
LBL-41021
SLAC-PUB-7692

Nov 1997

Java Online Monitoring Framework1

M. Ronan
Lawrence Berkeley National Laboratory

D. Kirkby
Stanford University

A.S. Johnson, N. de Groot
Stanford Linear Accelerator Center

Abstract

An online monitoring framework has been written in
the Java Language Environment to develop applications for
monitoring special purpose detectors during commissioning
of the PEP-II Interaction Region. PEP-II machine parameters
and signals from several of the commissioning detectors
are logged through VxWorks/EPICS and displayed by Java
display applications. Remote clients are able to monitor the
machine and detector performance using graphical displays
and analysis histogram packages. In this paper, the design
and implementation of the object-oriented Java framework
is described. Illustrations of data acquisition, display and
histograming applications are also given.

I. INTRODUCTION

High-level graphical user interfaces (GUI’s) are used
extensively in operating and monitoring High Energy Physics
accelerators and detectors. Their use allows operators and
scientists to quickly interpret the state and performance of the
machine or experiment. Integrated control system architectures
require that these processes communicate effectively with
several different concurrent processes which coordinate various
activities, such as occurrence reporting, database transfers or
other operations. Performance, modularity, portability and
ease of use are important issues in designing effective tools;
and, in commissioning applications, seamless integration of a
collection of distributed systems is critical.

Figure 1 illustrates a typical arrangement of monitor
screens, each with a number of display windows, receiving
data from different sources. In this case, the sources are fully
compatible Internet servers. To minimize network traffic,
a framework allows for the coordination of the different
displays within each application. After being instantiated by
the package manager, which determines their appearance, the
window processes pass their monitor data requests to a broker
that retrieves the data from the appropriate servers.

1Work supported by Department of Energy contracts DE-
AC03-76SF00098 (LBNL), DE-AC03-76SF00515 (SLAC), and NSF
contract PHY-9513999-001 (Stanford).

Win 1

Client 1

Win 3

Win 2

Win 4 Win 5

Server 1 Server 2 Server 3

App 1 App 2

Win

Client 2

10–97
8363A4

Fig. 1 Illustration of several servers providing monitor data to different
client applications, each with a number of display windows. A
framework coordinates the actions of the processes within each
application.

A. Commissioning Monitor Applications

During the commissioning of the PEP-II High Energy Ring
(HER) in Fall 1997 and of the BaBar Interaction Region (IR)
in 1998, a number of PEP-II parameters are being monitored
as the machine is brought into operation, while an extensive
suite of particle detectors are being employed to measure
beam backgrounds. A good understanding and reduction
of the backgrounds and the attendant radiation exposure
will be achieved through validation of detailed Monte Carlo
simulations and through dedicated machine experiments. For
example, backgrounds due to synchrotron radiation and beam
losses in the IR straight section are being measured using an
array of PIN Diode detectors. Several other devices, in many
cases with their own independent data acquisition systems, are
now in place or will be installed to measure different aspects
of these backgrounds. In addition, environmental quantities
will be measured within a central detector monitoring system.
Several monitor display screens have been provided to allow
the experimenters to correlate background measurements
with machine conditions, to develop and integrate beam
loss monitors, and to calibrate and protect the instruments
themselves.

Monitor applications implementing the Online Monitoring



Intranet

DAQ
Monitor
Servers

EPICS Database Other
Monitor

Processes 10–97
8363A1

...

...

...

Internet

Histograms
Applets

Analysis
Studio
(JAS)

Other
Monitor

Processes

Web
Browser

Requests

Data Retreival
Analysis Engine

S
er

ve
r

HistogramsMonitor
Processes

OnlineWindow's

Java Online Monitoring
Framework application

Status

Proxies
Monitor
Client

Histograms

File

OnlineManager/Monitor

View Help

Fig. 2 Conceptual diagram of a complete Java Online Monitoring application, whose components are shown within the dashed box.

framework described here have been written to integrate
the monitoring tasks and to provide common graphical
representations. The Java language allows these applications to
operate anywhere on the Internet, on almost any platform, with
little programming overhead and no porting obstacles.

B. Java Language Environment

The Java Language Environment, developed by Sun
Microsystems, offers several advantages in implemented
such a disperse data acquisition system. It’s object-oriented
methodology allows the development of reusable components,
graphical user interfaces are easy to implement and it’s
distributed techniques (such as Remote Method Invocation)
provide an excellent software environment for building
multitiered network applications.

The Java language itself has the look and feel of
C/C++, and is fully object-oriented (see Ref. 1,2). As
an interpreted language it allows for quick turn around
during program development and for complete platform
independence. Graphical components, separate threads of
execution, and easy-to-use, highly sophisticated interfaces
to the network are all built into the language, allowing
the straight-forward implementation of broadly-distributed
client/server applications and informative graphical user
interfaces.

Portable Java display applications, called Applets, can
be executed on any Java-enabled browser. The Java Virtual
Machine (JVM) embedded in the browsers allows the Applets
to operate on any platform. Similar JVM’s have been provided
by Sun, Microsoft or machine vendors to interpret compiled
Java classes, which are machine-independent. Just-In-Time
compilers, available for most platforms to provide machine
level code, allow Java to reach computing speeds of established
languages such as Fortran, C and C++.

II. ONLINE MONITORING FRAMEWORK

The Java Online Monitoring Framework has been written
to satisfy some of the real-time requirements for machine

commissioning and to provide for remote monitoring. This
modular framework allows personalized applications to be
assembled with different collections of standard displays.
Within the framework one class is used to coordinate the data
requests for the different displays and to retrieve the data from
several different servers as illustrated in Fig. 2. The framework
schedules updates, imposing any control system status
requirements, and monitors and reports errors in satisfying
system requirements. Multiple servers can be created within a
monitor application to provide extended remote monitoring.

A. Conceptual Design
A modular framework for multithreaded real-time processes

has been chosen; an architectural diagram is shown in Fig. 2. A
typical Online Monitoring application consists of the following
components. A monitor thread (OnlineMonitor) to interact
with the local control system and to monitor the performance
of update threads within each display processes. A client
thread (MonitorClient) to gather requests for monitoring
quantities and to retrieve them from the real-time system. And,
several modules coordinated and displayed by the framework
(OnlineManager) and its screen manager (ScreenManager).
Each module (OnlineWindow) provides a separate interface
and display to the user, but with a common (inherited)
appearance and behaviour. As a separate subprocess, it updates
displays and checks for errors at regular intervals. These
windows include simple display or dialog windows, standard
history plots, and histogram or histogram summary windows.
A server process (MonitorServer) can be employed for remote
monitoring over the Internet.

B. Java Implementation
The modelling, prototyping and implementation of the

Online Monitoring framework is in progress. The following
base classes, reference applications and utilities, described in
this and the following sections, have been implemented.

The OnlineManager class provides the template for the
top-level framework coordinators. Sub-classes for different
detector subsystems or for various monitoring applications



are used to define the contents of each package; that is, the
collection of monitor threads and display windows within an
application. The standard constructor creates a screen manager,
a monitor to sequence operations within the package, and the
requested number of windows. TheScreenManagersets the
location and size of selected windows from predetermined
layouts, and in the future will allow resizing and saving of
modified layouts using the Java Bean component technology.

The OnlineMonitor thread of standard Online Monitoring
packages: recognizes the state of the local data acquisition
system in controlling the operation of framework windows
and threads, outputs any reportable occurrences to the local
logging system, provides a common time stamp and maintains
a continually responsive thread of execution.

Following specifications defined in anAbstractWindow
interface, theOnlineWindow class defines standard monitoring
display objects, their appearance and their action responses
and update methods. The standard constructor creates a
new window, incrementing the window count, displays the
window and starts up the window’s update thread. Normally
each window thread updates its display every few seconds at
reduced priority compared to the application’s OnlineMonitor
thread.

The data transport for the monitor is organized in two
classes, a subscriber [”MonitorClient ”] and a publisher
[” MonitorServer ”]. These classes take care of the
communication and bookkeeping of data requests within the
framework. A monitoring program then uses the MonitorClient
class to subscribe to various remote channels, and to serve
all OnlineWindow’s within the application. Online tasks can
use the MonitorServer to publish current monitor readings or
their accumulated history data. Data that can be published
has to implement theMonitorData interface. This interface
provides a ToStream function to serialize the data and add
some bookkeeping information (time-stamp, sequence no,...).

The following classes inherit from OnlineWindow: The
OnlineFrame class provides an interface for Applet’s to
operate within the framework, while maintaining the Applet’s
ability to be displayed within compatible browsers. Methods
include: display() to get a screen location and display the
frame, getNumber() to return the OnlineWindow number, as
well as thread init,start,stop and run methods.OnlineHistory
objects display online history plots. TheOnlineHistogram
class displays continuously updating histogram displays.
Standard interfaces allow online monitoring classes to book
and fill histograms which can be accessed and viewed remotely.
HistogramSummary objects display a summary of the
histograms being accumulated.

III. REFERENCEAPPLICATIONS

We give two reference applications for the PEP-II
subsystem: One is a pure visual monitoring package,
IRMonitor , which displays several windows in providing
different views of the data. It includes instantaneous
readings, graphical charts, and history plots of different
time-averaged quantities. The other is a histograming package,

PEPHistogram, which accumulates histograms and serves
them up to remote analysis clients, with an optional histogram
summary display.

A. An IR Monitor Display Package
In the sense of modular Online Monitoring applications,

packages are collections of existing OnlineWindows’s
for individual subsystems (e.g. PEP-II, PIN Diode, Straw
Chamber, etc.). An IR Monitor package might include windows
displaying PEP-II quantities and different commissioning
detector summary windows to allow the correlation of detector
effects with machine operation. Other packages might include
different PEP-II quantities, detector windows or might just
present a different focus. Different packages might actually
be different representations of the same software collection.
For this example we chose a PEP-II summary display, an
Applet client display and two history plot windows, two PIN
Diode history plots and a Straw Chamber points and line event
display.

The IRMonitor class inherits OnlineManager methods
and creates an IR Monitor package with the following
OnlineWindow’s. APEPWindow object uses the Java AWT
TestArea class to display instantaneous readings of PEP-II
parameters. ThePEPFrameclass displays aPEPApplet which
charts the readings of several PEP-II parameters in different
colors that can be high-lighted by selecting the corresponding
label. PEPHistory plots record the time-averages of PEP-II
readings. TwoPINHistory plots display raw temperature
sensor or leakage current readings from the PIN Diode
detectors, and aSCWindow object shows different views
of the points and lines fittted to hits in the Straw Chamber.
The PEP-II readings are obtained asPEPData objects
from a Java RMI server,PEPServer. The PIN Diode data
packets and Straw Chamber event types are provided by DAQ
Monitor servers described below. In a running application,
the OnlineManager, OnlineMonitor, ScreenManager and
OnlineHelp can be accessed through a menu bar window.

B. A PEP-II Histograming Package
This package accumulates histograms and serves them up

to remote display and analysis clients. An online histogram
summary showing the contents and under/overflows is provided
for quick visual checks of the accumulation process. The
OnlineMonitor thread is designed to allow the control of
histograming during machine fills.

The PEPHistogram class inherits OnlineManager
methods and creates a PEP-II histogrammer process and a
histogram summary window, with no other displays. The
PEPHistogrammerbooks several histograms and fills them as
updates become available. AHistogramServer is created to
allow the histograms to be accessed remotely using the Java
Analysis Studio described below. ThePEPHistSummary
inherits methods from HistogramSummary to display the
booked histogram contents. Normally, once the histogram
accumulation has been checked, the PEPHistSummary display
can be dismissed at any time. Using the remote interface,
Fig. 2, clients can fetch and display existing histograms, and



may request that new histograms be booked and filled as
monitoring continues or that new histograms be made from
recorded quantities.

IV. DAQ AND MONITORING SYSTEMS

Remote monitoring has been provided for some of the PEP-
II commissioning devices. The data acquisition and monitoring
systems for the PIN diode detectors and the straw tube chambers
are described below.

A. PIN Diode Data Acquisition and Monitoring

A sophisticated data acquisition and monitoring system
has been written in Java for the PIN Diode detectors, Ref. 3.
The detectors and associated temperature sensors are read
out by a VxWorks based system which sends out data on a
TCP/IP socket, Fig. 3. The data acquisition system receives the
packets, provides real-timeHistoryPlot displays and writes the
data to a local file on a Solaris UltraSparc station. The DAQ
process includes servers which respond to remote run control
commands and which transmit data packets to remote clients.
Clients can be used remotely to check the DAQ status, to print
ongoing message logs, to display real-time HistoryPlot’s or to
access processed data files.

srv01

10–97
8363A3

PEP
"dm"

Screens

EPICS

PEP

EPICS

Remote Clients

Remote
Run

 Control

Local
Storage

Java
Applications

...

...

ServerMonitor

bc–diode

IOC IOC

Diodes

+PEP

PIN
Diode

Router

PEP LAN

BaBar

LAN

IOCIOC

Fig. 3 PIN Diode Data Acquisition and Monitoring System

B. Straw Chamber Data Acquisition and Monitoring

The data acquistion for the Straw Chambers, written in C,
reads hardware through a GPIB bus, fits for tracks and writes
both the raw and reconstructed data to a local file on an AIX/3.2
RS6000 platform, Fig. 4. Besides the in-line monitoring, a
forked subprocess pipes a sample of the data through a TCP/IP
socket for remote monitoring. TheStrawChamber DAQ
Monitoring system, written entirely in Java, consists of a client
monitor process which connects to the DAQ child process to
receive the event sample and then creates servers to handle

individual requests from remote clients. Clients which request
different types of StrawChamber data, over the network, have
been written to provide various event displays. For each event,
only the requested data packets are sent. The remote clients
perform event handeling and display on Sun, IBM, HP, Dec,
Windows PC or Apple platforms.

Monitor

10–97
8363A2

Data
Storage

DAQ
Process

DAQ
Monitor
Process

Clients

Servers

Java applications

Server

(inner
classes)

DAQ
Buses

Remote MonitoringData Acquisition

...

...

...

Fig. 4 Straw Chamber Data Acquisition and Monitoring System

V. JAVA UTILITIES

The following utilities have been developed as separate Java
class libraries, called packages.

A. History Plots
The facility for making time history plots, Ref. 3, consists

of classes to both maintain and graph a history record. In their
constructor method,HistoryRecord objects are divided into
time slices and attached to a particular graph. The size and
title of HistoryGraph objects are set by their constructor, while
appropriately named methods set the grid spacing and label the
ordinate axis.

B. Histogram Facility
A hep/analysis package, Ref. 4, is used to partition, book and

fill histograms. A namedHistogramServerobject is created to
allow remote access to the histograms. Each histogram, booked
by constructing a labeledHistogram object, is then filled with
an appropriately named method.

C. Java Analysis Studio
The Java Analysis Studio is being developed, Ref. 4,

to allow remote viewing of histograms and Applets. A
JAS HistogramServer, such as the one included in the Java
Online Monitoring Framework shown in Fig. 2, makes
histograms available remotely during online monitoring or
analysis processes. Histogram objects can then be accessed
and displayed using the Java Analysis Studio which allows
rebinning and fits to the histogrammed data. Requests for
new histograms or for reanalysis of recorded data can be sent
back from the analysis studio to the server which may employ
an analysis engine to reanalyze data. Applets which present
histograms or real-time data can be obtained from the remote



server and displayed.

DAQ
Process

10–97
8363A5

...

...
Machine
Monitors

Java Online Monitoring
Framework node

Monitoring
Network

Environ–
mental

Monitors

Server

Client

Server

Client

Server

Client

Server

Client

ServerServer

Client Client

Server

Client

Server

Client

Server

Client

Server

Client Server

Client

Server

Client

Fig. 5 Network configuration for a Java Online Monitoring application
with a multitiered client/server architecture.

VI. FURTHER APPLICATIONS

Client/server applications, built within the framework
described here, make efficent access to multiple sources of
incoming data, and handle requests from any number of remote
clients. At each node of a multitiered client/server architecture,
such as shown in Fig. 5, these client/server applications may
each have multiple data monitoring and display processes. At
any level, the framework may impose common state conditions
to insure a uniform monitoring environment. Such a design
provides a scalable model for developing complete real-time
monitoring or processing solutions.

VII. A CKNOWLEDGEMENTS

The straw tube chamber Java DAQ Monitoring
system was written by K. Benabed and N. Treps, Ecole
Polytechnique LPNHE. We can be reached at ronan@lbl.gov,
kirkby@hep.stanford.edu, tonyj@slac.stanford.edu or
nicolo@slac.stanford.edu.

VIII. R EFERENCES

[1] Java in a Nutshell, D. Flanagan, O’Reilly & Associates Inc., May
1996; and later publications covering JDK 1.1.

[2] The Java Tutorial, M. Campione and K. Walrath,
ordered through amazon.com, is also available online at
http://java.sun.com/docs/books/tutorial/index.html.

[3] D. Kirkby et al, PIN Diode Commissioning Data Acquisition and
Monitoring, to be published.

[4] See for example, Java Analysis Studio, A.S. Johnson, Proceedings
of the 1997 CHEP Conference, Berlin, Germany, April 7-11, 1997.


