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ABSTRACT 

In the strong-coupling limit of the heterotic string theory constructed by 
HoEava and Witten, an ll-dimensional supergravity theory is coupled to matter 
multiplets confined to lo-dimensional mirror planes. This structure suggests that 
realistic unification models are obtained, after compactification of 6 dimensions, 
as theories of 5-dimensional supergravity in an interval, coupling to matter fields 
on 4-dimensional walls. Supersymmetry breaking may be communicated from 
one boundary to another by the 5-dimensional fields. In this paper, we study a 
toy model of this communication in which 5-dimensional super-Yang-Mills theory 
in the bulk couples to chiral multiplets on the walls. Using the auxiliary fields of 
the Yang-Mills multiplet, we find a simple algorithm for coupling the bulk and 
boundary fields. We demonstrate two different mechanisms for generating soft 
supersymmetry breaking terms in the boundary theory. We also compute the 
Casimir energy generated by supersymmetry breaking. 
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1 Introduction 

In their recent investigation of the structure of strongly-coupled heterotic string theory, 
HoIava and Witten have introduced a new paradigm for models of unification [l, 2, 31. 
To construct the strong-coupling limit of the heterotic string, they began from the ll- 
dimensional strong-coupling limit of the Type IIA string theory. They compactified this 
model on S1/Zz, that is, on an interval of length e bounded by mirror (orientifold) planes. 
They then argued that a lo-dimensional Eg super-Yang-Mills theory appears on each plane. 
The final structure is a set of two Eg gauge theories on the mirror planes, coupling to 
supergravity in the interior of the interval. 

This arrangement had an immediate phenomenological advantage over the weakly coupled 
Es x Es heterotic string theory [3]. When C was increased, the low-energy value of Newton’s 
constant decreased proportional to l/e, while the Eg gauge coupling remained fixed. Thus, 
by adjustment of e, one could arrange a unification of gauge and gravitational couplings. 
Choosing a large value of .f! relative to the ll-dimensional Planck scale justified the use 

- of only field-theoretic, and not intrinsically string-theoretic, degrees of freedom. At the 
same time, Hoi-ava and Witten obtained reasonable values for the gauge and gravitational 
couplings for values of e not so large, in the sense that both of these scales could be considered 
to be of the order of the grand unification scale of 2 x 10 r6 GeV inferred from the values of 
the gauge couplings at low energy. 

. 

In a- realistic phenomenology, 6 of the transverse 10 dimensions should be compactified. 
Then one would obtain a 5-dimensional theory on an interval with mirror-plane boundaries. 
Plausibly, this theory could be described as a 5-dimensional supergravity field theory, perhaps 
with some additional bulk supermultiplets, coupling to matter supermultiplet fields on the 
walls. If C is the largest dimension in this geometry, it is reasonable that the theory should 
make sense in the limit in which e is taken to be nonzero while the finite size of the 6- 
dimensional compactification space is ignored. 

Horava and Witten introduced another very interesting idea on the nature of these com- 
pactifications. They pointed out that the matter theory could be at strong coupling on one 
boundary, and could break supersymmetry spontaneously there. Then the supersymmetry- 
breaking effects could be communicated to the other boundary by ll- or 5-dimensional 
fields. In this way, the theory on one boundary would become the ‘hidden sector’ for the 
phenomenological supersymmetry theory on the other boundary. 

HoEava tried to make this mechanism of communication explicit by exhibiting a term in 
the ll-dimensional Lagrangian which coupled the gaugino condensate on the boundary to 

_ the S-form gauge field C ABC of the bulk supergravity theory [4]. He found that this term 
had a perfect-square structure 

AL=-& J ( d% SABCX fi(xll) (1) 

where x is the lo-dimensional gaugino and 87r~’ is the ll-dimensional Newton constant. 
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HoEava argued that, if the gaugino bilinear obtains a nonzero value, there is no solution for 
CABC which is consistent with supersymmetry. 

Hofava’s observations raise two interesting questions of principle. The first concerns the 
structure of (1). We might want to know how the delta function on the boundary shown in 
(1) arises. The square of this term integrated over zl’ gives a factor 6(O) in the boundary 
Lagrangian. It is a puzzling issue whether this term is reasonably included in a purely field- : 

theoretic description of the HoEava-Witten compactification, or whether the presence of this 
term implies that any such field-theoretic description is incomplete. 

The second question comes from the fact that the communication between the two bound- 
aries comes from the S-form gauge field, a rather exotic agent. From the general form of the 
potential energy in supergravity, the 4-dimensional theory which we would obtain by com- 
pactifying 6 dimensions and then taking the limit C + 0 must contain a direct coupling of 
the superpotentials on the two boundaries. We would like to know how this coupling arises, 
and how much of this coupling is present in the compactified theory before we take the limit 
e + 0. In the standard approach to supersymmetry breaking mediated by supergravity, 

- this coupling is the source of the soft supersymmetry-breaking mass terms for squarks and . 

sleptons. It would be wonderful if the presence of an extended fifth dimension had specific 
consequences for the superparticle mass spectrum which could be verified experimentally. 

We have tried to find the answers to these questions by studying a toy model in which su- 
pergravity is replaced by a Yang-Mills supermultiplet. Consider, then, 5-dimensional super- 
Yang-Mills theory on an interval of length e bounded by mirror planes, coupled to chiral 
multiplets $, 4’ on the 4-dimensional boundaries. In the limit e -+ 0, this theory must have . 
a potential energy with the D-term contribution 

v = ;(Q& + Q'd't4')2 , (2) 

where g is the effective 4-dimensional coupling constant and Q, Q’ are the gauge charges 
of 4, 4’. So we can ask in this system also how much of the coupling between boundaries 
which is required in the limit e + 0 survives when e is kept nonzero. The related problem of 
coupling a 5-dimensional of hypermultiplets to a superpotential on the boundary has been 
studied previously by Sharpe [5], but, we feel, without giving the insight that we are seeking. 

A convenient strategy for coupling 5-dimensional supermultiplets to a 4-dimensional 
boundary is to work with the off-shell supermultiplets, including auxiliary fields. Under 
straightforward dimensional reduction, 5-dimensional multiplets reduce to 4-dimensional 
N = 2 supermultiplets. A mirror plane, or orientifold, obtained by a 22 identification has 

- lower supersymmetry, and so on such a plane a 5-dimensional multiplet should reduce to a 
4-dimensional N = 1 supermultiplet. Nevertheless, if we have the correct off-shell multiplet, 
we can couple it straightforwardly to 4-dimensional fields on the boundary. 

In Section 2, we will present the necessary formalism for coupling a 5-dimensional super- 
Yang-Mills multiplet to an orientifold boundary. We will identify the off-shell 4-dimensional 
supermultiplet which couples to the boundary fields and use this multiplet to construct 
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the 4-dimensional boundary Lagrangian. In Section 3, we will discuss the role of the S(0) 
terms which appear in this Lagrangian, illustrating our conclusions by some explicit one- 
and two-loop calculations. 

In Section 4, we will use the formalism that we have developed to discuss the commu- 
nication of supersymmetry breaking from one boundary to the other. We will first analyze 
the case in which supersymmetry is spontaneously broken by a Fayet-Iliopoulos term on 
one boundary. Then we will present a more involved example in which supersymmetry is 
communicated by loop diagrams which span the fifth dimension. 

: 

If supersymmetry is spontaneously broken, the vacuum energy can be nonzero. In gen- 
eral, the vacuum energy will contain a term, called the Casimir energy [6], which depends on 
the separation of the two boundaries. In the eventual application to supergravity, this depen- 
dence is needed to fix the size of the compact geometry. Though the case of 5-dimensional 
Yang-Mills theory is simpler than that of supergravity in several respects, it is still interest- 
ing to compute the Casimir energy for this case. In Section 5, we evalute this energy for the 
models of the communication of supersymmetry-breaking studied in Section 4 and note the 

- similarities of the two computations. 

In Sections 3 through 5, we will be carrying out weak-coupling perturbation theory com- 
putations in the nonrenormalizable 5-dimensional Yang-Mills theory. Our attitude toward 
this nonrenormalizability is a pragmatic one; we will be pleased if quantities of physical 
interest turn out to be ultraviolet-finite at the leading order of perturbation theory. That 
will betrue in our explicit calculations of the scalar mass term and the Casimir energy. 
Presumably, the higher-order corrections to these computations are cutoff-dependent and 
are regulated by the underlying string theory. In this paper, we will not be concerned with 
effects beyond the leading nontrivial order. 

Finally, in Section 6, we will discuss the relation of our formalism to Horava’s analysis 
and give an explanation-of the coupling shown in (1). 

Our approach to the Horava-Witten theory complements the many attempts to under- 
stand the structure of this theory by direct analysis of the l.l-dimensional Lagrangian. Gen- 
eral properties of the strong-coupling limit of the heterotic string theory have been discussed 
in [7, 8, 91. More explicit studies of the compactification of the Hofava-Witten theory have 
been- discussed recently by several groups. Some of these analysis [lo, 11, 12, 13, 141 have 
emphasized the connection to the venerable mechanism of supersymmetry breaking in string 
theory by Eg gaugino condensation [15], while others [16, 171 have relied on the Scherk- 
Schwarz mechanism [ 181 in the bulk to provide a new source of supersymmetry breaking. 
Brax and Turok [19] have contributed an observation on the possibility of large hierarchies 

_ in the 5-dimensional geometry, if all of the relevant 5-dimensional fields can be made mas- 
sive. We hope that the methods of analysis that we introduce here, when generalized to * 
supergravity, will clarify the many possible sources of supersymmetry breaking which may 
contribute in the Horava-Witten approach to unification. 
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2 Bulk and boundary supermultiplets 

In this section, we will set up the formalism for coupling 5-dimensional super-Yang-Mills 
theory to an orientifold boundary. The 5-dimensional Yang-Mills multiplet contains a vector 
field AM, a real scalar field <P, a gaugino Xi. 

In this paper, capitalized indices M, N run over 0,1,2,3,5, lower-case indices m run over 
0,1,2,3, and i, a are internal SU(2) spinor and vector indices, with i = 1,2, a = 1,2,3. We 
use a timelike metric r]MN = diag(l,-1,-1,-1,-l) and take the following basis for the Dirac 

_ 

matrices: 

TM= ((& “,“) > (-d^ p)) , 
where orn = (l,a’), ~7 = (1, -2). Though it is conventional in the literature to use raised 
and lowered spinor indices, we find it less confusing to write out explicitly the 2 x 2 and 4 x 4 
charge conjugation matrices 

c = -ia , c= ; E . 
( > (4 . 

In 5-dimensional supersymmetry, it is convenient to rewrite 4-component Dirac spinors as 
symplectic-Majorana spinors, Dirac fermions which carry an SU(2) spinor index and satisfy 
the constraints 

,gj = cijc$iT . 
(5) 

A symblectic-Majorana spinor can be decomposed into 4-dimensional chiral spinors according 

to 

where &i,, are two-component spinors connected by 

Symplectic-Majorana spinors $?, Xi satisfy the identity 

&“.. . rPxj = -cikCjexfy. . . pftik 7 

including the minus sign from fermion interchange. 

In this notation, the 5-dimensional Yang-Mills multiplet is extended to an off-shell mul- 
tiplet by adding an SU(2) triplet X” of real-vauled auxiliary fields [26]. Write the members 
of the multiplet as matrices in the adjoint representation of the gauge group: AM = AMAtA, 
etc. The the supersymmetry transformation laws are 
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where the symplectic-Majorana spinor 9 is the supersymmetry parameter, Dn,i@ E aM@ - 
i[AM, (a] (and similarly for DMX ), and aMN G a[~~, yN]. 

Now we would like to project this structure down to a 4-dimensional N = 1 supersymme- 
try transformation acting on fields on the orientifold wall. In a field theory description, an 
orientifold at x5 = 0 is described bye imposing the boundary condition on bulk fields a(x, x5) 

a(xm, x5) = P a(xm, -x5) (10) - . 

where P is an intrinsic parity equal to fl. The quantum number P must be assigned to 
fields in such a way that it leaves the bulk Lagrangian invariant. Then fields of P = -1 
vanish on the walls but have nonvanishing derivatives a5a. Note that, since A5 vanishes on 
the boundary, a5 = O5 on the boundary and ~3~~2 is gauge-covariant. 

Let <z be the supersymmetry parameter of the N = 1 supersymmetry transformation on 
the wall. Then the P assignments of the fields in the bulk supermultiplet are determined as 
follows: 

P = +1 P= -1 

E tz t, 
AM A” A5 
a - fD (11) 

A” x2 xi 
X” x3 X’y2 

On-the wall at x5 = 0, the supersymmetry transformation (9) reduces to the following 
. transformation of the even-parity states generated by [i: 

&A” = i/fitFrnXj, - iXitrj”<i 

6& = crmn Fmn[i - i(X3 - &@)[i . 
c$X3 = {itpDrnXi - iJLtc&AF + h.c. 

Sra5@ = -i~~Tca5XZ, - i<$a,X~ . (14 

The last two equations imply 

&(X3 - a5@) = &YDrnA; + h.c. . (13) 

These are just the transformation laws for an N = 1 4-dimensional vector multiplet [27], 
with A”, Ai, and (X3 - a5@) transforming as the vector, gaugino, and auxiliary D fields. 

The appearance of the quantity a,@ in the auxiliary field should not be a surprise. It is the 
expectation value of this quantity that breaks supersymmetry in Scherk-Schwarz mechanism 

- [18]. Thus, a,@ should appear in the order parameter of supersymmetry breaking. 

Now it is obvious how to couple the 5-dimensional gauge multiplet to 4-dimensional chiral 
multiplets on the boundary. We write the Lagrangian as 

S = d5x C5 + x6(x5 - x;&~ J .i (14) i 
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where the sum includes the walls at xf = 0, e. The bulk Lagrangian should be the standard 
one for a 5-dimensional super-Yang-Mills multiplet, 

L5 = f ( -;tr(&v)2 + tr(DM@)2 + tr(%y”DMX) 

-i tr(X”)’ - tr(X[Q, A])) , (15) 1 

with tr[tAtB] = bAB/2. The bulk fields should be constrained to satisfy the boundary con- 
ditions (10) at the walls. The boundary Lagrangian should have the standard form of a 

- four-dimensional chiral model built from supermultiplets (4, $L, F), 

with D, = (a,-iA,), and with with the gauge fields (A,, XL, D) replaced by the boundary 
- values of the bulk fields (A,, Xi, X3 - a5Q). 

The boundary scalar field 6 at x5 = 0 couples to the auxiliary field X3 through the terms 

J 1 d5x -$tr(X3)2 + S(x5)#(X3 - a5@)4 . (17) 

The field @ is a dynamical field in the interior, but X3 is an auxiliary field and may be 
integrated out. This gives a boundary Lagrangian of the form 

. 
1 d4x { -#(a5aq$ - &V~)26(0)} . (18) 

Thus, our formalism does contain singular terms proportional to b(0) on the boundary, 
which arise naturally from integrating out the auxiliary fields. In principle, the complete 
description of the orientifold wall in string theory could contain additional couplings involving 
higher derivatives a5 of the bulk fields and representing a finite thickness and a shape of the 
wall. However, the Lagrangian we have written, with the S(0) but no additional singular 
terms, is a completely self-consistent supersymmetric system. 

3 Bulk and boundary perturbation theory 

- In the previous section, we have found that singular terms proportional to 6(O) on the 
boundary arise naturally when bulk and boundary fields are coupled supersymmetrically. 
What is still unclear is whether these terms can lead to sensible results when one performs 
computations in this theory, or whether these terms signal the breakdown of a purely field- 
theoretic description. We believe that these singular terms do make sense at the field theory 
level. Their role is to provide counterterms which are necessary in explicit calculations to 
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Figure 1: Feynman diagrams contributing to the scattering process &$ + $4. 

maintain supersymmetry. In this section, we will illustrate this conclusion with some explicit 
calculations in perturbation theory. 

As a first, simplest, example, consider the scattering amplitude for scalars on a wall. The 
Feynman diagrams contributing to the process $a + c+& + q& + qSd are shown in Figure 1. 
The propagator of a free massless bulk field is 

(a(~, x5)a(y, 9”)) = S,, Ic2 Tick5)2 e--ik’(2-Y)(eik5(r5-Y5) + peik5(x5+Y5)) , (19) . 

where 

(20) 

with IC:_summed over the values rrn/& m = integer. Here and in the rest of our discussion, 
Ic represents a the 4-dimensional momentum components of IC”. 

The sum of diagrams in Figure 1 is given by 

_ L C (PC + pa) ’ (pd + pb) 

2e k5 
(pc - pa)2 _ (k5)2 + cc * d, * (21) 

If we represent 

the first two terms have a neat cancellation and we find the finite result 

7 

-- 



+ 1 c&97 
6361 A2 

Figure 2: Feynman diagrams contributing to the 4 self-energy at one-loop order. 

. As a second example, consider the self-energy of the scalar 4, computed at the one-loop 
level. By supersymmetry, the 4 cannot obtain a mass in perturbation theory, but it is 
interesting to see explicitly how the cancellation occurs. The Feynman diagrams for the 4 
self-energy are shown in Figure 2. The first four diagrams all involve one field that propagates 
in four dimensions and one field that propagates in the fifth dimension. Thus, if p is the 
external 4-momentum, all of these diagrams will have the structure 

(24) 

where N is a polynomial in momenta. Using the representation (22), we can bring the last 
. diagram into this form as well. Then the five diagrams give contributions 

N = -(2p - k)2 + 4(p - k)2 - 4k. (p - k) + (k5)2 + (k2 - (k5)2) 

= 0. (25) 

Here the 6(O) term enters quite explicitly as a counterterm which cancels the singluar be- 
havior of the @ exchange diagram and thus allows the complete cancellation required by 
supersymmetry. 

To prepare for the next section, it will be useful to illustrate one more cancellation 
required by supersymmetry. Consider the renormalization of the mass of a scalar 4 on one 
wall due to loop diagrams involving the supermultiplet on the other wall. This mass shift 

- is given by the sum of the two-loop diagrams shown in Figure 3. In our discussion of these 
diagrams, we will assign the chiral fields 4 at x5 = 0 to the representation R of the gauge 
group, and we will assign the fields 4’ at x5 = e to the representation R’. 

The diagrams of Figure 3 form a gauge-invariant set. We might characterize them as 
the diagrams of order g4N, where N is the number of matter multiplets on the second wall. 
Thus, by supersymmetry, their sum must vanish. 
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Figure 3: Feynman diagrams contributing to the mass shift of a scalar $ on one wall due to 
loop effects of the supermultiplet on the other wall. 

It is not difficult to see this explicitly. Since we are interested in the shift of the 4 mass 
term, we can set the external momentum equal to zero. Then let q be the loop momentum 
of the matter loop on the wall at x5 = .& Let (k, k5) and (Ic, i5) be the momenta carried by 
the two propagators of the gauge multiplet that connect the two walls. These momenta are 
quantized, with 

k5 = 7rnl-k , i” = 7rfip ) (26) 

but the integers n and fi are summed over independently, since k5 is not conserved in the 
interaction of bulk fields with the walls. Then all of the diagrams shown in Figure 3 can be 
written in the form 

-iM2(p2) = ig”C,(R)C(R’) J J 
N(h k5, i5, d 

Q I55 (k2)(li? - (kfy)(k2 - (i”)“)(q2)((q - rcy> ’ 
(27) 

where N is a polynomial in momenta, C(R’)GAB = trR/[tAtB] is the sum over the gauge 
quantum numbers of the multiplet at x5 = e, the integral over q is a simple 4-dimensional 
momentum integral, and 

(28) 

This expression includes the k5-dependence of the propagators, obtained by evaluating (19) 

at x5 = 0, y5 = e. 

To see that the diagrams of this set must cancel, it is easiest to compare this calculation 
to the corresponding two-loop mass renormalization in four dimensions. The diagrams on 
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the first two lines of Figure 3 contain, from the five-dimensional gauge multiplet, only the 
propagators of the fields A,,, and Xi which appear in a 4-dimensional gauge multiplet. Thus, 
their contributions to the numerator polynomial N are exactly those of the corresponding 
diagrams in 4 dimensions. To treat the last three diagrams, we note the identity 

(29) 

since the second term is a representation of 6(x5) evaluated at x5 = C. Each @ propagator 
comes with a factor (Jc~)~, due to the couplings (18) at each wall. The identity (29) allows us 
to replace this (/c~)~ by k2. Then each diagram gives the same contribution to the numerator 
as the corresponding 4-dimensional diagram with the @ replaced by a D-term interaction. 
Thus, the numerator polynomial N turns out to be exactly the one that appears in the 
4-dimensional calculation. 

At this point, we know that the integral (27) must vanish. It is not difficult to evaluate 
the various contributions to the numerator and to see that they cancel. In the Appendix, 

- we give a formula for the numerator factor N from which this can be verified explicitly. 

4 Wall to Wall Supersymmetry Breaking 

We have now described and tested an explicit form for the coupling of 4-dimensional su- 
permultiplets on the boundary to gauge supermultiplets in the bulk. Now we can use this 
formalism to see how supersymmetry breaking on one wall is communicated to the other wall 
to provide soft supersymmetry-breaking terms. In this section, we will give two examples of 
such communication, one through a direct tree-level coupling and the other induced by loop 
effects. 

The simplest example of the communication of supersymmetry breaking is obtained in 
a theory in which the wall at x 5 = e contains no boundary matter fields. We choose the 
gauge group to be U(1) and write a a Fayet-Iliopoulos a term on this boundary. With 
the identification of the D term given in Section 2, the following boundary action preserves 
N =-1 supersymmetry: 

L4 = K(X3 - a5q . (30) 

Integrating out the auxiliary field X3 leads to a 6(O) term which is an irrelevant constant. 
The dynamical @ field is affected by this term, in a manner that we can compute from the 
action 

S = d5x &3M@)2 - K~~&S(X~ -e) J { 
The Fayet-Iliopoulos term induces a background expectation value of @ which depends only 
on x5 and satisfies the equation 

-$a; ((a) + G35qx5 - e> = 0 . (32) 
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In solving this equation, we should remember that the geometry with mirror planes arose 
from a identification of points in a compactification of x5 on a circle. Thus, (@(x5)) must be 
a periodic function of x5 with period 2e and so &@ must integrate to zero around the circle. 
This boundary condition requires that we choose as the solution to (32) 

a5 (a) _ -g2/c (6(x5 - e> - A) . 

Inserting this result into the D-term coupling on the wall at x5 = 0, given by (17), we find 
a scalar mass term given by 

Mr$ = g2Q$ , (34) 

where Q is the U(1) charge of the scalar field, with no corresponding mass term induced 
for the fermions on the wall. If the dynamics on the wall at x5 = e gives a D-term of fixed 
magnitude there, the @ field transfers this across the fifth dimension to create a soft scalar 
mass term on the wall at x5 = 0. 

One subtlety of the Fayet-Iliopoulos mechanism of supersymmetry breaking is that the 
symmetry breaking D term can sometimes be compensated by shifting the vacuum expec- 
tations value of a scalar field. We can see a similar possibility here. Generalize the previous 
model to include several chiral multiplets & on the wall at x5 = 0, and additional chiral 
multiplets & on the wall at x5 = !. Assign these multiplets the charges Qi, Qj under the 
U(1) symmetry. In the most general situation, all of the scalar fields might acquire vacuum 
expectation values. Then the Lagrangian for @ will take the form 

. 

s=J (2,,( d5x L (X3)” + @'A&') + (~Qi&$i)(X” - 85@)6(x5) 

i 

.+(K + C Qj$J4j)(X3 - &@)S(x5 - e) * 
j I 

To integrate out a’, assume that the $i and $j are represented only by vacuum expectation 
values that are independent of position on the walls. Then. 

(C Qi4!&) (6(x5) - &) + (K + C Qj4;4j) (6(x5 - e> - h . (36) 
i j )I 

If we insert this expression into (35), and also integrate out the auxiliary field X3, the various 
6(O) terms cancel, leaving behind 

To minimize the vacuum energy, we must set the various vacuum expectation values to the 
supersymmetric condition 

~+CQ~+~h+CQj$J$j=O 7 (38) 
i j 
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if this is possible. 

If the supersymmetric theory on the wall at x5 = e breaks supersymmetry spontaneously 
without inducing a D term, it is necessary to go to a higher order in perturbation theory to 
find the supersymmetry-breaking communication. If supersymmetry breaking causes a mass 
splitting among chiral supermultiplets on the wall at x5 = C, and these multiplets couple to 
the gauge field in the bulk, then the diagrams shown in Figure 3 induce a supersymmetry- 
breaking mass for scalars on the wall at x 5 = 0. Since, in the scheme we are studying, 

the particle number of a chiral multiplet at x 5 = 0 is conserved, this is the only soft 
supersymmetry-breaking term that can be generated. 

The generation of the scalar mass term in this example is very similar to that in ‘gauge- 
mediated’ 4-dimensional models of supersymmetry breaking [20]. The same set of diagrams 
appears, with only the difference that our gauge fields live in 5 dimensions. 

To illustrate the computation of these diagrams, we study the simplest multiplet which 
appears in models of gauge-mediation. We introduce on the wall at x5 = ! two chiral 
superfields (@,$‘) which transform under the gauge group as a vectorlike representation 
(R’ + d) . (Recall that we are using R to denote representation of the chiral fields 4 at 
e = 0.) We give this multiplet a supersymmetric mass m and induce an additional mass 
term for the scalar fields from the vacumm expectation value of an F-term. Then the 
fermions have a Dirac mass m, while the bosons have a (mass)2 matrix 

. 

-- M2 ($) = (;; $) (-$I) . (39) 

The eigenvectors of this matrix are species c#!+, 4: in the representation R’. Thus, we find 
the mass spectrum on the wall at x5 = e, 

m2(&) = m2, , m2(&) = 72. , m”($‘) = m2 , (40) 

with rn$ = m2(1 f x). This spectrum satisfies str[M2] = 0. Our calculation will follow 
closely the discussion of gauge-mediated scalar masses in this model given by Martin [21]. 
It is straightforward to generalize our calculation to models of supersymmetry breaking 
with. nonvanishing supertrace. However, in that case, the scalar masses induced by gauge- 

mediation are cutoff-dependent even in 4 dimensions [22]. Similar divergences appear also 
in the 5-dimensional case. 

To compute the scalar mass, we repeat the calculation of the digrams in Figure 3, now 
assigning to the particles in the loop the mass spectrum described in the previous paragraph. 
As in the previous section, the identity (29) can be used to replace (/c~)~ by Ic2 in the 
numerator of the diagrams with @ exchange. Then the result reduces to a sum of two-loop 

scalar integrals, just as in the 4-dimensional case. 

To write the result precisely, define [23] 

(mmlm31m4) = J &i / $$ k2 j m9 k2 j m; q2 ; mi (q _ k;2 + m; (41 
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The basic scalar integral shown in Figure 4 is then written 

[(k5k51w Im2>] . (43) 

. Finally, though a term with k2 in the numerator can be reduced to scalar integrals, it is 
more convenient to retain this factor under the integral in (41). By abuse of notation, we 
will write a term with k2 in the numerator as, for example,. [k2(k5i5jm21m3)]. 

Using the notation, the scalar mass due to the diagrams of Figure 3 is 

rn$ = -g4C2(R)C(R’)[k2R + 4S] , (44 

where 

R = (k5i51m+lm+) + (k5~51m-lm-) + 2(k5~51m+lm-) + 4(k5i5jmlm) 
,. n 

-4(k5k51m+lm) - 4(k5k51m-Im) 

S = rn: { (k5k51m+lm+) - (k5~51m+lm)} - m2 { (k5k51mlm) - (k5k5)m+lm)} 

+m! { (k5k51m-lm-) - (k5k51m-lm)} - m2 { (k5k51mlm) - (k5&51m-lm)} .(45) 

This expression is full of cancellations which reflect the fact that the answer vanishes when 
the mass spectrum is supersymmetric. To evaluate this answer more explicitly, we must 
perform the sums over k5 and i” and then carry out the two four-dimensional integrals. 
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Figure 4: The basic integral which appears in the two-loop contribution to the scalar field 

mass. 

to be the Euclidean (Wick-rotated) scalar two-loop integral with four propagators, and 
denote Euclidean scalar integrals with additional or fewer propagators by brackets with 
more or fewer labels mi. In our calculation, Ic5 is summed over the values ;rrn/.!; denote the 

sum in (28) as 
l 4 

_- [Jt3 = 3 F 3 c 4 * (-1)“+“A(k5, i”) . 
?l 

(42) 



The sums can be performed conveniently using a standard trick from finite temperature 
field theory. Write a contour integral representation 

$j c 2(-1)n k2 +;k5)2 = f ge2fik” 1 k2 +;k5)2 ’ 
12 

(46) 

where the contour encloses the poles of the integrand at k5 = m/-L Draw the contour as a 
line from left to right just below the real axis and another line from right to left just above 
this axis. Push the first line down and pick up the pole at k5 = -ik; push the second line 

_ up and pick up the pole at k5 = ik. We find two identical contributions which sum to 

1 1 

Icsinh* (47) 

This manipulation can be performed separately on each of the propagators joining the two 
walls. 

At the same time, the scalar integrals over the momentum q can be evaluated explicitly. 
Define the function b(k2, ml, rni) by 

. 

J ddq 1 1 

(2~)~ q2 + my (q - k)2 + rni 
= &( - Y - W2, m:, mi> + W) (48) 

for d =4 - E. When we evaluate the loop integrals on the wall in (45), the divergent terms 
cancel and we are left with differences of these scalar functions, 

R + R(k2) = b(k2, m&m:) + b(k2, d, d) + 2b(k2, m:, m?) + 4b(k2, m2, m2) 

-4b(k2, m:, m2) - 4b(k2, rn:, m2) 

S + S(k2) = m:{b(k2,mt, m:) - b(k2, m:, m2)} - m2{b(k2, m2, m2) - b(k2, m2,, m2)} 

+m?{b(k2, m?, m!) - b(k2, m?, m2)} - m2{b(k2, m2, m2) - b(k2, m2_, m2)} . (49) 

If we then define 
P(k2) = k2R(k2) + 4S(k2) , (50) 

then the combination of these two tricks brings (44) into the form of an integral over k. 
Since this integral is spherically symmetric, we can replace d4k = 2.1r2dkk3 and write (44) as 

c@)C(R’) Irn dkksin;2 k[P(k2) . 
The function P(k2) is elementary, and it is not difficult to work out its asymptotic 

behavior for large and for small k2. We present these formulae in the Appendix. It is 
relevant that P(k2) N k2 as k2 + 0, so that P(k2) is a field-strength renormalization [24] 
(as the notation is meant to suggest). As k2 + CO, P(k2) N log(k2/m2)/k2. With this 
information, one can work out the asymptotic behaviors of m$. 
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For small C, we might expect to go back the the 4-dimensional situation. Formally, taking 
C + 0 in (47) turns this expression into 

2 1 -- 
2.tk2 ’ (52) 

which is the k5 = 0 term in the sum (46). Using the explicit asymptotic behavior of P(k2), 
we can see that the integral (51) remains well-defined in this limit. Thus, the manipulation 
is permitted and the result for rn$ becomes just the 4-dimensional gauge-mediation result 
with the renlacement 

We will write out this result explicitly below. Note that g2/e is the effective 4-dimensional 
gauge coupling obtained by simple dimensional redution. 

Another way to derive this result is to show that, for f? + 0, all terms in the sum over 
k5 and i5 are explicitly suppressed by the factor e2 except for the term with k5 = k” = 0. 
Again, the asymptotic behavior P(k2) N l/k2 is necessary to complete this argument. 

For large .C the hyperbolic sine in the denomination of (51) cuts off the integrand at very 
small k. Thus, we can find the asymptotic behavior by replacing P(k”) by its leading term 
for small k2, which is proportional to k 2. This gives a result proportional to 

. 

-- 
( ) 21 

(4$2 3 * (54 

Working out all of the details (with the help of some formulae from the Appendix), we 
find, as mC + 0, the 4-dimensional form [21, 251 

2 

ms = 2C#)C(R’) & - g 
( ) 

.(2(1+x) [log(l+x)-2Li2(&)+~Li2($--)] +(x*-x)} X55) 

where Liz(x) is the dilogarithm, and, as mC + 00, 

rn$ = 2C2(WW & ( ) 
2 1 

* p * C(3) 

In both of these expressions, the quantity in brackets tends to x2 as x + 0. We see that 
the induced soft supersymmetry breaking mass term crosses over from the 4-dimensional 
behavior to a smaller functional form as C becomes larger than l/m. In Figure 5, we graph 
the form of the mass term as a function of e for the illustrative value x = 0.3. 
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Figure 5: Behavior of the induced supersymmetry breaking mass for scalars at x5 = 0 as a 
function of e. We plot rns in units of 2C2(R)C(R’)(g2/(4r)2)2) . (m2/e2)). 

There is another way to understand the behavior of the scalar mass term for me large. If 
m is large, we can consider the inner loop in Figure 4 to contract to a point. More precisely, 
because the function P(k2) is proportional to k2 when k is small, this loop gives the pointlike 
operator (-V2) acting on the two propagators which run from one wall to the other. The 
remaining one-loop integral may be evaluated in Euclidean coordinate space. There is one 

small subtlety to note. The representation of (19) in Euclidean coordinate space is 

(a(xy e)“(07 O)) = & F ( (cx _ y)2 + cx5.1 y5 + zme)2)3/2 

+p((~ - y)" + (25 i- ~5 + 2d)2)3/2 > ’ (57) 

with m summed over all integers. When this expression is evaluated with one end at x5 = 0 
and the other at y5 = e, we find (for P = +I) 

(a(x7 e)“(07 ‘1) = & F (( X _ y>2 + (l m + l)e)2)3/2 . (58) 

Then the evaluation of m$, involves the expression 

’ = c Jd4xf37i2(~2 + pi+ ~)2p)d-v2)fjTyx2 + pi+ qq)y 7 m,ti (59) 
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containing two propagators which run from a point 0 on the wall at x5 = 0 to a point x on 
the wall at x5 = e. By combining the two denominators with a Feynman parameter, it is 
not difficult to do the integral explicitly and then sum over m and riz. The result is 

I= &m); . (60) 

Multiplying this by the coefficient of k2 in P(k2), we find again the result (56). This presen- 
tation explains the physical origin of the l/e4 behavior of the diagrams. 

5 Casimir energy 

At the same time that supersymmetry breaking on the wall at x5 = e induces soft supersym- 
metry-breaking terms in other parts of the theory, it also creates a nonzero vacuum energy. 
We are particularly interested in the part of this energy which depends on e-the Casimir 
energy [6]-since this term will eventually form a part of the balance which determines 
the physical value of .!. In this section, we will compute the Casimir energy due to the 
two mechanisms of supersymmetry breaking discussed in the previous section. We find it 
interesting that these calculation run almost in parallel to the calculations of the induced 
scalar mass term. 

. 

Consider first the case of a Fayet-Iliopoulos D-term on the boundary at x5 = e. The 
coupling of this term to the bulk fields is described by the Lagrangian (31), plus a term 
proportional to S(0) resulting from integrating out X3. Since (31) is quadratic in a’, we 
can integrate this field out explicitly. Using the propagator (33), the coupling of <p to the 
boundarv leads to Y 

plus an e-independent term proportional to S(0). Thus, we find for the Casimir energy per 
4-dimensional volume, 

EC/V4 = +$ . (62) 

If there are D-terms on both boundaries, or if the fields & on the two boundaries obtain 
expectation values as in (35), the sum of the two D terms appears in place of K in (62). If 
the two D terms are equal and opposite, the Casimir energy vanishes. Also, as we observed 
already in (37), the 6(O) t erms from integrating out X3 and Q precisely cancel. Thus, in this 

case, the vacuum energy remains just at zero, as expected from the supersymmetry of the 
situation. 

In the case in which the spectrum at x 5 = e violates supersymmetry but there is no 
induced D term, the Casimir energy must be generated by radiative corrections. The leading 
contribution comes from the diagrams shown in Figure 6. These diagrams involve a closed 
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Figure 6: Feynman diagrams contributing to the Casimir energy due to loop effects of the 
supermultiplet on the wall at x5 = L 

loop on the boundary at x5 = e and a propagator from the 5-dimensional Yang-Mills theory 
which winds around the compactified direction. 

Though perhaps it is not completely obvious from the beginning, the structure of the 
diagrams in Figure 6 is very similar to that of the diagrams in Figure 3. As in the previous 
section, we will describe the calculation for the case str[M2] = 0. 

In the diagrams of Figure 6, we have only one sum over k5. Thus, define for this section 

__ [B] = 4 c B(k5) . 
n 

(63) 

Then the Casimir energy resulting from this set of diagrams can be written in terms of 
Euclidean scalar two-loop integrals as 

EC/V4 = ;g2dcC(R’)[k2Rc + 4&] , 

where d&‘(R) = trRt [tAtA], and 

Rc = (k51m+lm+) + (k51m-lm-) + 2(k51m+lm-) + 4(k51mlm) 

-4(k51m+lm) - 4(k51m-Im) 

SC = m: { (k51m+Im+) - (k51m+lm)} - m2 { (k51mlm) - (k51m+lm)} 
rn? { (k51m-lm-) - (k51m-lm)} - m2 {(k51mlm) - (k51m-lm)} 

(64 

* (65) 

The inner loop of each of these two-loop integrals can be evaluated explicitly, giving the 
same functions R(k2), S(k2), P(k2) that we saw earlier in (49) and (50). 

Again we can simplify the sum over k5 using the contour trick from finite temperature 
field theory. Write 

$ c l 
n k2 + (k5)2 = f ge2ik5i _ 1 k2 +;kS)Z ’ (66) 
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where the contour encloses the poles of the integrand at k5 = m/L Draw the contour as a 
line from left to right just below the real axis and another line from right to left just above 
this axis. Push the first line down and pick up the pole at k5 = -ik. For the contour integral 
on the line above the axis, replace 

1 
= -1 - 

1 
e2ilc5e _ 1 (y2ik5e _ 1 * 

In the second term, push the contour up and pick up the pole at k5 = ik. These manipulations 
convert (66) to the form 

1 1 cx, dk5 
&2ke - 1 

+ - J -ca (27r) * 

The second term in (68) is independent of e; it represents the 
energy of the 4-dimensional wall in an infinite 5-dimensional 

(68) 

contribution to the vacuum 
volume. Equivalently, from 

the point of view of propagators in coordinate space, this term is the contribution of the 
propagators that go from the wall back to the wall without winding around x5. In any event, 
this term does not contribute to the Casimir energy, and we may drop it. 

After these manipulations, the Casimir energy (64) takes the form 

Ed4 = -; (&) &C(R’)~mdkk2e2k;- f(k’) , 6-W 

where P(k2) is the same field strength renormalization function that appeared in (51). 

As in the previous section, we can analyze the two-loop integral in the limits of small 
and large e. Consider first the limit C -+ 0. If we formally take the limit of small e in (69), 
we obtain a divergent integral 

O” EC/V4 N - J ’ ’ 
0 

dkSp log k2 . 

Thus, unlike the case of m$, the contributions to the Casimir energy are dominated by large 
values of k2. The estimate 

J * dkk2 
0 

.,,,‘- 1 -$ log k2 - ; log2 --$ (71) 

and the asymptotic formula for P(k2) given in the Appendix gives a precise formula for the 
small C behavior: 

4m4x2 1 .- dGC(R’) e log2 z . (72) 

For large e, the analysis can be done along the same lines as those we used for m$. The 
denominator of (69) cuts off the integrand for small k2. Thus, we can replace P(k) by its 
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Figure 7: Behavior of the Casimir energy as a function of !. We plot (Ec/V4) in units of 

;d&(R’) (g2/(4n)4>>- 

leading-term as k2 + 0. With this approximation, the integral is easily evaluated, and we 
obtain 

(1 5 3 4+x X2 - 2x2 log( 1 + x) - - 4-x X 1 +(x * -x) 1 . (73) 
Comparing (72) and (73)) we see the same crossover that we found previously from (55) 
to (56). In Figure 5, we graph the form of the Casimir energy as a function of C for the 
illustrative value x = 0.3. 

As in the previous section, the behavior of the Casimir energy for large C is studied most 
easily in Euclidean coordinate space. If k’ or m is large, the inner loop of each two-loop 

diagram can be contracted to a local operator proportional to (-V2). Then the Casimir 
energy is proportional to an expression in which this operator acts on a propagator which 
runs around the compact direction. More specifically, the Casimir energy is proportional to 

J = c(-0”) 
1 

m 8r2(x2 + (ml)2)3/2 2=. ’ (74) 

where the sum over m runs over all integers except m = 0. This expression evaluates to 

J= (75) 
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Multiplying this by the coefficient of k2 in P(k2), we return to the result (73). 

Both of the individual contributions to the Casimir energy that we found in this section 
are monotonic in L We find it interesting, though, that these two contributions have opposite 
signs. Thus, it is possible that, in a realistic theory, we could find balancing contributions 
to the Casimir energy that stabilize the value of .! at a nonzero value. 

6 Hofava’s supersymmetry-breaking structure 

Now that we have analyzed mechanisms for supersymmetry breaking in our toy model, it is 
interesting to ask whether this sheds light on the mechanism of supersymmetry breaking in 
string theory proposed by Hofava [4]. We can see the connection by making a dimensional 
reduction of Hoiava’s system from 11 to 5 dimensions, taking the compact 6 dimensions to 
be a Calabi-Yau manifold. Under this reduction, the boundary gaugino condensate becomes 
a 4-dimensional scalar gaugino bilinear on the boundary. The relevant components of the 
3-form gauge field in the bulk are those that multiply the the (3,0) or (0,3) forms of the 
Calabi-Yau space, 

. 

CABC(x,x5,y) = +,x5)flABC(y)+ "' (76) 

These components form two complex 5-dimensional fields which belong to a hypermultiplet 
in the bulk. Thus, we can try to recover HoPava’s coupling of the bulk and boundary fields 
by consjdering the coupling of a hypermultiplet in the bulk to chiral fields on the boundary. 

We can analyze this problem using arguments similar to those in Section 2. The five- 
. dimensional hypermultiplet consists of a pair of complex scalars Ai, a Dirac fermion x, and 

a pair of complex auxiliary fields Fi. Under supersymmetry they transform as follows [26]: 

. .. &Ai = -JzEij~jx 

I&X = -hhiy”8MAi&j~’ -I- &Fiti 

&Fi = -&~y”&i,JX. (77) 

To carry out the orientifold projection, we must consistently assign parities P to the var- 
ious fields and impose the boundary conditions (10). Here is a consistent set of assignments 
which gives N = 1 supersymmetry on the wall: 

P = +1 P=-1 

E, rZ t, 
A” A1 A2 (78) 
X XL XR 

F” F1 F2 

As in Section 2, we project out the odd-parity states and consider the supersymmetry on 
the boundary generated by .$. The transformations (77) specialize to 
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These transformations imply that 

&(F’ - a5A2) = fii&tTj”8mxL , (80) 

Then Al, XL, (F1 - a5A2) transform as the complex scalar, chiral fermion, and auxiliary 
field components of a four-dimensional N = 1 chiral multiplet. 

We can use this set of fields to write a coupling of the bulk hypermultiplet to chiral 

superfields on the boundary. In particular, the boundary theory might have a superpotential 
which depends on the boundary chiral fields & and the boundary value of the field Al. The 
superpotential term then includes the boundary action 

L4 = (F1 - t15A2)z +..a . (81) . 

If we integrate out the auxiliary field F1 and write the resulting action in 5 dimensions, we 
arrive at the structure 

C5 = I~MA~I~ - 6(x5) &,A2g + h.] + (S(z5))2 l$y (82) 

If we indentify A2 with the scalar component of C ABC shown in (76) and (dW/dA’) with 
the Es gaugino condensate, this reproduces the perfect-square structure (1) found by Hofava 

. [2j 41. 

From here, we could go on to discuss the communication of supersymmetry breaking. If 
we simply assume a fixed value of the gaugino condensate and solve for A2 as in (33), we find 
a universal gaugino mass proportional to l/e, as in [lo, 12, 121. This leads to conventional 
supergravity-mediated supersymmetry breaking scenario. It would be very interesting to 

know whether there are other possibilities. In particular, it would be interesting to find 
a perturbative hierarchy of soft supersymmetry-breaking terms similar to the one that we 
discussed in Section 4. To search for such possibilities, it is necessary to understand the 
general coupling of boundary matter fields to supergravity. We are currently investigating 
that question. 

7 Conclusion 

! 

In this paper, we have shown how easy it is to construct consistent couplings of five- 
dimensional supermultiplets to matter multiplets on orientifold walls by analyzing the trans- 
formation properties of the associated auxiliary fields. We applied this method to some simple 
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models with bulk and boundary fields and exhibited several possibilities for the communica- 
tion of supersymmetry breaking from one wall to the other. We hope that this method will 
generalize to supergravity and allow a more complete understanding of the supersymmetry 
breaking and its phenomenology in the Horava-Witten approach to unification. 
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A More about the two-loop self-energy 

In this appendix, we will give some further details of the two-loop self-energy calculations 
- discussed in Sections 3 and 4. 

As we explained in (27), our strategy for computing the diagrams shown in Figure 3 
began with bringing each diagram into the form 

M2(p2) = -g”G(R)C(R’) J J N(k k5, k5, a) 
__ q k55 (k2)(k2 - (k5)2)(k2 - (k5)2)(q2 - my)((q - k)2 - rng) 

(83) 
. for the ml, m2 appropriate to the inner loop of the diagram. We now give the contributions 

of the various diagrams to the numerator polynomial N. In the following formula, we 
write the contributions to N as a sum, following the order of the diagrams in Figure 3, 
although properly each separate term should receive the appropriate particle masses in the 
denominator. The expression is given for the mass spectrum (40) considered in Section 4; 
for the analysis of Section 3, one should set all masses equal to zero. With this explanation, 

N = 2(k. (2q - k))2 - 2(q2 - rn: + q2 - m?)k2 - 2(2q - k)2k2 

+8(q2 - rn: + q2 - mf)k2 + 4(q. (q - k)k2 - 2q. k(q - k) . k - m2k2) 

-8k2(q. (q - k) - 2m2) + 16k2k. (q - k) + 2k2 + 0 + 0 . (84 

If we set all masses equal to zero, this expression vanishes after the use of the q ++ (k - q) 

symmetry of the denominator. With nonzero masses, some simple rearrangements and a 
Euclidean rotation bring the expression for m$, into the form (44). 

In our analysis of (44), we made use of the self-energy integral b(k2, mf, mi) defined by 

(48). We can write b more explicitly as 

W2, m?, mi> = irn dxlog (x(1 - x)k2 + xm; + (1 - x)mi) 

(A + &)(A + B2) 
= A1og (A-B~)(A-B~) 

[ 1 +B2logm~+&logm2,-2, (85) 
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where 

and 

rnf + mZj> + (mf - mZj)2 ‘I2 

4k4 1 
B 

1 

= k2+mf-mi B 
2 

= k2+mg--my 
2k2 7 2k2 . 

(86) 

(87) 
From b(k2, rnf , m$), we can compute the combinations R(k2), S(k2), P(k2) defined in (49) 
and (51). We evaluate these expressions using the mass spectrum derived from (40). It is 
straightforward to work out the asymptotic behavior of these functions for large and small 
values of k2. For P(k”), we find as m2k2 + 0, 7 

p(k2) = k2 4 + “,; 2x2 log(1 + x) + 1+ (x t) -x) 1 + O(k4) . (88) 

and as m2k2 + co 3 

P(k2) = f$ 
k2 

x2 log m2 - (x2 + 3x + 2) log(1 +x) - x2 + (x t) -x) 1 + O(k-4) . (89) 

The computation of the Casimir energy reported in Section 5 is very similar to the 
computation of m$, and, in particular, uses the same auxiliary function P(k2). 
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