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Abstract 

We consider scattering processes in the matrix model with three incoming and three 
outgoing gravitons. We find a discrepancy between the amplitude calculated from the 
matrix model and the supergravity prediction. Possible sources for this discrepancy are 
discussed. 
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1 Introduction 

One of the exciting developments to emerge from the work in recent years on string duality is the 
conjecture that in the infinite momentum frame, string theory (M theory) is described by a large 
N matrix model [I] . In addition, the finite N matrix model has been conjectured to describe 
M-theory on a compact light-like circle [2] . 

In eleven dimensions, this matrix model is just a supersymmetric quantum mechanics with 16 
supercharges. In dimensions 8 - 10, it is a field theory [3, 4, 51. In lower dimensions, the story is 
more complicated [6, 7, 81. 

The matrix model conjecture has been well tested in processes involving scattering of two 
gravitons [9] and other two-body interactions [lo, 11, 121. Matrix models also reproduce known 
string dualities in remarkable ways, and seem able to reproduce the light-cone three string vertex 
[13]. Seiberg has recently explained how the conjecture might be derived [14]. 

In this note, we describe a further test. We will compute, in this note, an amplitude in 
supergravity involving six gravitons - three incoming, three outgoing - and compare this to a 
calculation in M(atrix) theory. We will work in the limit of small velocities and very small 
momentum transfer, with zero longitudinal momentum exchange. This is analoguous to the well- 
known computation of the v4/r7 force law between two gravitons as a one-loop computation in 
the matrix model [l, 15, 161. A rough estimate suggests that the matrix model is on the right 
track. If all three gravitons are separated by a similar distance, R, then the 3 + 3 amplitude 
should behave as &, and this is indeed the behavior one obtains by simple power counting on 
the matrix model diagrams. 

However, when the amplitude is examined in more detail, we seem to find a difficulty. We 
-will take a limit where one graviton is far from the other two, i.e. ris N r23 = R >> r12 = r. We 
will expand the amplitude in powers of l/R. In momentum space this corresponds to a limit in 
which one of the momentum transfers, say ql, is much smaller than the other two (q2, q3). 

Since the propagator for a graviton goes as l/R7 (there is no longitudinal momentum transfer), 
we expect the leading behaviour to go as &. The vertices are bilinear in momenta, so we might 
expect a term in the amplitude of the form 

(h * k2)@2 * k3>@3 * h> 

9x 

-where Ici,&163. are the momenta of the incoming gravitons. 
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In the next section we argue by simple power counting on the appropriate Feynman diagrams 
that such a term can not occur in the matrix model. If the matrix model is truly to reproduce 
the supergravity amplitude, then the coefficient of the term in the supergravity amplitude must 
be zero. 



The third and fourth sections are devoted to calculating the coefficient of the term in super- 
gravity . We find that the coefficient is nonzero. We first do the calculation using the Feynman 
diagrams in supergravity; as a check, we then perform the calculation in string theory. The two 
computations agree. 

Finally, we speculate on possible origins of the discrepancy we have found. 

2 The matrix argument 

In the matrix model, it is easiest to study scattering with zero p+ exchange, and at large 
impact parameter, corresponding to large expectation values for the 2’s. In momentum space, 
this means one studies momentum transfers small compared to the momenta themselves. If the 
incoming and oytgoing momenta of the first graviton are Icl and Ic2, respectively, then kl = k2+ql, 

where [{i/ < Ilcll, q+ = 0. Similar remarks apply to the momenta k3, k4 and kg, kg associated 
with the other lines. 

Among the invariants relevant to this problem are the invariant energies associated with the 
various subsystems, kl . kg, kl . kg, k3 . kg. In light cone variables, these have a simple form. For 
example, 

kl . k3 = k,‘k3+(v1 - v~)~. 

The terms we are looking for in the amplitude, then have the form 

@I - kd(k2 - h)(h - h) 
R7r7 

= (k+zk+zk+s) (‘1 - v2)2(v1 - v3)2(v3 - v2)2 
1 2 3 R7r7 

We want to ask how such a term can arise in the matrix model. Without loss of generality, 

take 23 = 0, 1221 = r, lzil = R. I n order to generate a term in the matrix model of the form 
above, we must study loop graphs with the following properties: 

l They must depend on two masses ( R and r) so they must contain at least two loops. 

- l They .must have six external leg insertions; two for (vl - v2), two for (vl - v3), and two for 
(v3c-iJ2): 

l The four factors of vi all attach to “heavy” modes, with mass (frequency) of order R. 

An example of such a graph is shown in Fig. 1. 
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Figure 1: One of the Feynman diagrams of the matrix model. 

Simple power counting shows that this graph (and all of the others with these properties) are 
suppressed by at least nine powers of R. The three propagators each give 1/R2; extracting four 
velocities gives 1/R4, and the loop integration gives one power of R. Thus the graph goes as 
l/Rg. Supersymmetry cancellations might give further suppression, but already this is smaller 
than 1/R7. An identical suppression can be found in the background field method used by [lo, 91. 

One can alternatively do the counting in terms of effective operators. Integrating out first 
_ the more massive fields, i.e. integrating over the R loop, yields an effective local operator built 

of the light fields. Since zi doesn’t couple directly to light fields, this operator must be of the 
form (vi - v~)~(vJ~ - v~)~X~. Here X represents operators which can couple to the light fields. On _ 
dimensional grounds, this should go as l/R’. The integral over the light field loop cannot induce 

. compensating powers of R. 

We can also ask what sorts of terms are generated by the iteration of the one loop matrix 
model Hamiltonian. It is easy to show that there are no terms of the correct form here as well. 

-We will return to this point in our concluding remarks. One can also easily check that higher 
loop contributions are further suppressed. 

In short, we see that no term of the form 

(kl - b)(k2 - k)(h - h) o( (VI - v2J2(v1 - ~3>~(v3 - ~2)~ 

R7r7 R7r7 

can be generated in the matrix model at any loop order. 

(2.3) - 

- 

3 SGpetigravity 

We now turn to the calculation in supergravity. In eleven dimensions, this just means that we 
need to consider .graviton exchange between the external gravitons, so the required vertices can 
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Figure 2: The supergravity graphs 

be read off the Einstein lagrangian. The relevant diagrams are shown in Figure 2. 

To evaluate the graphs, we need to know the structure of the supergravity vertices. These are 
conveniently collected in [17]. The three graviton vertex appears in eqn. 2.6 of that paper, the 
four graviton vertex in 2.8. Here we give a brief summary of the computation. 

Work in momentum space. Immediately take the limit q2 w -43 >> 41, where qi are the 
momentum transfers. The leading terms in the matrix model don’t involve the fermionic variables 
and thus don’t change the polarizations; helicity-changing terms are suppressed by powers of the 

. impact parameter (or the momentum transfer, in momentum space). So we look for terms in the 
graviton amplitude 

(3.1) - 

The vertices where an incoming graviton emits a single, slightly off shell graviton are partic- 
ularly simple. Calling the incoming and outgoing momenta kl and k2, respectively, and q the 
momentum transfer, and taking the polarization indices to be a~, PY, ay, the only relevant terms 

. (not suppressed by powers of q) are 

The Pi’s denote symmetrization in the three gravitons; the subscript denotes the number of 
distinct permutations. Note that in the limit of interest, the q’s are small compared to the - 
transverse momenta, so we need to keep in every instance the smallest possible number of q’s. In 

-the first term, then, the only relevant symmetrization is 1 + 2, but this gives nothing new; in the 
second, this does. In this limit, kl M -k2 (all momenta are defined as flowing into the vertex) so 
‘we have simply 

Next consider the vertex involving three off shell gravitons. For the kinematic structure of 

equation (3.1), We are only interested in the term involving q2 . q3 M -4;. There is only one such 
term: 

-2P3(91 * 93rlavrlpo77rp) 
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where the gravitons 1,2,3 carry indices pa, u/3, ay, respectively. The symmetrization produces 
no additional factors. 

Thus for the diagram with the three graviton vertex we obtain 

The second diagram is the only other relevant one for this structure. We need the four graviton 
vertex appearing here. For such a vertex, label the incoming lines kl, p, a; kp, p; 93, CT, y; 44, p, A. 
Because this diagram already has &, we can ignore all terms of order q at the vertex. In 

addition, we must again insure that the helicity on the incoming and outgoing graviton lines is 
unchanged. A careful examination of the expression for the four graviton vertex indicates that 
there are only two relevant terms, 

-I’12 (h, kapq7xqpvqcJ - 2Pl2 ( h,,kl,,qprqppqax) . 

The second term does not obviously preserve helicities. However, if one exchanges 2 + 4, then 
one obtains 

-P12(kl~k2pq~Xq~vqa,B) - 2Plz(kl,,kl,(TrlX7q~vqaP). 

In the first term, exchanging 1 + 2 gives an inequivalent result (but exchanging 3 + 4 does not). 
In the second term, exchanging 1 and 2 similarly gives an inequivalent result. So at the vertex 
we have, using kl = -kg, 

-2h,ph,cmgpvqap 

One can now combine this with the three graviton vertices to obtain for the diagrams (note that 
in this limit, the four-graviton vertex can attach to either of two of the external lines, giving the 
same result) 

(-2iK4)(J - tJ3(h - k&h - k&b . kg) 

The two contributions do not cancel. 

We have done many further checks on these amplitudes. In the next section, we will show 
-that this amplitude agrees with a string computation. It is easy to compute many of the other 
terms in the vertex and to compare these with a string computation as well, and we have done 
several additional tests of this sort. 



4 Strings 

We now turn to the string calculation. We will work in bosonic string theory. The M-point tensor 
amplitude is given by [18] 

where 
2 2 2 

* = 12, - &;2;ad-z;12;.c - &,I2 

c ki.<j 
i>j 2(zi - zj> 

I 

1 (4-l) 
(4.2) 

means that three variables are to be given arbitrary values and not integrated. Here we have 

introduced 
k,j = ki * kj/4 (4.3) 

_ We are interested in terms where the polarizations dot into themselves, thus we need 

. We will in addition choose 2s = 00, z.5 = 1, ~4 = 0. This means that all terms involving &j cancel. 

The resulting expression has the structure (we will omit the integration symbol henceforth) 

kn-2 kn ku ku k23 k24 kzs 
212 

kw-2 k3s 
‘13 ‘14 ‘15 ‘23 ‘24 ‘25 ‘34 x35 (4.5) 

multiplied by its complex conjugate . 

We are interested in poles involving &, &, &. To isolate singularities of this sort, the 

following change of variables is helpful: 

xl = (7-1 + l)z2 23 = 22 .z3 = r3,z2 

The integrand then becomes 

where 

-2skss 
22 

-2+kn -2+k34 
r1 r3 f b-1, r3, ~2) 

w 

P-7) 

f (rl, rg,z2) = (1 + r1 - rs)Ic13(1 + rr)k14(1 - x2 - rrzz)k15(1 - r3)k23(1 

6 

z2)k25 (1 - r3zz)k35 (4.8) 
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In this form, the poles of interest come from the integration regions where the variables go to 
zero. 

Indeed, it is now a simple matter to expand the function f in, say, rr,rs. Keeping the first 
order terms isolates the pole (Ici&34)-1. The remaining z2 integral is readily done exactly. The 
most singular term, proportional to (l~l2k34k56)-~ agrees with the supergravity calculation. The 
term which interests us, proportional to k&i&as(~i2~34)- ’ is non-vanishing and also agrees with 

the supergravity result. A more detailed study of this integral shows that the properly normalized 
amplitude reproduces our supergravity result. Those attempting to verify these statements may 
find the integral: 

I(%, 122, n3, n4) = 
s 

&9-m (1 _ Z.B-mZA-n3 (1 _ qB-n4 

= 7r(-l)n4 
I’(A+l- nl)I’(B+l- n2)I’(n3 +n4 -A-B - l)I’(B+l- n4) 

I’(-B)I’(l+ B)I’(A+B - n1 -n2 +2)I’(n3 -A) (4.9) 

helpful. As noted earlier, we have also checked many of the other terms in the amplitude against 
the supergravity computation. 

_ 5 Implications 

We have not found a satisfactory explanation of the discrepancy we have found. However, there 
. are several potential issues in the calculation. 

We must emphasize that we have done a matrix model calculation at a finite value of N. 
This means that we have to compare it to M-theory with a compact lightlike circle as proposed 

.in [2] . One might worry that this brings in complications while evaluating the supergravity 
amplitude. However, one expects that for a large value of the light-like radius R (or, equivalently, 
a large value of N), the theory on a compact lightlike circle tends to classical ll-dimensional 
supergravity with corrections that are suppressed as i. Hence we do not expect corrections from 
the lightlike compactifications to alter our supergravity result (as the corrections scale differently 
with R and N.) It is possible that this is too naive and that DLCQ M-theory contains terms 
which are not present in the classical supergravity lagrangian. However, this seems to lead to the 
Counterintuitive conclusion that DLCQ M-theory does not behave as classical supergravity in the 
low energy limit. 

’ It is also- p-ossible that we have blundered in some way in our evaluation of the classical 
amplitude. This would be the simplest resolution of the puzzle. But we have performed numerous 
checks of the Feynman rules, as well as of our approach to treating the string computation. The 
detailed agreement of the two computations is impressive. 

Another concern is that the iteration of the one loop matrix model Hamiltonian will generate 

7 
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Figure 3: The gravity graph corresponding to the one-loop iteration. 

contributions to the three graviton scattering amplitude. However, these have the wrong N and R 
dependence to resolve the discrepancy. Indeed, the most singular parts of these graphs are easily 
seen to reproduce the Feynman diagrams in which a graviton is first exchanged, say, between the 
first and second line, and then another graviton is exchanged between the second and third. 

Let us first review how the N counting goes for the one loop diagram, corresponding to the 
2 + 2 process. On the matrix model side, the result is proportional to v(q -~z)~/t. How does 
this compare to the supergravity calculation? The invariant amplitude behaves as ~~(Ici . k2)2/t. 
However, this is for relativistically normalized states. To go to non-relativistic normalization, we 
need to divide by a factor of fi for each external line. This leaves us with 

K2kp;(i71 - ?72)4 = j$j$ Vl NlN2 (+ _ G2)4. 

P 

This is exactly as above. 

. - 
Now let’s consider the Feynman diagrams in the 3 -+ 3 process. First consider the supergravity 

side. The invariant amplitude is proportional to (ICI . k3)2(k3 . ks)2/ks .q3, where q3 is the small 
momentum transfer, and we have used the fact that Ici = 0. In terms of light cone variables, this 

is 
(k;k3$)2(211 - u2)4(k3$kg+)2(212 - 213)4 

The external state normalization factors give (@k$k$)-‘. In terms of N-dependence, this leaves 

- - 

NlN;N3(~1 - 7~2>~(~2 - ~3)~ 

R5k3 . q3 

It is easy to see how this is reproduced by the matrix model. The iteration of the lowest order 
Hamiltonian reproduces the velocity factors and gives Ni NiNa/@. The energy denominator is 

(i3. &)/N2R-l. S o we obtain the amplitude above. 

8 



One could imagine all sorts of corrections to the matrix model Hamiltonian (at one loop) 

which would give things like <a . $3 in the numerator, but all contributions will still have the same 
N-dependence. This is not the N-dependence of the contribution we want to cancel. (It is also 
difficult to see how one could obtain the correct v-dependence.) 

Another possible concern is that with so many legs, it is not straightforward to work in light 
cone gauge for generic momenta and polarizations. But by studying particular cases one can 
check that this is not a problem. For example, one can take two of the incoming (and outgoing) 
polarizations to be the same. In this case, it is easy to see that there are no new contributions 
with the same dependence on the momenta as those which we have studied here. 

It may be that there is a conceptual problem with our understanding of the matrix model. 
Perhaps there are additional contributions which should be included which can reproduce the 
missing terms. Such phenomena are familar in light-cone field theory where it is necessary 
to include contact terms arising from integrating out backward-moving particles. In previous 
calculations, such terms have been suppressed by powers of N. However, in the present case, 
they potentially have the correct N dependence to generate the missing term. We have not been 
able to understand in any detail how this might work; if it is the resolution, the question will be 
whether there is some simple rule to generate these extra terms in the framework of the matrix 
model. We should note that the arguments of [14] strongly suggest that this cannot be the source 

. of the difficulty. It may also be that the use of the effective Hamiltonian is problematic. For 
example, the effective action presumably contains acceleration terms, which may complicate the 
Hamiltonian treatment. Finally, there is of course the possibility that the finite N matrix model, 
as presently formulated, does not reproduce DLCQ M-theory. 

. 

One might wonder if the derivation by Dijgraff, Verlinde and Verlinde [13] of the three string 
vertex already implies that all graviton scattering amplitudes must be reproduced correctly in 
the matrix model. This is not straightforward. Light cone string theory contains an infinite set 

. of additional terms (the so-called contact terms) that are not derived from the string vertex, but 
instead must be put in by hand to restore Lorentz invariance 4. One such term is the famous 
v4/r7 term that we have already referred to. The term of interest in this paper is another such 
term. The question is then whether some property such as analyticity of the amplitude implies 
that the contact terms must be reproduced correctly if the string vertices are reproduced (along 
the lines of [19].) W e d o not know the answer to this question. One must also note that higher 

-order corrections to the three-string vertex which were undetermined in [13] may be important. 

- The most impressive and concise argument to date for the validity of the matrix model is 
that of [14]. We do not currently understand how this argument might be reconciled with the 
apparent’ discrepancy we have found. 

There is also an issue as to whether the discrepancy we have found disappears in the infinite 
momentum limit. This can happen because the size of the zero-brane clusters forming a graviton 

4We are indebted to Steve Shenker for a crucial discussion of these issues. 
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grows with N. In the limit as N tends to infinity, the clusters are infinitely large, and there is 
no sense in which the separation between the clusters can be assumed to be large. This in turn 
means that we cannot find the effective action by integrating out massive strings as we have done 
here. To do the calculation in this limit, one needs more knowledge of the bound state wave 
function. It is hence conceivable that the discrepancy vanishes in the infinite momentum limit. 

Note added: After the completion of this work, we received a paper by M. Douglas and H. 
Ooguri [21], which describes a discrepancy between the matrix model and supergravity in the 
presence of curved backgrounds, following the analysis of [20]. It seems likely that this discrepancy 
is related to the one described in this work. 
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