete ambiguities, 

by the Gronau-London isospin analysis [2], which require the measurement of all charge and 

neutral B + ~7r decays rates. In practice, however, this theoretically clean determination 

of cx may be difficult to achieve. The major problem is expected to be the measurements 

of BR(B + 7r07ro) and BR(B + 7r07ro): The two neutral pion final state is harder to 

detect and reconstruct than states with charged pions; furthermore, arguments base on 

- color suppression [3] predict a smaller branching ratio for this channel than for the two- 

charged-pion channel. 

Many ways were proposed to disentangle the penguin pollution in the determination 

of Q [2,4]. In this note we explain how to set a bound on the error in Q induced by the 

f penguin diagram contribution to the CP asymmetry in B -+ 7rTsrTT-. This bound requires 

the measurement of BR(B* + 7r*7r”) and only an upper bound on the combined rate 

BR(B + 7r07ro) + BR(B + 7r07ro) in addition to the CP-asymmetry. The fact that we use 

only the average of the B” and B” rates removes the need for tagging of these low rate events, 

making this measurement simpler than the measurements of each of the rate separately. 

The error in Q decreases when the upper bound on the combined rate decreases. If penguin 

contributions are large then they may enhance the B --+ 7r07ro decay rate. If this is so the 

full isospin analysis can, hopefully, be carried out. Conversely, if these decay rates are small, 

the isospin analysis is difficult, but, as we will show, the uncertainty due to penguin effects 

in the determination of Q is small, since the bound on the penguin diagram contribution 

is stronger. In both cases, one can get a meaningful improvement in the knowledge of Q, 

compared to measuring the charged pion asymmetry alone. 
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II. DERIVATION OF BOUNDS 

We start with definitions. The time-dependent CP asymmetry in B decays into a final 

CP even state f is defined as [l] 

and is given by 

(24 

a~@) = acfos cos(AMt) + aln sin(AMt), (2.4 

with 

acfo9= 
l-IX# . 

1+ j&12’ US;” = 
-2 ImXf 

1 + IX#’ 
+&f 

~4 
(24 

where p and q are the components of the interaction eigenstates in the mass eigenstates, 

Af(Af)-is the &(&) + f transition amplitude, and we will use [q/pi = 1 [l]. The time- 

dependent measurement can separately extract acfos and a?. In particular, 

can be determined. Notice, however, that 

a?” = 
-2ImXf _ 

1 + IXf I2 
- - sin[arg(X,)IJ. (2.5) 

For f = 7r+7rr-, and in the absence of penguin diagrams, X = e2ia and a!$)? = 0 (we use X ? 

A+-). Thus, we expect a?: to be small, and difficult to determine accurately. However this 

quantity only enters quadratically in the correction between sin[arg(x)] and ay-. Thus the 

error in the value of sin 2a, that comes from neglecting this quantity is small.’ Furthermore, 

we will show that, for any value of the tree and penguin contributions, the difference between 

sin 2a and a?- is maximized for IAl = 1 (aYj!E = 0). Hence, our bound is obtained without 

any dependence on a?!. 

We further define 
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A+- = A@?’ + r+r-) 7 ii+- = A@’ + T+T-), 

Aoo E A(B” + T’T’), ii” E A@’ --+ TOT’), 

(2.6) 

A+’ E A@+ + T+T’), A-’ G A(B- + era), 

Isospin symmetry relates these amplitudes 

IA+- + A00 = A+0 
Jz 

7 ‘A+- + A00 = A-0 
Jz 

> [A+‘[ = lk”l. (2.7) 

These equations can be represented by two triangles with unknown orientation in the com- 

plex plane. Moreover, since the charged final state of two pions 7rTT+7ro is a pure isospin 2 

channel and thus receives no gluon penguin diagram contributions, the CP-conjugate ampli- 

tudes A+O and A-’ are equal in magnitude. (Here we neglect the contribution of electroweak 

penguins, since these are at most at the few percent level [5].) With this approximation we 

can draw the two triangles with a common base [A+‘[, see Fig 1. This is the Gronau-London 

construction. 

We-note in passing that a test for the size of electroweak penguin effects can be made by 

looking for direct CP violation in the B* + 7r*7r” channel since these can only occur due to 

interference between tree and electroweak penguin terms. While a null effect could be due 

to vanishing relative strong phase between the tree and electroweak penguin terms, any non- 

zero effect would be evidence for enhanced electroweak penguin effects, or possible beyond 

standard-model contributions. Hence it is interesting to search for direct CP violation in 

this channel, precisely because it is expected to be small in the Standard Model. 

Returning to the Gronau-London construction, we further remark that, with the common 

side A+’ for the two triangles, the angle between the sides proportional to IA+-1 and ]A+-] 

- is the difference between arg(A) and 2~ (see Fig. 1). (This is a simple way of stating how the 

Gronau-London construction allows extraction of a corrected value of 2o.) Measurement of 

this angle and of the direct CP violating asymmetry a?: in addition to the asymmetry a?- 

are sufficient to obtain CY correctly, independent of the size of the penguin effects. Likewise, it 

is now a straightforward matter to investigate what constraints on this angle can be obtained 

from a bound on the sum of the 7r07ro rates for B” and B”. 

-- 
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To make this explicit we rewrite Eq. (2.5) as 

a pm = - sin2(o + 6)Jl - (a!$Y)2, (2.8) 

where we define 26 as the angle between e2io! and X, namely the angle between the +- sides 

of the two triangles with a common base I As0 I ( see Fig. 1). A fourfold ambiguity in 26 arises 

because we can flip the orientation of either of the two triangles about the common side. 

For any set of values of the rates, the larger value of 1261, and thus the largest correction to 

CII, occurs when the two triangles are on the opposite sides of the base; in our subsequent 

derivation of a bound on the correction we will consider only this orientation. Flipping both 

triangles about their common side reverses the sign of the correction, so our bound will be 

on the magnitude of the correction, with either sign possible. 

We define the combined rate, and the rate ratio 

(BR)” - 
BR(B” + 7r07ro) + BR(B’ + 7r07ro) go0 - (BR)” 

2 7 
BR(B+ + K+xO). (2.9) 

_- 

We consider what we can learn if a?! and BR(B+ + n+7r”) are measured, and an upper 

bound on go0 is established. Our goal is to set an upper bound on ISI. We emphasis that 

in- what follows we always assume that 161 is small. Actually, the proofs are correct as long 

as 161 < 7r/2. In practice, of course, we hope to get a much tighter bound. 

Let us define the angles within the triangles by the labels of the sides that are opposite 

. . 

them, thus $00 is the angle opposite to the side of length IA”/, etc. Then, 26 = $00 - ~$00. 

(We use the pion charges as the labels for the sides, and denote angles in the B rate triangle 

by a bar over the name.) We use the sine theorem to write 
- 

I AOO 1 sin $+o 
sinbo = lA+ol ? 

I AOO I sin 4+0 
sin400 = lA+oI . (2.10) 

First we note that, for a given upper bound on B O”, 161 has a maximum. Geometrically, the 

maximum is reached when the two isospin triangle have opposite orientation and they are 

right triangles: Ic$+OI = 14-O I = 7r/2, so that the sine terms in the right side of Eq. (2.10) 

are maximal (see Fig. 2). This maximum applies with no knowledge about the values of 

IA+-1 and IA+-1. Using Eq. (2.10) we get 

-- 
5 



PO0 I I swoO1 5 lA+oI) 
(AOO( 

bin4001 5 lA+ol. (2.11) 

Using the fact that for fixed x2 + y2, the maximum value of (xl+ ll~l occurs for x = 1~, and 

the definition of Boo in &. (2.9) we see that ISI is maximized when ISI = I$+oI = I$+ol, and 

obtain 

sin2 S 5 Boo. (2.12) 

This is a general bound on sin6. Note also that in this situation the two triangles are 

congruent, which means that there is no direct CP violation, when this bound is saturated 

and thus that the bound on S is achieved when aces - +- - 0, as stated above. The known values 

of A+- and A+- may constrain the correction to be slightly less than this generic maximum, 

but they cannot make it larger. 

While we found the maximum value for 6, we still have to show that the absolute value 

of -- 

A E sin 2a + a?- = sin 2a - sin 2( CL + S) dm, (2.13) 

has a maximum at (Xl = 1. Note that (A( is symmetric for positive and negative a?-. 

Moreover, since J 1 - a+- pmmmI cos I2 5 1 it is clear that for I sin2(o + S)l > I sin 2ol the effect of 

1x1 # 1 is to reduce IAl. Thus, we have to check only the case in which I sin2(a, + S)l < 

I sin 2~1. In particular, it is enough to check only for 0 5 CY 5 7r/4 and --Q 5 6 5 0. We 

differentiate A with respect to 1x1, taking into account how our bound on 161 is decreased 

as I XI moves away from 1. We find, keeping I Aoo I = lAoo I and using the geometry of the 

_ triangle construction, that, near 1x1 = 1, we can write 

G = (1x1 - l)cos$,“,’ “), “hi = cos(2a + S) 

4d2 /XI=1 sin6 ’ 
(2.14) 

(In the above we kept [XI # 1 only when it appears in the combination 1x1 - 1.) Thus, we 

see that the shift in sin 2c~ is extremal at [XI = 1. Since we are concerned with the sinS < 0 

and cos(2a, + S) > 0 case, it is also clear that this is indeed a maximum. 

-- 
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Eq. (2.12) is the main result of this note. Small improvements to this result can some- 

times be made if the actual values of A+-, A+- and A+’ are inconsistent with the congruent 

right triangles possibility. From the cosine law for the two triangles, with a little algebra 

and calculus, one can show a more general bound 

sin2 6 5 
(2 - K - E)(2B00 - K2 - E2) 

4(1- K)(l - ii;) ’ 

where we have defined the ratios 

l-K= IA+- I l-/c= IA+- I 
JZI A+0 I dlA+ol ’ 

(2.15) 

(2.16) 

and thus [XI = (1 - iz)/( 1 - K). If the neutral rates are too small to measure this is unlikely 

to be a significant improvement over the simpler bound stated above. However, it is a 

completely general result, and if K or E are negative it may provide a slight improvement 

over Eq. (2.12). 

__ 

III. CONCLUSION 

We wish to stress a few points in our argument leading to Eq. (2.12) 

1. Since the general bound was saturated for [XI = 1 it does not require a measurement 

2. Since the general bound was obtained for the congruent right triangles case it does 

not require measurement of the actual B” and B” to charged pion decay rates, but 

only the asymmetry a?-, which reduces sensitivity to errors from cuts that remove 

backgrounds in the B” decay channels. 

3. Finally, since the bound depends only on the sum of the B” and B” decays to neutral 

pions it can be determined from untagged data in this channel. 

With all these advantages, it is clear that the bound Eq. (2.12) can significantly limit the 

error on the value of a if a bound on Boo 5 0.1 can be achieved. 

-- 
7 



In conclusion, we have shown that a measurements of BR(B+ + X+X’) and an upper 

bound on the combined B” + 7r07ro and B” + 7r07ro decay rate can used to bound the 

penguin diagram induced error on the extraction of sin 2a from the CP asymmetry, ay”_, 

measurement. The bound takes the simple form 

a sin BR(B” + r”7ro) + BR(B” + 7r07ro) 
+- = -sin2(a,+S), sin2 6 < 

- BR(B+ + x+x0) + BR(B- + 7r-7r”)’ (3.1) 

If the B into neutral pion decay rates are too small to be measured, then this bound will 

provide a determination of the theoretical uncertainty in the value of Q extracted from the 

asymmetry in two-charged-pion modes without the assumption of small penguin diagrams 

effects. 
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FIGURES 

FIG. 1. The isospin triangles of Eq. (2.7). 

FIG. 2. The isospin triangles in the maximum penguin contribution case. 
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