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Abstract

A physically de�ned e�ective charge can incorporate quark masses analytically at the avor thresholds.

Therefore, no matching conditions are required for the evolution of the strong coupling constant through these

thresholds. In this paper, we calculate the massive fermionic corrections to the heavy quark potential through

two loops. The calculation uses a mixed approach of analytical, computer-algebraic and numerical tools includ-

ing Monte Carlo integration of �nite terms. Strong consistency checks are performed by ensuring the proper

cancellation of all non-local divergences by the appropriate counterterms and by comparing with the massless

limit. The size of the e�ect for the (gauge invariant) fermionic part of �V (q
2
;m

2) relative to the massless case

at the charm and bottom avor thresholds is found to be of order 33%.
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European Union TMR-fund.



1 Introduction

In analogy to Quantum Electrodynamics, the heavy quark potential has been of interest in QCD from very early

on [16, 34, 35, 41, 6, 1] as a model for the physical de�nition of the strong coupling constant [29]. Since it

represents a potentially measurable quantity and gives naturally rise to a physical e�ective charge �V [29], it is

very interesting to study the QCD avor thresholds in such a system [30] as the fermionic corrections are separately

gauge invariant.

In the MS and the MS schemes, the running of the coupling constant, by construction, does not know about

masses of quarks and since the couplings are non-physical, the Appelquist-Carazzone [33] decoupling theorem is

not applicable. One has to turn to e�ective descriptions which match theories with m massless avors onto a

theory with m � 1 massless and one massive avor at the \heavy" quark threshold [42, 28, 15]. In this way, the

dependence on the dimensional regularization mass parameter � is reduced to next to leading order e�ects by

giving up the analyticity of the coupling at the avor threshold [40, 39, 37, 38, 14, 9].

While this procedure of matching conditions and e�ective descriptions is certainly workable, from a theoretical

standpoint it would be advantageous to have a physical coupling constant de�nition which is analytic at thresholds.

In addition, as a physical observable, the total derivative with respect to the renormalization scale � vanishes.

Such a system is given by identifying the ground state energy of the vacuum expectation value of the Wilson loop

as the potential V between a static quark-antiquark pair in a color singlet state [16, 41, 21]:

V (r;m2) = � lim
t!1

1

it
logh0jTr fP exp

�I
dx�A

�
aT

a

�
gj0i (1)

where r denotes the relative distance between the heavy quarks, m the mass of \light" quarks contributing

through loop e�ects and T a the generators of the gauge group. It is then convenient to de�ne the e�ective charge

�V (q
2;m2) as

V (q2;m2) � �
4�CF�V (q

2;m2)

q2
(2)

in momentum space. The factor CF is the value of the Casimir operator T aT a in the fundamental represen-

tation of the external sources and factors out to all orders in perturbation theory. As one is free to choose the

representation of the external particles, we obtain the static gluino potential by adopting the adjoint representation.

The massless case was recently calculated in Ref. [22] and in this paper, we will give all the two loop fermionic

contributions to �V (q
2;m2) for all perturbative values of the momentum transfer q2 � q20 � q2 = �q2 > 0 and for

arbitrary values of the fermion mass m. In this context we are only interested in the two loop contributions to the

potential in the e�ective Schroedinger equation for the heavy particles. This implies, for instance, that not always
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the whole diagram contributes to the potential as certain parts can already be reproduced by the exponentiation

of lower order diagrams. The necessity for this subtlety has its origin in the exponential present in Eq. 1. For a

detailed discussion, see Ref. [41].

It is also important to note that the results of massive two loop integrals presented in this work are also relevant

for the related problem of quark threshold production. For this application, though, it would be necessary to treat

also the occurring imaginary parts of the integrals numerically as pole terms will contribute for timelike momentum

transfers at the production threshold q2 = 4m2. A promising approach for this treatment might be the recently

suggested Taylor expansion of integrands around threshold [18] by determining large and small scales in the

problem. The heavy quark approximation eliminates the possibility of timelike momentum transfers in this work

so that we do not need to worry about pole terms numerically. Nevertheless, we also list the contributions needed

in this case for all integrals.

The paper is outlined as follows:

In section 2 we list all the occurring two loop contributions explicitly in the Feynman gauge and with the

usage of heavy quark e�ective Feynman rules for the external sources. In section 3 the unrenormalized results

for the two loop corrections are given in terms of two loop scalar integrals, for which explicit expressions are

listed in appendix B. Section 4 contains all the required counterterms in the MS-renormalization scheme and it

is shown that all non-local divergences cancel. The renormalization constants obtained are given explicitly and

checked with the known results. Section 5 contains numerical results which demonstrate that the massless limit is

obtained correctly and display the e�ect of including the mass terms for the charm and bottom avor thresholds.

In section 6 we make concluding remarks and indicate future lines of work with the presented results. Appendix

A, �nally, lists all the reductions from tensor to scalar integrals needed for the results displayed in section 3.

2 The Two Loop Corrections

In this section we present the non-Abelian contributions to the heavy quark potential that constitute the new

results of this work. They are depicted in Fig. 2. The QED like diagrams, which need to be modi�ed by their

respective color factors, have been known for a long time [8] and can also be found in Refs. [14, 2, 3, 27] for instance.

They are given here as well because we would like to be able to separate non-Abelian and Abelian contributions

to the potential. It has been observed before [14] that their respective threshold behavior can be quite di�erent.

These diagrams, together with e�ectively \one loop" diagrams are given in Fig. 3. The weighted sum of all the

graphs shown, modulo terms already generated by the exponentiation of the lower order Born and the one loop

vacuum polarization diagram, give the complete gauge invariant fermionic corrections to the heavy quark potential
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Figure 1: The Feynman rules for heavy quark e�ective theory used in this work for the source propagator and the

source gluon vertex. For anti sources one has to make the replacement v �! �v. The i-" prescription is the same

as for the usual fermion propagator.

at two loops in the Feynman gauge. The choice of this gauge simpli�es the calculation because the decomposition

into scalar two loop integrals is easier and it also reduces the three gluon vertex correction graph to zero in the

heavy quark e�ective theory. Below we list all contributions at the two loop level. The abbreviations stand for

gse � gluon self energy, vc � vertex correction, cl � crossed ladder and olvc � one loop vertex correction.

In the heavy quark limit we use the source gluon vertex and source propagator Feynman rules of heavy quark

e�ective theory [19, 7] which are given in Fig. 1.

With these, and taking v� � (1; 0; 0; 0) and q0 = 0 for the purely spacelike momentum transfer q, the two loop

diagrams of Figs. 2 and 3 read in the Feynman gauge (summed over the external color degrees of freedom and

including a symmetry factor of 1
2
for the �rst three amplitudes):

Mgse1 �
�ig6�2�

q4
CFCATF

4
��;0��;0

Z
dnk

(2�)n

Z
dnl

(2�)n

� Tr
n
� (/l � /k +m)  (/l + /q +m) � (/l +m)

o
((l + q)2 �m2)(l2 �m2)((l � k)2 �m2)(k + q)2k2

� ((q � k)g�;� + (�k � 2q)�g;� + (2k + q)�g�;)

�
(3)

Mgse2 �
�ig6�2�

q4
CFCATF

2
��;0��;0

Z
dnk

(2�)n

Z
dnl

(2�)n

� Tr
n
 (/l � /k +m) � (/l +m)

o
(l2 �m2)((l � k)2 �m2)(k + q)2k4

� ((�2q � k)g�;� + (�k + q)�g;� + (2k + q)�g�;) ((q � k)�g�;� + (�2q � k)�g�;� + (2k + q)�g�;�)

�
(4)

Mgse3 �
�ig6�2�

q4
CFCATF

2
��;0��;0

Z
dnk

(2�)n

Z
dnl

(2�)n

�Tr n (/l � /k +m) � (/l +m)
o

(l2 �m2)((l � k)2 �m2)k4

� (g;�g�;� � 2g;�g�;� + g;�g�;�)

�
(5)
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Mgse4 �
�ig6�2�

q4

�
C2
F �

CFCA

2

�
TF ��;0��;0

Z
dnk

(2�)n

Z
dnl

(2�)n

�

�
Tr f� (/l + /q +m)  (/k + /q +m) � (/k +m)  (/l +m)g

((l + q)2 �m2)(l2 �m2)(l � k)2((k + q)2 �m2)(k2 �m2)

�
(6)

Mgse5 �
�ig6�2�

q4
C2
FTF ��;0��;0

Z
dnk

(2�)n

Z
dnl

(2�)n

�
Tr f� (/k + /q +m) � (/k +m)  (/l +m)  (/k +m)g

(l2 �m2)(l � k)2((k + q)2 �m2)(k2 �m2)2

�
(7)

Mvc1 �
ig6�2�

q2
CFCATF

2
��;0��;0�;0

Z
dnk

(2�)n

Z
dnl

(2�)n
Tr f (/l � /k +m) � (/l + /q +m) � (/l +m)g

((l + q)2 �m2)(l2 �m2)((l � k)2 �m2)(k + q)2k2k0
(8)

Mvc2 �
ig6�2�

q2
CFCATF

2
��;0��;0�;0

Z
dnk

(2�)n

Z
dnl

(2�)n

�
Tr f� (/l � /k +m) � (/l +m)g

(l2 �m2)((l � k)2 �m2)(k + q)2k4k0

� ((q � k)�g�; + (�k � 2q)�g�; + (2k + q)g�;�)

�
(9)

Mvc3 �
ig6�2�

q2
CFCATF

2
��;0��;0

Z
dnk

(2�)n

Z
dnl

(2�)n
Tr f� (/l � /k +m) � (/l +m)g

(l2 �m2)((l � k)2 �m2)k4(k0 + i")2
(10)

Mcl � �ig6�2�
CFCATF

2
��;0��;0

Z
dnk

(2�)n

Z
dnl

(2�)n
Tr f� (/l � /k +m) � (/l +m)g

(l2 �m2)((l � k)2 �m2)k4(k + q)2(k0 + i")2
(11)

Molvc �
ig6�2�

q4
CFCATF

2
��;0��;0

Z
dnl

(2�)n
Tr f� (/l � /q +m) � (/l +m)g

(l2 �m2)((l � q)2 �m2)

Z
dnk

(2�)n
1

k2(k0 + i")2
(12)

It should be noted that in our case there is no need for an i-" prescription in the denominators of Eqs. 3 through

9 as the spacelike nature of the physical momentum transfer only leads to purely real integrals and no unambiguous

pole terms occur in the denominators of those diagrams. This feature also simpli�es the Monte Carlo integration

of the �nite parts of the contributing graphs. The three graphs 10, 11 and 12 display infra-red divergences which

cancel in the sum. The one loop vertex correction graph Molvc vanishes in dimensional regularization, however,

is needed to ensure the proper cancellation of infra-red divergences.

The color factors given are not always the full color factors. Only those contributing to the potential are listed.

The Casimir invariants [23] for a general SU(N) group are de�ned by

CA � N ; CF �
N2 � 1

2N
(13)

Furthermore, TrfT aT bg � Tf�
a;b = 1

2
�a;b. The color factor for Mvc1 includes the sum of the graph shown in

Fig. 2 plus the term stemming from the fermion momenta reversed contribution. Only the sum is proportional

to CA, the other terms vanish according to Furry's theorem, as is the case in QED. For QCD, the crossed ladder

diagrams do contribute as they contain a color factor proportional to C2
F �

CFCA
2

, whereas the straight ladder

graph has a color factor proportional to C2
F only. This will be expounded on in section 3.1. In QED, the sum
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gse1:

q

k k+q

l-k
l l+q

q

gse2: gse3:

vc1: vc2:

cl: vc3: olvc:

Figure 2: The non-Abelian Feynman diagrams contributing to the massive fermionic corrections to the heavy

quark potential at the two loop level. The �rst two rows contain diagrams with a typical non-Abelian topology.

Double lines denote the heavy quarks, single lines the \light" quarks. Color and Lorentz indices are suppressed in

the �rst graph. The notation for the remaining digrams is analogous. The last line includes the infra-red divergent

\Abelian" Feynman diagrams. While the topology of these three diagrams is the same as in QED, they contribute

to the potential only in the non-Abelian theory due to color factors CFCA. In addition, although each diagram

is infra-red divergent, their sum is infra-red �nite.
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gse4: gse5: 2vp:

vpgl: vpgh:

Figure 3: The infra-red �nite Feynman diagrams with an Abelian topology (upper line) contributing to the

massive fermionic corrections to the heavy quark potential at the two loop level plus diagrams consisting of one

loop insertions with non-Abelian terms (lower line).

of all vertex, ladder and crossed ladder Feynman diagrams are equivalent to the iteration of the potential in the

Schroedinger theory. �VQED and the e�ective coupling [5] di�er, therefore, only at three loops due to light by light

scattering contributions.

3 Unrenormalized Results

The two loop integrals needed for the expressions of Eqs. 3 through 9 are treated in separate ways in this work

depending on whether or not they contain two or more internal fermion lines. In the former case we integrate

the fermion loop �rst as will be explained below. For the vertex correction contribution Mvc1 we integrate the

fermion loop analytically as well with all the Lorentz indices projected to zero and then proceed with additional

Feynman parameters for the remaining loop integration.

The two point functions Mgse1 , Mgse4 and Mgse5 are treated in a completely di�erent manner as the above

techniques would now be too cumbersome. We project the complicated tensor structure onto scalar quantities

as described below and then proceed with an algebraic reduction into scalar two loop integrals. This reduction
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is programmed in FORM [13] and details are presented in appendix A. The resulting scalar integrals are then

evaluated by employing standard Feynman parameter techniques and explicit results are listed in appendix B.

Overall results for the various amplitudes are obtained by expanding the n-dimensional results around � = 0 with

MAPLE. It is important to notice, given the complexity of the calculation, that the translation into FORTRAN

code was also performed by MAPLE, thus dramatically reducing the chance of accidental mistakes. The evaluation

of �nite parts is done with the Monte Carlo integrator VEGAS [25].

For the two point functions we use the following decomposition into transverse (t) and longitudinal (l) com-

ponents:

��;� (q) �

�
g�;� �

q�q�

q2

�
�t

�
q2
�
+
q�q�

q2
�l

�
q2
�

(14)

from which it follows that in n = 4� � dimensions

�t

�
q2
�

=
1

n� 1

 
g�;� �

q�q�

q2

!
��;� (q) (15)

�l

�
q2
�

=
q�q�

q2
��;� (q) (16)

With this notation and the heavy quark e�ective Feynman rules depicted in Fig. 1 we arrive at

Mgsei �
g2CF

q4
��;0��;0�i

�;� (q) ; i = f1:::5g (17)

The result of the decomposition for the transverse component of the gluon self energy graph Mgse1 , using the

relations given in appendix A, reads

�1
t =

ig4CATF

4(n� 1)

��
n
8

3
�
20

3

��
A2B120 �m2T12035

�
+ (4n� 10) T235 + (8� 4n)A2B12 +

�
n
8

3
�
14

3

�
T135

+16

�
q2 � q2

n

2
�m2

�
T1235 + q2 (4n� 6) T2345 + q2 (2n� 4)B12B45 � 8q2m2T12345 + 8A2B45

+
m2

q2

��
n
8

3
�
20

3

��
m2T12035 + T2035 �A2B120 +

1

m2
A2
2

�
+ 16T235 �

�
n
8

3

+
28

3

�
T135

�
+

1

n� 1

�
�n

2

3
m2T12035 + nT235 � n

7

3
T135 � 4nA2B45 + n

2

3
A2B120 � 8m2T2345

�4m2T2355 + 4T135 + q2
�
4m2T23455 + (4� 2n)A2C455 � nT2345

�
+

1

q2

�
4m2 (T135 � T235)

+n
2

3

�
m4T12035 �m2T135 +m2T2035 �m2A2B120 +A2

2

����
(18)
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It is also useful to examine the m �! 0 limit of the above expression as this case was calculated in Ref. [21]

and can serve a valuable test for the above expression. By inspecting the occurring integrals we �nd the massless

limit to correspond to

�1
tm�!0

=
ig4CATF

4(n� 1)

��
n
8

3
�

n

n� 1

7

3
�
14

3
+

4

n� 1

�
T135 + 16

�
q2 � q2

n

2

�
T1235 + q2 (2n� 4)B12B45

+q2
�
4n� 6�

n

n� 1

�
T2345

�
(19)

These terms are also, as expected, the only ones contributing to the gluon wave function renormalization

constant. In other words, all divergent parts of the two and one loop integrals which vanish in the massless limit

in the expression 18 add up to zero identically. This in itself is an important check of the overall expression. In

the heavy quark limit we can neglect the timelike component of the four momentum transfer q, i.e. q0 = 0 as was

already mentioned before. This means that we do not need the longitudinal component ofMgse1 , however, we list

it here for completeness:

�1
l =

ig4CATF

4

��
n
8

3
�
20

3

��
m2T12035 �A2B120 +

1

2
T135

�
+ 2T235 � 8A2B45 � 2q2T2345

+
m2

q2

��
n
8

3
�
20

3

��
A2B120 �

1

m2
A2
2 � T2035 �m2T12035

�
+

�
n
8

3
+
28

3

�
T135 � 16T235

�

+
1

n� 1

�
n
2

3
m2T12035 � nT235 + n

7

3
T135 + 4nA2B45 � n

2

3
A2B120 + 8m2T2345 + 4m2T2355 � 4T135

+q2
�
nT2345 + 2nA2C455 � 4m2T23455 � 4A2C455

�
+

1

q2

n
4m2 (T235 � T135)

� n
2

3

�
m4T12035 �m2T135 +m2T2035 �m2A2B120 +A2

2

����
(20)

A good check on the consistency of the employed decomposition is given by the absence of infra-red divergences.

None of the two point amplitudes in this work is infra-red divergent to begin with, however, in intermediate steps

of the calculation those do occur. An example is given above by the two integrals T2355 and T23455 for which

only the combination q2T23455 � T2355 is infra-red �nite and this is how they enter into Eqs. 18 and 20. The

function A2C455 only seems to have an infra-red divergence, however, in dimensional regularization it can actually

be written as an ultra-violet divergence. This is done in appendix B.

For the two diagrams that have an Abelian topology, Eqs. 6 and 7, we also give explicit results as usually

only their sum is given in the literature [14, 10]. Here, however, we need both contributions separately due to

the di�erent color factors. In addition, Abelian and non-Abelian terms are separately gauge invariant and might

display a di�erent threshold behavior [14]. We �nd:

8



�4
t =

ig4(CF �
CA
2
)TF

(n� 1)

��
n
8

3
�
16

3

��
A2B120 �m2T12035

�
+
�
q2
�
(4n� 8)q2 + (32� 8n)m2

�
� 32m4

�
TA
12345

+(8n� 16) (T235 �A2B12) + 32

�
q2 � q2

n

2
�m2

�
T1235 +

�
4n2 � n

76

3
+
104

3

�
T135

+
�
q2
�
18n� 2n2 � 28

�
+ 16m2

�
B12B12 +

1

q2

�
8

3
n
�
m4T12035 �m2T135 +m2T2035 �m2A2B120 +A2

2

�

+16m2 (T235 � T135)�
16

3

�
m4T12035 �m2T135 +m2T2035 �m2A2B120 +A2

2

���
(21)

and for the longitudinal component:

�4
l = ig4(CF �

CA

2
)TF

��
n
8

3
�
16

3

��
m2T12035 +

1

2
T135 �A2B120

�

+
1

q2

�
16

3

�
m4T12035 �m2T135 +m2T2035 �m2A2B120 +A2

2

�

+16m2 (T135 � T235)�
8

3
n
�
m4T12035 �m2T135 +m2T2035 �m2A2B120 +A2

2

���
(22)

Similarly, for Eq. 7 we get the following result:

�5
t =

ig4CFTF

(n� 1)

��
n2 � n

16

3
�
20

3

��
A2B120 �m2T12035

�
� 16m2T1235 +

�
(16� 8n)q2m2 � 32m4

�
T12235

+
�
n2 � 4n+ 4

��
q2T12035 � T2035 + 2A2B22 �A2B220 + q2A2C1220 � 2q2A2C122

�
�

�
n2 �

14

3
n+

16

3

�
T135

+m2 (8n� 16) (T2235 �A2C122)�
1

q2

�
4

3
n
�
m4T12035 �m2T135 +m2T2035 �m2A2B120 +A2

2

�

+8m2 (T235 � T135)�
8

3

�
m4T12035 �m2T135 +m2T2035 �m2A2B120 +A2

2

���
(23)

and for the longitudinal component:

�5
l = �ig4CFTF

��
n
4

3
�
8

3

��
m2T12035 +

1

2
T135 �A2B120

�

+
1

q2

�
8

3

�
m4T12035 �m2T135 +m2T2035 �m2A2B120 +A2

2

�

+8m2 (T135 � T235)�
4

3
n
�
m4T12035 �m2T135 +m2T2035 �m2A2B120 +A2

2

���
(24)

It can easily be seen that both parts of the two functions in Eqs. 21 and 23 multiplying 1
q2

are identical up

to a minus sign when 23 is multiplied by the multiplicity factor 2. This is required by the gauge structure of the

gluon propagator. Also their longitudinal parts add up to zero for the terms proportional to CF only. This just
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checks the well known properties of the Abelian theory. It does not hold for the CA parts of Eqs. 18 and 21 as

they would get modi�ed by the additional diagrams. These, however, were calculated in this work without the

above reduction scheme as follows:

We use the result of the integrated fermion loop which reads (omitting color and coupling constant factors)

[32]:

��;�(k;m) � ��
Z

dnl

(2�)n
Trf� (/l � /k +m) � (/l +m)g

(l2 �m2)((l � k)2 �m2)
�
�
k2g�;� � k�k�

�
�(k2;m2) (25)

with

�(k2;m2) =
i(�)

n
2 �

�
2

(4�)2
�

�
�

2

�Z 1

0

dx
8x(1� x)�

k2

m2x(1� x)� 1
� �

2

(26)

where � is given in Eq. 85. For completeness, we also list the sum of the gluon and ghost contributions in the

Feynman gauge [17, 36] to the gluon propagator:

��;�(q) �
�
q2g�;� � q�q�

�
�(q2) =

�
q2g�;� � q�q�

� i� �
2�
�
�
2

�
�
�
2� �

2

�2 �
5� 3�

2

�
8�2� (4� �)

�
1� �

2

� (27)

where � is given in Eq. 85. Now we get the following result for Mgse2 :

�2
t =

�ig4CATF ��

2(n� 1)

Z
dnk �(k2;m2)

(2�)n

(
3n� 7

2

(k + q)2
+
n� 1� 1

n

k2
+ q2

3n� 7
2

(k + q)2k2
+

�
n�

3

2

� 
1

q2
�

k2

q2(k + q)2
+

q2
k2 + 2kq

(k + q)2k4

!)
(28)

�2
l =

�ig4CATF �
�

2

Z
dnk �(k2;m2)

(2�)n

(
n+ 1

n
� 3

2

k2
+

1

(k + q)2
+

3
2
� n

q2
�

q2

2(k + q)2k2
+

�
n�

3

2

�
k2

q2(k + q)2

)
(29)

and similarly for Mgse3 :

�3
t =

�ig4CATF ��

2(n� 1)

Z
dnk

(2�)n
�(k2;m2)

(
6n� 2n2 + 2

n
� 6

k2

)
(30)

�3
l =

�ig4CATF ��

2

Z
dnk

(2�)n
�(k2;m2)

(
4� 2n� 2

n

k2

)
(31)

All the necessary integrals are given in appendix B. For the vertex correction graphs we arrive at the following

representations:
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Mvc1 =
ig6CFCATF ��

2(4�)4q2

Z 1

0

dx

Z 1

0

dy

Z 1

0

du

Z 1

0

dv x u

2
4� B(1� u)

�
2
�1� (�)

2�2+ �
2

�
�q2

m2

�
��2

�2
+ �

�

�
+ 1�u

�

��

�
(a+ nb)(1� u)

�
2� (�)

2�3+ �
2

�
�q2

m2

�
��2

�2
+ �

�

�
+ 1�u

�

�� + c(1� u)
�
2� (1 + �)

�3+ �
2

�
�q2

m2

�
��2

�2
+ �

�

�
+ 1�u

�

�1+�
3
75 (32)

where � is given by Eq. 126, � by Eq. 127 and � by Eq. 85. The remaining abbreviations read:

B � �24(1 � x) + 8 + �(12(1 � x)� 4) (33)

a � �16x(1� x)2 (34)

b � 12x(1 � x)2 (35)

c � (8� 12x) +
q2

m2

"
�2

�2
12x(1 � x)2 + 8(1 � x)x(1� y)� 12(1 � x)x2(1� y)2 + 4(x2(1� y)2�

x(1� y))� 2
�
12(1� y)x(1 � x)2 � 8(1 � x)x(1� y) + 4x(1 � x)

� �
�

�
(36)

The HQET Feynman rules of Fig. 1 project all three Lorentz indices to zero for Mvc1 . The completely

antisymmetric nature of the three gluon vertex then implies that there is no divergence coming out of the internal

fermion loop. Although Eq. 32 appears to possess a double pole, the 1
1�u \ divergence" is actually �nite when

integrated over all Feynman parameters. We checked this directly with VEGAS [25] and it indeed gives a well

converged numerical answer. As for Mvc2 , we integrate out the fermion loop as before, which yields:

Mvc2 =
�ig6CFCATF

2q2

Z
dnk

(4�)n
�(k2;m2)

"
�

k2 + 2kq

(k + q)2k4
+

1

2(n� 1)

 
1

(k + q)2k2
+
1

2

 
k2 + 2kq

(k + q)2k4
+

1

q2k2
�

1

q2(k + q)2

!!#
(37)

All the integrals left are given in appendix B.

3.1 Infra-Red Cancellations

In this section we turn to diagrams which give integrals already present in an Abelian theory, however, which do

not contribute in QED due to a cancellation that fails in the case of QCD. The reason is as follows: The color

factors for the ladder diagrams are proportional to C2
F for the straight and C2

F �
CACF

2
for the crossed ladder

graph. The same structure is also present in graphs Eq. 10 and 12. In the sum of all four occurring ladder

diagrams with one fermion loop plus Mvc3 and Molvc, all terms proportional to C2
F give a contribution that is

11



equal to the product of the one loop fermion graph with the Born contribution. This is an explicit example of

the aforementioned exponentiation that occurs on the level of the potential. In an Abelian theory one thus has to

omit these contributions.

On the other hand, in QCD, we need to calculate the crossed ladder terms and keep only the �CACF
2

part of

the above color factors.

From direct inspection it is furthermore obvious that these diagrams contain infra-red (IR) divergent terms

which have to cancel in the potential. It has been shown in Refs. [41, 21] that the sum of Mcl +Mvc3 +Molvc

is IR-�nite. This requirement poses a strong check on the calculation and necessitates the calculation of the IR-

divergent parts of a diagram that vanishes in dimensional regularization (Molvc), i.e. when UV- and IR-divergences

are not separated.

The presence of the square of the heavy quark propagator complicates the calculation of the crossed ladder

diagram considerably as it makes the analytical separation of the double and single pole terms extremely di�cult.

We therefore found it most convenient to introduce a gluon mass � as an IR-regulator. This allows to explicitly

di�erentiate between UV- and IR-divergences and provides a strong numerical check on the sum of all IR-divergent

contributions. In this case we get the following integral representations for the unrenormalized and IR-regulated

amplitudes:

Mcl =
ig6CFCATF

2

Z
dnk

(4�)n
�(k2;m2)(k2 � k20)

(k0 + i")2(k2 � �2 + i")2((k + q)2 � �2 + i")
(38)

Mvc3 =
�ig6CFCATF

2q2

Z
dnk

(4�)n
�(k2;m2)(k2 � k20)

(k0 + i")2(k2 � �2 + i")2
(39)

Molvc =
�ig6CFCATF

2q4
�(q2;m2)

Z
dnk

(4�)n
1

(k0 + i")2(k2 � �2 + i")
(40)

For the contributions of graphs 38 and 39 in which the k20 terms in the numerator cancel the heavy quark

propagator, no gluon mass regulator in needed. The sum of these k0-independent parts of Mcl and Mvc3 are

separately IR-�nite and indeed proportional to the integral 135 in appendix B. We therefore restrict ourselves

to a discussion of the k0-dependent contributions only. In these integrals the i-" prescription is crucial in order

to arrive at the correct location of poles and branch cuts the in the complex k0 � plane. The presence of the

fermion mass brings about a complicated integral over a general power, which in turn leads to a branch cut in

the upper half of the plane. After integrating over k0 in such a fashion one is left with an Euclidean integral over

(n� 1)-dimensions. More details and complete results are given in appendix B.1.
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4 Renormalization

In Fig. 4 we list the relevant counterterms for the two loop diagrams of Fig. 2 and Fig. 3. The counterterms

themselves contain non-local contributions, i.e. non-polynomial in the momentum transfer q, that have to cancel

the non-local terms from the original amplitudes. The construction of the local wave function renormalization

constants provides a powerful test of the correctness of the results presented both in section 3 and the appendices

as they must combine successfully to arrive at the required local double and single pole terms. It might be

helpful to expound on the general treatment of masses within the corresponding integrals and counterterms in

the MS-renormalization scheme [4, 23]. In the counterterm approach, their contribution is restricted to �nite

changes through the counterterms as the wave function renormalization constants are independent of the fermion

masses. In other words, all pole terms that contain masses represent non-local in�nities which must cancel in the

sum of graphs contributing to the overall �eld strength renormalization. There is therefore no di�erence in the

formal treatment of the mass parameter in graph 7 and any other graph. This is another way of saying that the

parameters of a MS-renormalized theory are not physical. Rather, they are related to measurable quatities by a

perturbative series in the physical parameters.

We begin by presenting the results for the counterterms corresponding to Fig. 4. All two point counterterms

correspond to the transverse parts of the gluon self energy contribution only, as these are the only relevant ones

for this work. The graph Mgse1 has two counterterms, one stemming from the fermion loop divergence (�ct1f )

and one from the loop around the three gluon vertex (�ct1g ). They are given in the MS-renormalization scheme:

�ct1f
=

�8ig4CATF

3(4�)4�

Z 1

0

dx

2
4(8� 6n)

n

2

0
@n

2
m2�

�
�1 +

�

2

� 
�
q2

m2
x(1� x)

!1� �
2

� q2x2�

�
�

2

� 
�
q2

m2
x(1� x)

!� �
2

1
A

� (4n� 6)

0
@m2

2
�

�
�1 +

�

2

� 
�
q2

m2
x(1� x)

!1� �
2

� q2x2�

�
�

2

� 
�
q2

m2
x(1� x)

!� �
2

1
A+

�
q2 (�2 + 2n) x

+q2 (5n� 5) �

�
�

2

� 
�
q2

m2
x(1� x)

!� �
2

1
A
3
5 �

�
2

n� 1
(41)

�ct1g
=

6ig4CATF

(4�)4�

Z 1

0

dx

2
4(4n� 12)

0
@�n

2
m2�

�
�1 +

�

2

� 
�
q2

m2
x(1� x) + 1

!1� �
2

+ q2x2�

�
�

2

� 
�
q2

m2
x(1� x)+

1)�
�
2

�
� (4n� 4)(m2 + q2x)�

�
�

2

� 
�
q2

m2
x(1� x) + 1

!� �
2

� 4m2�

�
�1 +

�

2

� 
�
q2

m2
x(1� x) + 1

!1� �
2
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gse1-ctg: gse2-ct:gse1-ctf:

vc1- ct:

vc2- ct: cl- ct:vc3- ct:

gse4-ct: gse5-ct:

Figure 4: The two loop counterterms corresponding to the diagrams in Figs. 2 and 3. Adding these contributions

to the original graphs removes all non-local functions from the occurring pole terms. The only exception are m2

�

terms in the two point functions which only cancel in the sum of all two point diagrams as explained in the text.

The fact that the tadpole diagram has no counterterm is already indicative of this cancellation.
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�q2x2�

�
�

2

� 
�
q2

m2
x(1� x) + 1

!� �
2

3
5 �

�
2

n� 1
(42)

For the counterterm for Mgse2 we �nd:

�ct2 =
4ig4CATF q2�

�
2

3(4�)4�(n� 1)

 �
7

2
� 3n

�
�
�
�
2

�
�2
�
1� �

2

�
� (2� �)

+

�
n�

3

2

�
�
�
1 + �

2

�
�
�
1� �

2

�
�
�
� �

2

�
� (1� �)

!
(43)

where � and � are de�ned in appendix B. ForMgse3 there is no counterterm as the subdivergence is independent

of the mass which means that in dimensional regularization all the remaining integrals vanish.

The pole terms for the respective terms, expanded up to O
�
�0
�
, thus read:

h
�1
t +�ct1f

+�ct1g

i
O(�0)

= �
ig4CATF q2

(4�)4

 
1

9�2
+

163

108�
�
3m2

q2�

!
(44)

h
�2
t +�ct2

i
O(�0)

= �
ig4CATF q2

(4�)4

 
�
44

9�2
+

25

27�
+
15m2

q2�

!
(45)

h
�3
t

i
O(�0)

=
ig4CATF 18m2

(4�)4�
(46)

These equations contain no non-local terms other than the m2

�
terms, which then have to vanish in the sum of

all contributions to the non-Abelian part of the gluon wave function renormalization constant. Because of the very

involved nature of the occurring non-local terms, this is already powerful evidence of the correct evaluation of both

the two loop integrals as well as the decomposition of graph Mgse1 . Multiplying each graph with its respective

multiplicity we �nd in the MS-scheme:

n
4
h
�1
t +�ct1f

+�ct1g

i
+ 2

h
�2
t +�ct2

i
+
h
�3
t

io
O(�0)

=
ig4CATF q2

(4�)4

�
28

3�2
�
71

9�

�
(47)

This is completely local and thus demonstrates that the renormalization has been carried out properly and that

the integrals given are correct. In order to further check this term we need the pole term from the \overlapping"

Abelian two point diagram from Eq. 6 (which in QCD develops a color factor proportional to (CF �
1
2
CA) in

order to get the fermionic part of the overall gluon wave function renormalization constant Z3. The counterterm

for Mgse4 reads

�ct4 = �
8 i g4

�(4�)2

�
CF �

CA

2

�
TF q2 �

�
q2;m2

�
(48)

and gives in agreement with [12]:

nh
�4
t +�ct4

io
O(�0)

=
ig4(CF �

CA
2
)TF q2

(4�)4

�
16

3�2
�
52

9�

�
(49)
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Adding Eqs. 47 and the CA term of 49 gives the correct non-Abelian fermionic part of the gluon wave function

renormalization constant ((times 1
iq2
) see Ref. [36] for example) in the Feynman gauge:

Z
CA
3fermionic

=
g4CATF

(4�)4

�
20

3�2
�
5

�

�
(50)

This testi�es to the overall correctness of both the decompositions used as well as all the integrals listed in the

appendices!

For completeness we also give the counterterm forMgse5 , which in the MS-scheme must be treated in the same

way as the graphs before. All divergent terms proportional to m2 cancel the corresponding non-local in�nities in

Eq. 23:

�ct5 = �
4 i g4CFTF

�(n� 1)(4�)2

h
n
�
12m2B22 + 2q2B12 � 4A2 � 12q2m2C122

�
+ (24q2m2 � 48m4)C122

�24m2B22 � (4q2 + 16m2)B12 + 8A2

i
(51)

with

nh
�5
t +�ct5

io
O(�0)

=
ig4CFTF q2

(4�)4

�
�

8

3�2
+

8

9�

�
(52)

It is an important di�erence to the massless case that the counterterms 48 (rather its CF part) and 51 are

not related by a simple minus sign as implied by the Ward identity. There is an additional constant term 4m

which gives new contributions. For the purely Abelian fermionic part of the gluon wave function renormalization

constant in the Feynman gauge we �nd in agreement with Ref. [36]:

Z
CF
3fermionic

=
g4CFTF

(4�)4

�
�
4

�

�
(53)

The cancellation of the higher order (double) pole is a characteristic feature in QED that holds to all orders

[31].

For Mvc1 we do not need to remove non-local terms as the fermion loop is �nite due to the projection of all

three Lorentz indices to zero. It is easy to check this by calculating all divergent pieces after the integration of

the fermion loop. All that is left is the divergence from the remaining integral which has to be subtracted in the

usual MS-fashion. This is indicated in Fig. 4. The explicit pole term is given by:

[Mvc1]O(�0) =
ig6CFCATF

(4�)4q2

�
�
1

�

�
(54)
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in agreement with the massless case [20]. In the case ofMvc2 we do have non-local terms, and the counterterm

reads:

Mvc2ct =
4ig6CFCATF �

�
2

3(4�)4q2�

Z 1

0

dv

 
�

nv�
�
�
2

�
2(�q

2

m2 v(1 � v))
�
2

+
(1 + v)�

�
1 + �

2

�
(�q

2

m2 v(1� v))
�
2

+

�
�
�
2

�
2(n� 1)(�q

2

m2 v(1� v))
�
2

+
nv�

�
�
2

�
8(n� 1)(�q

2

m2 v(1� v))
�
2

�
(1 + v)�

�
1 + �

2

�
4(n� 1)(�q

2

m2 v(1� v))
�
2

!
(55)

Adding Eq. 55 with the appropriate normalization and color factors to the result given in 37 does indeed give

completely local double and single pole terms as required in dimensional regularization after the subdivergences

are subtracted:

[Mvc2 +Mvc2ct ]O(�0) =
ig6CFCATF

(4�)4q2

�
1

�2
�

5

12�

�
(56)

It demonstrates that indeed all non-local divergences are canceled and agrees furthermore with the pole terms

obtained in the massless analysis [20]! It should be noted that all the integrals needed were already used in the

Mgse2 calculation for which such a strong internal consistency check was performed just above. All the required

expansions above were carried out with the help of MAPLE in face of the complexity involved. As mentioned

before, also the translation into FORTRAN was handled by MAPLE as to reduce possible accidental errors. .

4.1 Counterterms with Gluon Mass

At this point we need the counterterms of the IR-divergent contributions, Mcl, Mvc3 and Molvc. As indicated

above and expressed in Eqs. 38, 39 and 40, these were regulated by introducing a gluon mass regulator. The

remaining UV-divergences are treated as above in the context of dimensional regularization. We therefore have

to calculate all counterterm contributions that occur for gluon propagators with a gluon mass. Without such a

dimensionful quantity, only the crossed ladder diagram would yield a counterterm in dimensional regularization.

We again use the gluon mass only for k0-dependent terms as explained in section 3.1. This is indicated below.

The results are obtained in a similar way as for the corresponding amplitudes, �rst integrating over the heavy

quark propagator in the complex k0-plane with a subsequential (n� 1)-dimensional Euclidean integral remaining.

The results are obtained straightforwardly as there are only pole terms and no branch cuts in the counterterm

contributions. We �nd for the gluon mass regulated terms:
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Figure 5: The sum of the �2-dependent amplitudes and counterterms Mk0
cl +Mk0

vc3
+Molvc +M

k0
clct

+Mk0
vc3ct

.

Circles correspond to a choice of q2 = �10GeV 2 and m = mc, triangles to q
2 = �100GeV 2 and m = mc while the

lower curve (squares) has q2 = �100GeV 2 and m = mb. The overall normalization neglects color factors and the

coupling strength. All data are obtained by using 106 evaluations per iteration with VEGAS and 100 iterations.

The statistical error is indicated and smaller than the symbols where invisible. The sum for each of the displayed

sets of parameters is clearly independent of the IR-gluon mass regulator � as expected.

Mk0
clct

=
4ig6CFCATF �

�
2�
�
1 + �

2

�
�(4�)

7

2�
�
5
2

�
m2

Z 1

0

dv
1

(�q
2

m2 v(1 � v) + �2

m2 )
1+ �

2

(57)

Mk0
vc3ct

= �
8ig6CFCATF �

�
2�
�
�
2

�
3�q2(4�)

7

2�
�
3
2

��
�2

m2

� �
2

(58)

For completeness we also list the remaining counterterm stemming from the k0-independent part of Mcl:

Mk
clct

=
16ig6CFCATF 4

�
2 �

�
2�
�
1 + �

2

�
�
�
� �

2

�
3�m2(4�)

7

2�
�
1
2
� �

2

��
�q2

m2

�1+ �
2

(59)

The gluon mass terms that occur in the expansion of the original as well as the counterterms above in powers

of � in the pole terms of dimensional regularization represent now non-local divergences which have to cancel
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in the same way as terms containing m2 or non-polynomial functions of q2. The remaining IR-divergent pole

terms are contained in the form of logarithmic divergences in �. Fig. 5 demonstrates that in the sum of the IR-

divergent amplitudes plus their corresponding counterterms no �-dependence is left within the statistical errors.

For convenience, three sets of values for q2 and m2 are displayed while the renormalization scale � remains �xed.

We have checked that it also holds for a variety of other choices of parameters. Some need fewer evaluations to

converge while others need up to 107 per iteration.

It is perhaps interesting to note that the crossed ladder diagram, naively only singly IR-divergent, actually

possesses a quadratic divergence in log(�) which cancels the (also unexpected) quadratic divergence in the Abelian

vertex correction term. The remaining UV-divergent pole terms in the MS-scheme are found to be:

h
Mk0

cl +M
k0
clct

i
O(�0)

= 0 (60)

h
Mk0

vc3
+Mk0

vc3ct

i
O(�0)

=
ig6CFCATF

(4�)4q2

�
�
16

3�2
+
80

9�

�
(61)

h
Mk

cl +M
k
vc3

+Mk
clct

i
O(�0)

=
ig6CFCATF

(4�)4q2

�
�
16

3�2
+
16

9�

�
(62)

which states that the counterterm in case of Mk0
cl completely remove all pole terms in �. It is also clear that

all non-local terms are removed by the appropriate counterterms as was expected. In order to compare this with

the results obtained in the massless case one would need to di�erentiate between �UV and �IR.

5 Numerical Results

At this point we have calculated all diagrams that contribute to the massive fermionic corrections to the heavy

quark potential that were previously unknown. In the previous section we demonstrated that the counterterms

successfully remove all non-local divergences and that the MS-subtraction terms coincide with the massless limit.

The complexity of the explicit results given in the appendices raises some questions about how stable a numerical

integration over up to four Feynman parameters is with VEGAS as well as about the correctness of the �nite

terms of these expressions. An ideal test is provided by the results obtained in Ref. [21] for the massless limit.

Fig. 6 contains the results of the IR-�nite two loop amplitudes from Figs. 2 and 3 in section 2. The tadpole

diagram vanishes trivially in that limit so that only the six graphs shown remain. The sames choices for q2
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Figure 6: A comparison of the six amplitudes Mgse1 , Mgse2 , Mgse4 , Mgse5 , Mvc1 and Mvc2 with the massless

limit (dashed lines) [20] in the MS-scheme. Solid circles correspond to a choice of q2 = �1:5 GeV 2, open ones to

q2 = �4:5 GeV 2. � = 0:31 GeV in each case. Each graph begins to deviate from the massless limit only when m2

is of the same order as �q2 as expected. These results were obtained after 106 evaluations per iteration and after

50 iterations. The statistical error is smaller than the size of the symbols and the normalization neglects color

factors and the coupling strength.
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Figure 7: A comparison of the sum of amplitudesMcl+Mvc3+Molvc plus theirMS-counterterms with the massless

limit (dashed lines) [20]. Solid circles correspond to a choice of q2 = �1:5 GeV 2, open ones to q2 = �4:5 GeV 2.

� = 0:031 GeV and �2 = 10�8 in each case. The sum begins to deviate from the massless limit only when m2 is of

the same order as �q2 as was the case for the other graphs. These results were obtained after 106 evaluations per

iteration and after 100 iterations. The statistical error is smaller than the size of the symbols and the normalization

neglects color factors and the coupling strength.

and the renormalization scale � were made in all six plots. Since the results of Ref. [21] were calculated in the

MS-renormalization scheme, we use

�
MS

=

r
e

4�
�
MS

(63)

It is clear from these results that deviations from the massless limit only occur when m2 � �q2 or greater.

This was of course expected and the motivation for this calculation. A similar dependence is observed for the sum

of the three IR-divergent amplitudes from Fig. 2 in section 2. Here it is impossible to compare on an amplitude

by amplitude level since a di�erent IR-regulator was used. Only the sum of infra-red �nite contributions can be

compared at the two loop level. We checked explicitly that by replacing log(�) with 1
�
, only the double pole terms

can be seen to be identical.
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The single pole terms di�er and so do the �nite contributions for each amplitude. In the sum, however, the

IR-divergent pieces cancel (as demonstrated in Fig. 5), and here we can �nd a meaningful comparison. Fig. 7

demonstrates that the correct massless limit is indeed recovered. The numerical accuracy in terms of the statistical

error from the VEGAS Monte Carlo integration is actually included in the �gures. It is better than 1% though,

and thus not visible on the scale of the plots. The gluon mass regulated graphs were evaluated over twice as many

iterations (100) compared to the graphs from Fig. 6 as the required cancellations are numerically more unstable.

In both cases the number of evaluations per iteration is 106.

Fig. 8 displays the sums of all non-Abelian as well as the sum of all Abelian fermionic contributions to the

heavy quark potential. In addition we included the one loop corrections (bottom) in the MS-scheme (omitting

coupling constants) as given in Eq. 26. The simple logarithmic behavior of the massless one loop result is clearly

visible and asymptotically approached by the massive curves. The sign of the one loop correction is opposite to

the two loop Abelian result, reecting the fact that e�ectively for large momenta �
QED
0 �!

�
�
QED
0

�2
(in the

massless case, with �
QED
0 = �2

3
). The relative size of the mass e�ects are comparable for the one and two loop

corrections.

The massless two loop results can be seen to possess the expected double logarithmic contributions. The

massive two loop results show an almost completely opposite behavior for low values of m2

�q2
. At the avor

thresholds, though, both contributions increase the value obtained from the massless case by the same (relative)

order of magnitude. The overall corrections are much larger in absolute terms for the non-Abelian case, partially

due to an extra factor of CA, while in relative terms the Abelian corrections are bigger. In the high energy regime

both graphs show that the massless limit is approached asymptotically.

The complete massive fermionic two loop contributions to the heavy quark potential are presented in Fig. 9. It

can be seen that the overall curve is dominated by the non-Abelian threshold behavior (partially due to the extra

factor of CA). The \mc-graph" (triangles) matches the massless case for lower values of �q
2 as m2

c � m2
b . At the

respective thresholds we �nd roughly a 33 % deviation relative to the massless case. This could be very signi�cant

for applications where quark masses are expected to play an important part. Furthermore, the physically de�ned

e�ective charge �V (q
2;m2) incorporates quark masses naturally at the avor thresholds and is also analytic.

Thus, there is no problem of evolving the strong coupling constant through these thresholds and one never needs

to impose matching conditions. At high values of q2 the theory becomes massless and reproduces the leading

logarithmic terms obtained by the �-function analysis as these coe�cients are scheme independent through two
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Figure 8: The mass dependence of �V at one (bottom) and two loops. The two loop case is displayed in terms of all

Abelian terms (left) and for all non-Abelian terms (proportional to CA). Triangles denote m
2 = m2

c = (1:5GeV )2

and open circles m2 =m2
b = (4:5GeV )2. The massless case is also included (line). All curves have the same value

of the renormalization scale � = 0:031. It is clearly visible that the avor threshold behavior is quite similar in the

three �gures with an opposite tendency for low values of �q2 in the two loop case though. The one loop corrections

have an opposite sign relative to the Abelian two loop corrections. The coupling constants are omitted. All cases

approach the massless limit when m2

�q2 � 1.
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Figure 9: The complete two loop mass dependence of ~�V �
�
f2 loop

V

g6
for m2 = m2

c = (1:5GeV )2 (triangles) and

m2 = m2
b = (4:5GeV )2 (open circles). The massless case is also included (line). In all three curves we use

� = 0:031. The deviation from the massless case at the avor thresholds is of order of 33% and is dominated by

the new non-Abelian contributions

loops in a massless theory.

The above analysis can also be helpful for the incorporation of massive fermions in lattice analyses as the

heavy quark potential is de�ned by the gauge invariant vacuum expectation value of the Wilson loop in Eq. 1.

For a direct application of the presented results, a recently proposed way of incorporating quark avor thresholds

by relating the \natural" heavy quark potential mq-dependence to an e�ective continuous and smooth function

nF (�q
2;m2) [30] seems to be a promising candidate.

6 Conclusions

We have calculated all the necessary integrals for the non-Abelian massive fermionic corrections to the heavy quark

potential through two loops. They describe the analytic avor thresholds of the physical coupling �V (q
2;m2).

The new results were obtained by using a mixed analytical, computer-algebraic as well as numerical approach

and strong consistency checks were performed by observing that all non-local divergences cancel by adding the
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appropriate counterterms. In case of the complicated two point diagrams it is found that the weighted sum of

all diagrams gives the correct local gluon wave function renormalization constant. The renormalization constants

were given explicitly.

It was also checked that no spurious infra-red divergences were introduced by the implemented reduction

scheme as they are present in the intermediate steps of the calculation. For the explicitly IR-divergent diagrams

we proved that no physical results depend on the introduction of the gluon mass regulator �. This is a consequence

of the color singlet state of the external heavy quark sources.

All physically interesting and gauge invariant �nite parts were integrated with VEGAS [25] and found to agree

perfectly with the massless results of Ref. [22] in that limit which actually checks this part of the analysis in [21].

The di�erence to the massless case around the charm and bottom avor thresholds was found to be roughly 33%.

The size of this e�ect can have important consequences for processes in which one cannot neglect these masses as

well as for the evolution of the strong coupling constant through analytic avor thresholds.

A Decomposition of Two Loop Tensor Integrals

For the gluon self energy graphs Mgse1 , Mgse4 and Mgse5 we chose to not do the fermion loop integral �rst,

as we did for all vacuum polarization insertions, but to decompose the occurring tensor integrals into a linear

combination of scalar two loop integrals. The scalar integrals entering in the expression given in Eq. 18 (or 20)

will be treated in detail in the next section together with all other integrals needed in this work.

We work in n space-time dimensions, n = 4� �, and for the two loop integrals we use the following notation:

[1] � (l + q)2 �m2; [2] � l2 �m2; [3] � (l � k)2 �m2; [4] � (k + q)2; [5] � k2 (64)

l denotes the loop momentum of the massive fermion loop and k the remaining loop momentum. A prime like

[20] � l2 denotes the massless propagator with the same momentum as the unprimed. While there are di�erent

possible technical approaches to our desired decomposition, such as the one recently suggested in Ref. [24], the

general method we use follows that of Ref. [10]. We also denote integrals with squares of \denominator" terms in

the numerator \Y "- integrals and pure two loop scalar integrals by \T".

In the following we use various symmetries between Y - as well as between T -integrals. For instance

Y 2
1345 = Y 1

2345 ; T134 = T235 (65)

For two loop scalar integrals that are actually a product of scalar one loop integrals we use the respective one

loop notation of Ref. [11]. All of the decompositions were programmed in FORM [13] and lead to the following
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relations for Mgse1 :

Y 11
2345 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�((l + q)2 �m2)2

(l2 �m2)((l � k)2 �m2)(k + q)2k2

= q2 (T235 � T135) +
1

n� 1

�
n

6

�
�m4T12035 +m2T135 +m2A2B120 �m2T2035 �A2

2

�
�m2T135

+m2T235 +
n

4
q4T2345 +

n

2
q4A2C455 �m2q4T23455 � q4A2C455 +

n

6
m2q2T12035 +

7n

12
q2T135

�
n

4
q2T135 + nq2A2B45 �

n

6
q2A2B120 + 2m2q2T2345 +m2q2T2355 � q2T135

�
(66)

Y 1
2345 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�((l + q)2 �m2)

(l2 �m2)((l � k)2 �m2)(k + q)2k2

= A2B45 +
1

2

�
T235 � T135 + q2T2345

�
(67)

Y 4
1235 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�(k + q)2

((l + q)2 �m2)(l2 �m2)((l � k)2 �m2)k2

= A2B12 + q2T1235 +
1

2

�
T2035 +A2B220 �A2B120 � T135 � q2A2C1220 + (m2 � q2)T12035

�
(68)

Y 3
1245 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�((l � k)2 �m2)

((l + q)2 �m2)(l2 �m2)(k + q)2k2
= A2B45 �

q2

2
B12B45 (69)

Y 1
234 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�((l + q)2 �m2)

(l2 �m2)((l � k)2 �m2)(k + q)2

=
1

3

h
A2
2 +m2

�
T2035 �A2B120 � T135 +m2T12035

�
+ q2

�
T135 +A2B120 �m2T12035

�i
(70)

Y 4
135 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�(k + q)2

((l + q)2 �m2)((l � k)2 �m2)k2

=
1

3

�
A2
2 + q2T135

�
�
2

3

h
m2

�
T2035 �A2B120 � T135 +m2T12035

�
+ q2

�
A2B120 �m2T12035

�i
(71)

Y 1
235 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�((l + q)2 �m2)

(l2 �m2)((l � k)2 �m2)k2
= q2T235 (72)

Y 1
245 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�((l + q)2 �m2)

(l2 �m2)(k + q)2k2
= q2A2B45 (73)

For the remaining two diagrams,Mgse4 andMgse5 , we have slightly di�erent denominators as is evident from

Eqs. 6 and 7. It is possible, though, to relate these to the conventions given in 64 with the exception of the

�nite scalar integral TA
12345 which is given in Eq. 128. \A" denotes the fact that the topology of these diagrams is

Abelian. Below we list the Y -functions we need for the required decomposition with terms on the l.h.s. having the

denominators of the original integrals and given in terms of functions on the r.h.s. which are using the conventions

of Eq. 64:
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AY 1
2345 = A2B12 + T235 � T135 + q2T1235 � Y 4

1235 (74)

AY 3
1245 = 2A2B12 + (2m2 �

q2

2
)B2

12 (75)

AY 4
2335 = T235 + q2T2235 (76)

AY 2
135 = AY 5

234 =
AY 4

135 =
AY 1

234 = Y 1
234 (77)

AY 4
235 = q2T235 (78)

AY 1
235 = q2T235 (79)

AY 4
255 = A2

2 + q2A2B22 (80)

B Two-Loop Integrals

In this appendix we give the explicit results for all the integrals needed in the calculation of the two loop fermionic

corrections to the heavy quark potential. These include all the scalar two loop integrals occurring in the decom-

position of the gluon self energy graph Mgse1 in section 3 as well as the remaining tensor integrals needed for the

remaining contributions. Since the potential between two in�nitely heavy color test charges represents a physical

quantity, all integrals presented are real due to the spacelike value of the physical momentum transfer q2 < 0. For

this reason we found it convenient to adopt both analytical as well as numerical methods for the implementation

into FORTRAN. Wherever possible we proceed with the integration of the remaining Feynman parameter integrals

and where this becomes too involved, we integrate the remainder with the Monte Carlo integrator VEGAS, [25].

The notation is as follows:

The following Feynman parameter identities [26] are very useful and were employed in all integrals in this work:

1

a1:::am
= �(m)

Z 1

0

du1:::

Z 1

0

dum�1
um�21 um�32 ::: um�2

(a1u1:::um�1 + a2u1:::um�2(1� um�1) + :::+ am(1� u1))m
(81)

1

a�b�
=

�(�+ �)

�(�)�(�)

Z 1

0

du
u��1(1� u)��1

(au+ b(1� u))�+�
(82)

1

a�b�c
=

�(�+ � + )

�(�)�(�)�()

Z 1

0

du u

Z 1

0

dv
(uv)��1(u(1� v))��1(1� u)�1

(auv + bu(1� v) + c(1 � u))�+�+
(83)

1

a�b�cd�
=

�(�+ � +  + �)

�(�)�(�)�()�(�)

Z 1

0

du u2
Z 1

0

dv v

Z 1

0

dw
(uvw)��1(uv(1 � w))��1(u(1 � v))�1(1� u)��1

(auvw + buv(1� w) + cu(1� v) + d(1� u))�+�++�
(84)

We use the following abbreviations in addition:

� �
4��2

m2
; � �

4��2

�q2
; � � u+ (1� u)x(1� x); e� � u+ (1� u)(1� x) (85)
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� �
q2

m2

 
u2(1� v)2

�2
�
u(1� v)

�

!
+
1� u

�
(86)

e� �
q2

m2

 
u2(1� v)2e�2

�
u(1� v)e�

!
+

1e� (87)

f�0 �
q2

m2

 
u2(1� v)2e�2

�
u(1� v)e�

!
+
1� uve� (88)

where � is the dimensional-regularizationmass parameter [23]. All results are given in terms of their dependence

on � and would have to be expanded with the factors given in the explicit results of section 3 up to O (�). The

results in this paper were obtained by employing MAPLE to do the required expansion and are too cumbersome

for explicit presentation.

We start with results of the following simple scalar one and two loop functions:

A2 �

Z
dnl

(2�)n
��

(l2 �m2)
= �

i m2�
�
2�
�
�1 + �

2

�
16�2

(89)

B22 �

Z
dnl

(2�)n
��

(l2 �m2)2
=

i �
�
2�
�
�
2

�
16�2

(90)

B220 �

Z
dnl

(2�)n
��

(l2 �m2)l2
=

i �
�
2�
�
�
2

�
16�2

�
1� �

2

� (91)

B120 �

Z
dnl

(2�)n
��

((l + q)2 �m2)l2
=

Z 1

0

dx
i�

�
2�
�
�
2

�
(4�)2(�q

2

m2 x(1� x) + x)
�
2

(92)

B12 �

Z
dnl

(2�)n
��

((l + q)2 �m2)(l2 �m2)
=

Z 1

0

dx
i�

�
2�
�
�
2

�
(4�)2(�q

2

m2 x(1� x) + 1)
�
2

(93)

B45 �

Z
dnk

(2�)n
��

(k + q)2k2
=

Z 1

0

dx
i�

�
2�
�
�
2

�
(4�)2(�q

2

m2 x(1� x))
�
2

=
i�

�
2�
�
�
2

�
�2
�
1� �

2

�
(4�)2� (2� �)

(94)

C455 �

Z
dnk

(2�)n
��

(k + q)2k4
=

i�
�
2�
�
� �

2

�
�
�
1� �

2

�
�
�
1 + �

2

�
q2(4�)2� (1� �)

(95)

C122 �

Z
dnl

(2�)n
��

((l + q)2 �m2)(l2 �m2)2
= �

Z 1

0

dx
i x�

�
2�
�
1 + �

2

�
(4�)2m2(�q

2

m2 x(1� x) + 1)1+
�
2

(96)

C1220 �

Z
dnl

(2�)n
��

((l + q)2 �m2)(l2 �m2)l2
= �

Z 1

0

dx

Z 1

0

dy
i�

�
2�
�
1 + �

2

�
x�

�
2

(4�)2m2( q
2

m2 (x(1� y)2 � 1 + y) + 1)1+
�
2

(97)

A very useful integral for 97 is given by

Z 1

0

dx

Z 1

0

dy
1

(a(x(1 � y)2 � 1 + y) + 1)
= �

2

a

p
a2 � 4a tanh�1

�r
a

a� 4

�
�
a� 1

a
log(1 � a) (98)

This integral is needed in order to analytically separate the divergent pieces since C1220 is multiplied by A2 in

the solution for Eq. 6.
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T2035 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�

l2((l � k)2 �m2)k2
=

m2���
�
�
2

�
� (�1 + �) �2

�
1� �

2

�
(4�)4�

�
2� �

2

� (99)

T235 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�

(l2 �m2)((l � k)2 �m2)k2
=

m2���2
�
�
2

�
� (�1 + �) �

�
1� �

2

�
(4�)4�

�
2� �

2

�
� (�)

(100)

The reason why the following integrals cannot be given in such a simple form is the presence of the external

momentum transfer q in addition to the masses. In order to extract the in�nite pieces from the next integral T135,

we repeatedly use the following propagator identity:

1

(l + q)2 �m2
=

1

l2 �m2
�

2lq + q2

(l2 �m2)((l + q)2 �m2)
(101)

It then follows that

T135 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�

((l + q)2 �m2)((l � k)2 �m2)k2
= T235 + Ta + Tb + Tc ; (102)

with

Ta � �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�(2lq + q2)

(l2 �m2)2((l � k)2 �m2)k2
=

q2���
�
�
2

�
� (�) �

�
1� �

2

�
�
�
1 + �

2

�
(4�)4�

�
2� �

2

�
� (1 + �)

(103)

Tb �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�(2lq + q2)2

(l2 �m2)3((l � k)2 �m2)k2
= �

4q2���
�
�
2

�
� (�) �

�
1� �

2

�
�
�
1 + �

2

�
n(4�)4�

�
2� �

2

�
� (1 + �)

+
q2
�
4
n
+ q2

m2

�
���

�
�
2

�
� (1 + �) �

�
1� �

2

�
�
�
2 + �

2

�
2(4�)4�

�
2� �

2

�
� (2 + �)

(104)

In passing we note that

T2235 = �
1

q2
Ta (105)

The last term Tc has only a simple pole in � which is, however, buried in the Feynman parameter integration.

This is a quite common problem that arises because of the �-factors in Eqs. 82 and 83. We take \u" to be that

Feynman parameter and for our purposes it su�ces to write the following identity:

Z 1

0

du(1� u)
�
2
�1f(u) =

2

�
f(1) +

Z 1

0

du(1� u)
�
2
�1 (f(u)� f(1)) (106)

The respective terms for Tc � �
R

dnk
(2�)n

R
dnl

(2�)n
�2�(2lq+q2)3

(l2�m2)3((l+q)2�m2)((l�k)2�m2)k2
are:
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f(u) �

Z 1

0

dx

Z 1

0

dv
q2��u3v2

2(4�)4x
�
2 e�4+ �

2

0
@ q4

m4

1� 8
u3(1�v)3e�3 + 12

u2(1�v)2e�2 � 6
u(1�v)e�e�2+�

�(2 + �)

�
q2

m2

6� 12
u(1�v)e�e�1+�

�(1 + �)

1
A (107)

and thus

f(1) �

Z 1

0

dx

Z 1

0

dv
q2��v2

2(4�)4x
�
2

0
B@ q4

m4

1� 8(1� v)3 + 12(1 � v)2 � 6(1 � v)�
� q2

m2 v(1� v) + 1
�2+� �(2 + �)

�
q2

m2

6� 12(1 � v)�
�

q2

m2 v(1� v) + 1
�1+��(1 + �)

1
CA (108)

Although this result for T135 is correct, it is numerically unstable in the massless limit because of terms of

order q2

m2 which have to cancel as m2 �! 0. A way out of this calamity as well as a very good check on the

correctness of our result for this integral is to use the propagator identity 101 for 1
(k+q)2

instead after shifting the

loop momenta. This yields

T135 = T235 � q2T2345� <<
2kq

[2][3][4][5]
>> (109)

The result for T2345 is given below and the last term in the equation can easily be found to be 2q2
u(1�v)

�

times the expressions for the scalar integral. This term just stems from the momentum shift k �! k0 � q
u(1�v)

�
.

Numerically, away from the singularity at m = 0, both solutions agree.

In similar ways we treat the following more complicated integrals, always calling \u" the Feynman parameter

that contains an additional divergence if f(u)-terms are quoted. The desired value for the respective integrals are

understood to follow from an expansion in � of Eq. 106. For

T2345 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�

(l2 �m2)((l � k)2 �m2)(k + q)2k2
(110)

we get

f(u) � �

Z 1

0

dx

Z 1

0

dv
���(�)u

(4�)4�2+ �
2��

; f(1) � �

Z 1

0

dv
���(�)

(4�)4(� q2

m2 v(1 � v))�
(111)

Similarly,
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T1235 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�

((l + q)2 �m2)(l2 �m2)((l � k)2 �m2)k2
(112)

with

f(u) � �

Z 1

0

dx

Z 1

0

dv
���(�)u

(4�)4x
�
2 e�2+ �

2 e��
; f(1) � �

Z 1

0

dx

Z 1

0

dv
���(�)

(4�)4x
�
2 (� q2

m2 v(1� v) + 1)�
(113)

For

T12035 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�

((l + q)2 �m2)l2((l � k)2 �m2)k2
(114)

we �nd

f(u) � �

Z 1

0

dx

Z 1

0

dv
���(�)u

(4�)4x
�
2 e�2+ �

2
f�0� ; f(1) � �

Z 1

0

dx

Z 1

0

dv
���(�)

(4�)4x
�
2 (� q2

m2 v(1� v) + 1� v)�
(115)

The infra-red �nite integral

I2455 � �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�(k2 + 2kq)

(l2 �m2)(k + q)2k4
(116)

is a product of two one loop functions which are given by

A2 � �
im2�

�
2�
�
�1 + �

2

�
(4�)2

(117)

I455 � �

Z 1

0

du
i�

�
2

(4�)2

 
n

2(u(1 � u))
�
2

�

�
�

2

�
�
(1� u)(1 + u)

(u(1� u))1+
�
2

�

�
1 +

�

2

�!
(118)

and in dimensional regularization we have I2455 = A2I455 = q2A2C455, where A&C denote the respective one

loop scalar integrals. For the infra-red �nite combination

I23455 � q2T23455 � T2355 = �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�(k2 + 2kq)

(l2 �m2)((l � k)2 �m2)(k + q)2k4
(119)

we get two \f(u)" terms, distinguished below by capital (containing double pole terms) and lower case (with

only simple poles) letters:

F (u) �

Z 1

0

dx

Z 1

0

dv
n���(�)u2v

2(4�)4�3+ �
2��

; F (1) �

Z 1

0

dv
n���(�)v

2(4�)4(� q2

m2 v(1 � v))�
(120)
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f(u) �

Z 1

0

dx

Z 1

0

dvA
���(1 + �)u2v

(4�)4�3+ �
2�1+�

; f(1) � �

Z 1

0

dv
(1 + v)���(1 + �)

(4�)4(� q2

m2 v(1� v))�
(121)

A � �
q2

m2

 
u2(1� v)2

�2
� 2

u(1� v)

�

!
(122)

For

T12235 �

Z
dnk

(2�)n

Z
dnl

(2�)n
�2�

((l + q)2 �m2)(l2 �m2)2((l � k)2 �m2)k2
(123)

we �nd

f(u) �

Z 1

0

dx

Z 1

0

dv
���(1 + �)u2v

(4�)4x
�
2 e�3+ �

2 e�1+�
; f(1) �

Z 1

0

dx

Z 1

0

dv
���(1 + �)v

(4�)4x
�
2 (� q2

m2 v(1� v) + 1)1+�
(124)

The completely �nite integral T12345 �
R

dnk
(2�)n

R
dnl

(2�)n
�2�

(l2�m2)((l+q)2�m2)((l�k)2�m2)(k+q)2k2
is given by:

T12345 =

Z 1

0

dx

Z 1

0

dy

Z 1

0

du

Z 1

0

dv
���(1 + �)

m2(4�)4
xu(1� u)

�
2

�3+ �
2

�
q2

m2

�
�2

�2
� �

�

�
+ e�

�

�1+� (125)

� can of course be set to zero in the above expression and we use the following abbreviations:

� � u(1� v) + (1� u)(1� y)x(1� x) (126)

� � u(1� v) + (1� u)(x(1 � y)� x2(1� y)2) (127)

For the \Abelian" gluon self energy graphMgse4 we need another completely �nite integral with �ve denomi-

nators, namely TA
12345 �

R
dnk
(2�)n

R
dnl

(2�)n
�2�

(l2�m2)((l+q)2�m2)(l�k)2((k+q)2�m2)(k2�m2)
. Here we �nd

TA
12345 =

Z 1

0

dx

Z 1

0

dy

Z 1

0

du

Z 1

0

dv
���(1 + �)

m2(4�)4
xu(1� u)

�
2

�3+ �
2

�
q2

m2

�
�2

�2
�

�
�

�
+

x(1�u)
�

�1+� (128)

Again, we can savely set � to zero like above. The following integrals are needed for the diagrams where we

integrated out the fermion loop �rst, with �(k2;m2) taken from Eq. 26:

Z
dnk

(2�)n
���(k2;m2)

k2
=

Z 1

0

dx

Z 1

0

du
m2� (�1 + �)x(1� x)(1� u)�

�
2 ��

32�4�2� �
2

(129)

Z
dnk

(2�)n
���(k2;m2)

(k + q)2
=

Z 1

0

dx

Z 1

0

du
m2� (�1 + �)x(1� x)(1� u)�

�
2 ��

�
� q2

m2

ux(1�x)
�

+ 1
�1��

32�4�2� �
2

(130)

Z
dnk

(2�)n
2kq���(k2;m2)

(k + q)2
=

Z 1

0

dx

Z 1

0

du
�q2m2� (�1 + �)x(1� x)u(1� u)�

�
2 ��

�
�

q2

m2

ux(1�x)
�

+ 1
�1��

16�4�3� �
2

(131)
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Below we split again into f(u) and f(1) terms. For

Z
dnk

(2�)n
���(k2;m2)

(k + q)2k2
(132)

we �nd:

f(u) = �

Z 1

0

dx

Z 1

0

dv
� (�) ux(1� x)��

32�4�2+ �
2��

(133)

f(1) = �

Z 1

0

dx

Z 1

0

dv
� (�) x(1� x)��

32�4
�
�q2v(1�v)

m2

�� (134)

For

Z
dnk

(2�)n
(k2 + 2kq)���(k2;m2)

(k + q)2k4
(135)

there are two contributions corresponding to terms with double poles (F ) and only single poles (f):

F (u) � �

Z 1

0

dx

Z 1

0

dv
� (�)nu2vx(1� x)��

64�4�3+ �
2��

(136)

F (1) = �

Z 1

0

dx

Z 1

0

dv
� (�)nvx(1� x)��

64�4
�
�q2v(1�v)

m2

�� (137)

f(u) �

Z 1

0

dx

Z 1

0

dv
q2� (1 + �) u2vx(1 � x)��

�
u2(1�v)2

�2
� 2

u(1�v)
�

�
32m2�4�3+ �

2�1+�
(138)

f(1) =

Z 1

0

dx

Z 1

0

dv
� (1 + �) (1 + v)x(1� x)��

32�4
�
�q2v(1�v)

m2

�� (139)

B.1 Two Loop Integrals with Gluon Mass

In this appendix we give details about the evaluation of the IR-divergent integrals of section 3.1. The contributions

containing heavy quark propagator terms were regulated using a gluon mass regulator and lead to the following

general integral over k0:

Ik0 �

Z 1
�1

dk0

2�

1

(k0 + i")2(�k20 + k2 +M2 � i")�
(140)

The general power in integral 140 leads to a branch cut along the real axis for all those values for which

k20 � k2 +M2. Including the i"-prescription as indicated in 140, we choose a path in the complex plane around

the branch cut in the upper half of the plane and �nd the following solution:
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Ik0 = �2 i sin (��)

Z 1
p
k2+M2

dk0

2�

1

k20j � k20 + k2 +M2j�

= �2 i sin (��)
� (1� �) �

�
1
2
+ �

�
2�

3

2 (k2 +M2)
1

2
+�

(141)

The remaining Euclidean integral can then be performed easily. In the case of the crossed ladder diagram

Mcl we �nd in this manner again a divergence which is hidden in Feynman parameters. This can be handled by

splitting into f(u) and f(1) terms as above. For

Z
dnk

(2�)n
���(k2;m2)

(k0 + i")2(k2 � �2 + i")((k + q)2 � �2 + i")
(142)

we �nd

f(u) = 16 sin

�
�

2
�

�
�
�
�1� �

2

�
� (1 + �) �

�
2 + �

2

�
��

(4�)4� m2

Z 1

0

dx

Z 1

0

dv
x(1� x) u

�2+ �
2

�
�+ �2

m2u
�1+� (143)

f(1) = 16 sin

�
�

2
�

�
�
�
�1� �

2

�
� (1 + �) �

�
2 + �

2

�
��

(4�)4� m2

Z 1

0

dx

Z 1

0

dv
x(1� x)�

�q2

m2 v(1 � v) + �2

m2

�1+� (144)

The vertex correction graphMvc3 and the integral occurring in the onle-loop verex correction termMolvc can

be calculated analogously. Here we have

Z
dnk

(2�)n
���(k2;m2)

(k0 + i")2(k2 � �2 + i")
(145)

with the corresponding solutions

f(u) = �16 sin

�
�

2
�

�
�
�
� �

2

�
� (�) �

�
1 + �

2

�
��

(4�)4� q2

Z 1

0

dx
x(1� x)

�1+ �
2

�
1� u+ �2

m2u
�� (146)

f(1) = �
8

3
sin

�
�

2
�

�
�
�
� �

2

�
� (�) �

�
1 + �

2

�
��

(4�)4� q2

 
m2

�2

!�

(147)
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