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1. Introduction

In the past few years, large classes of interacting superconformal �eld theories with

between 4 and 16 supercharges have been discovered in three, four, �ve and six space-time

dimensions. Most of these theories are not described by weakly-coupled Lagrangians, and

there is not even a known Lagrangian which ows to them in many cases. Therefore, we

require a di�erent approach to analyze them. This is an interesting abstract problem in

itself, and it is rendered more urgent by the many applications these theories have in M

theory. In the matrix formulation of M theory [1] these theories are relevant for compacti-

�cations on four dimensional spaces [2-4]. These theories also arise in the study of certain

black holes in string theory [5], and it has been suggested that an improved understanding

of some of these theories may lead to progress in solving large N nonsupersymmetric QCD

[6]. The �xed points with 8 or fewer supercharges are important in the problem of unifying

M-theory vacua, since they are crucial in connecting vacua with di�erent spectra of chiral

�elds [7-10].

Fixed point theories with (2; 0) supersymmetry in six dimensions [11,12] were recently

studied in a matrix model formulation in [13]. The purpose of this paper is to move

on to theories with (1; 0) supersymmetry in six dimensions. We will formulate a matrix

description of these theories and follow the chirality-changing phase transitions of [7,8] in

this language. We begin in section 2 with the de�nition of the theory. In section 3 we

analyze deformations away from the �xed point, where we can see the low-energy spectrum

in the spacetime theory, and observe the chirality-changing phase transition. We discuss

various interesting issues, which we are not able to fully resolve, concerning the matrix

description of these deformations. Section 4 contains the 1 + 1 dimensional generalization

of the quantum mechanical theory, which corresponds to a six dimensional \little string"

theory in spacetime.

As this paper was being completed, similar results were independently obtained in

[14].

2. The Quantum Mechanical De�nition of the Fixed Point Theory

We will study here the simplest example of a �xed point with (1; 0) supersymmetry,

which is the low energy theory of a small instanton in the E8 �E8 heterotic string. In M

theory this is described by a �vebrane at the end of the world ninebrane [7,8]. This theory

has a Coulomb branch of the form IR=ZZ2 (times a decoupled IR4 factor), on which the low

energy spectrum consists of a tensor multiplet and a hypermultiplet. The scalars in these

1



multiplets label the transverse position of the �vebrane in M theory. The scalar in the ten-

sor multiplet parametrizes the distance between the �vebrane and the ninebrane, and when

its expectation value vanishes the low-energy theory is superconformal. Another branch

coming out of the superconformal point is the Higgs branch, corresponding to enlarging

the size of the instanton. On this branch, the low-energy theory has 30 hypermultiplets,

which are in the 1
2
(56) + 1 + 1 representation of the E7 symmetry left unbroken by the

instanton. We would like to propose an in�nite momentum frame quantum mechanical

description of this theory, which reproduces this moduli space and low-energy spectrum.

In particular, we will consider in this framework the chirality-changing phase transitions

of [7,8]. There is an obvious generalization of this theory to k coincident �vebranes (or

small instantons), which will also be discussed.

The arguments used in [13] for the construction of (2; 0) theories in six dimensions can

also be used for the construction of theories with (1; 0) supersymmetry. To get a light-cone

description of this system, we start with M theory on S1=ZZ2 [15] with k �vebranes, and

compactify a longitudinal direction (of the �vebranes) on a circle of radius R. The theory

then becomes the type IIA string theory on S1=ZZ2 (a.k.a. type I 0), with 8 D8-branes at

each orientifold �xed point [16] and k D4-branes.

In the next subsection we will discuss the full matrix description of this theory. We will

introduce the degrees of freedom of the matrix description of this system, their interactions,

and their representations under the various symmetries. In x2.2 we will consider the limit

Mp ! 1 in spacetime, and determine what remains of the degrees of freedom in the

matrix description in this limit. This surviving quantum mechanics is our formulation of

the (1; 0) SCFT.

2.1. Heterotic Fivebranes in Matrix Theory

The above type I 0 system is equivalent to the E8 � E8 heterotic theory on a circle,

with a Wilson line AE breaking the gauge symmetry to SO(16)�SO(16) (and k �vebranes

wrapped around the circle). Let the radius of this circle in the E8�E8 theory be denoted

rE . This vacuum is related by T-duality [17] to the SO(32) heterotic string on a circle of

radius rS = 1=4rE , with a Wilson line AS breaking the gauge group to SO(16)� SO(16).

The winding number nS of the SO(32) theory maps to the D0-brane numberN in the type

I0 description. The SO(17; 1) T-duality transformation maps this to a linear combination

of momentum, winding, and E8 �E8 lattice quantum numbers in the E8 �E8 theory:

N = nS $ 2mE �A2
EnE � 2AE � PE; (2:1)
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where mE; nE and PE are the momentum, winding, and E8�E8 lattice quantum numbers

in the E8 �E8 theory.

For the in�nite momentum frame description we are interested in states with large

momentum mE around the circle in the E8 � E8 theory. From (2.1) we see that this

corresponds to large D0-brane number N = nS , though the two quantum numbers are not

exactly the same.

Let us now describe the quantum mechanics of the D0-branes in this theory, near

one of the orientifolds. This quantum mechanics without the D4-branes was studied in

[18-20]. It is an SO(N) gauge theory with 8 supersymmetries, containing 16 fermions in

the fundamental representation which arise from the 0-8 strings. Adding the D4-branes

(longitudinal �vebranes [21]) is done simply by adding the 0-4 strings. These are k \hyper-

multiplets" in the fundamental representation, and there is an Sp(k)(� USp(2k)) global

symmetry corresponding to these. For N = 1 this theory was described in [22] (see also

[23]). Altogether we are left with four linearly realized supersymmetries, which is the

correct number for a lightcone description of a spacetime theory with 8 supersymmetries.

The global symmetry of the quantum mechanics is

SO(4)k � SO(4)? � SO(16) � Sp(k); (2:2)

where SO(4)? corresponds to the rotation symmetry transverse to the 4-branes (but inside

the 8-branes), SO(4)k corresponds to the rotations inside the 4-branes, SO(16) is the

gauge symmetry on the 8-branes and Sp(k) is the gauge symmetry of the 4-branes. The

4 supersymmetry generators transform in the f(2;1) (2;1) 1 1g representation of this

group, so that two of its SU(2) factors are in fact R-symmetries. The representations of

the �elds under the SO(N) gauge symmetry and the global symmetries are given in the

following table :

SO(N) SO(4)k SO(4)? SO(16) Sp(k)
0� 0 states : A0;X9 N(N� 1)=2 (1;1) (1;1) 1 1

�L N(N� 1)=2 (2;1) (2;1) 1 1

�L N(N� 1)=2 (1;2) (1;2) 1 1

Xk N(N+ 1)=2 (2;2) (1;1) 1 1

�R N(N+ 1)=2 (1;2) (2;1) 1 1

X? N(N+ 1)=2 (1;1) (2;2) 1 1

�R N(N+ 1)=2 (2;1) (1;2) 1 1

0� 4 states : v N (2;1) (1;1) 1 2k

 R N (1;1) (2;1) 1 2k

 L N (1;1) (1;2) 1 2k

0� 8 states : �L N (1;1) (1;1) 16 1:

(2:3)
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Here Xk gives the positions of the zero branes along the fourbranes,X? gives the positions

perpendicular to the fourbranes, and X9 gives the positions in the S1=ZZ2 direction. In

addition we have scalars v in the fundamental representation. The fermions (which are all

real) are denoted with subscripts R or L, according to their chirality in the corresponding

1 + 1 dimensional theory of 1-branes, �vebranes and ninebranes, which is related to the

quantum mechanics we describe by a T duality in the x9 direction. That theory has (0; 4)

supersymmetry, and we will discuss it further in section 4. Supersymmetry pairs the right

moving fermions with the bosons appearing directly above them in the table, and �L with

the gauge �eld.

The moduli of the spacetime theory are parameters in the quantum mechanics. These

moduli are the scalars in the theory of the 4-branes and the 8-branes, which are in the

following representations :

SO(N) SO(4)k SO(4)? SO(16) Sp(k)

4� 4 states : X
(4)

? 1 (1;1) (2;2) 1 2k(2k� 1)=2

X
(4)

9 1 (1;1) (1;1) 1 2k(2k+ 1)=2
4� 8 states : H 1 (1;1) (2;1) 16 2k

8� 8 states : X
(8)

9 1 (1;1) (1;1) 120 1:

(2:4)

Most of the interactions of this system may be easily derived from those of the 0-

brane/4-brane system, which is the dimensional reduction of a 6D (1; 0) theory, and from

those of the 0-brane/8-brane system [18-20]. Among the terms appearing in the Lagrangian

are terms of the following (schematic) form1 :

�L(X9 �X
(8)

9 )�L +  L(X9 �X
(4)

9 ) L +  R(X9 �X
(4)

9 ) R + v2(X9 �X
(4)

9 )2+

 L(X? �X
(4)

? ) R + v2(X? �X
(4)

? )2 + ([Xk;Xk] + v2)2 + [X?;X?]
2 + v�R L + v�L R+

�L[Xk; �R] + �L[Xk; �R] + �L[X?; �R] + �L[X?; �R] + [X?;Xk]
2 + (Hv)2 +H R�L:

(2:5)

The singlet components of the fermions �R are completely decoupled, and their shifts gen-

erate four non-linearly realized supersymmetries, completing the 8 spacetime supersymme-

tries. Quantization of the zero modes of these �elds will multiply the representation of each

state we get by f(1;2) (1;1)g+f(1;1) (2;1)g (which is the content of a half-hypermultiplet

in spacetime).

In the quantum mechanics describing the superconformal point in space-time, all the

parameters (2.4) vanish. Then, the quantum mechanical theory has a Coulomb branch

1 This formula does not include the powers of the gauge coupling gQM , which may be put in

on dimensional grounds.
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(in the usual sense of a Born-Oppenheimer approximation) in which X? 6= 0 and v = 0.

In the matrix model interpretation, graviton states live here, as well as E8 gauge bosons

localized near X9 = 0 [19,20]. In addition, there is a Higgs branch in which X? = 0. It is

parametrized by expectation values of Xk and v, and has (real) dimension

dimMH = 4Nk + 4
N(N + 1)

2
� 4

N(N � 1)

2
= 4N(k + 1): (2:6)

2.2. Decoupling Gravity: Formulation of the (1; 0) SCFT

As in the case of the (2; 0) theories discussed in [13], the gauge coupling in the quantum

mechanics is related to the eleven dimensional Planck mass Mp and the compacti�cation

radius R by g2QM � M6
pR

3. Thus, taking Mp !1 corresponds to the gQM !1 (or IR)

limit of the quantum mechanics, where we expect the conformal theory in spacetime to

decouple from gravity, as well as from the E8 gauge bosons whose gauge coupling goes to

zero in this limit.

As in [13], the presence of the Higgs branch (with no apparent spacetime interpreta-

tion) is what signals the presence of the nontrivial conformal theory in spacetime. In the

limit gQM !1, some degrees of freedom become in�nitely massive on the interior of the

Higgs branch. In other words, the Coulomb and Higgs branches of the quantum mechanics

decouple. Integrating out the 0-4 states leads to an in�nite tube on the Coulomb branch,

so the origin is in�nitely far away on that branch (where the gravitons and the E8 gauge

bosons live). The degrees of freedom from (2.3) that are lifted in the interior of the Higgs

branch (v 6= 0, Xk 6= 0) are :

A0;X9; �L; 2N(N � 1) of the �elds v and Xk (and their superpartners  R; �R);

X?; �R; 2N(N + 1) of the �elds �L and  L:
(2:7)

We are left with :

4N(k + 1) of the �elds v and Xk(and their superpartners  R; �R);

�L; 4N(k � 1) of the �elds �L and  L:
(2:8)

It is the gQM !1 theory of these degrees of freedom that constitutes the matrix formula-

tion of the spacetime SCFT. Note that, unlike in [13], even for k = 1 there is a non-trivial

Higgs branch here. This corresponds to the non-trivial SCFT in spacetime which exists

even in this case.

The classical Higgs branch of the quantum mechanics is the moduli space of Sp(k)

instantons [24]. There is no non-renormalization theorem for the moduli space in this case.
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In the quantum mechanics there could be loop corrections (say, involving the �Ls) to the

metric of this space. However, there is some �xed point governing the Higgs branch in the

infrared (gQM ! 1) limit. We conjecture that, for N ! 1, it correctly describes the

(1; 0) superconformal theories in the in�nite momentum frame. In fact, it follows from the

results of [25] that the corresponding 1 + 1 dimensional (0; 4) sigma model, with target

space MH and with the additional left-moving fermion multiplets, is �nite. This is not

to say that the infrared physics will necessarily be transparent in terms of the degrees

of freedom (2.8). The IR theory may have complicated interactions, arising for instance,

from the gauge constraint (the A0 equation of motion) in the original gauge theory we

start from [20].

Note that since N here is not the same as the spacetime momentummE, the �nite N

theory does not directly give us a discrete light-cone description of the (1; 0) superconformal

theories, as suggested in [26]. Presumably, as in [27], the �nite N theory is a discrete light-

cone quantization of these theories compacti�ed on a light-like circle with a Wilson loop

breaking the E8 symmetry to SO(16). In the quantummechanics only an SO(16) subgroup

of the E8 global symmetry of the (1; 0) superconformal theory in spacetime is visible. As

in [19], the full E8 representations get �lled out as the type I0 coupling goes to in�nity and

states of energy 1=�I0 come down.

3. Low Energy States Away from the Fixed Point

As discussed in the introduction, the six dimensional (1; 0) theories play a very inter-

esting role in giving chirality-changing phase transitions. Within Lagrangian �eld theory

there is no way to lift chiral matter, so it is interesting to consider how this occurs in

our formulation. Let us perturb the spacetime theory away from the conformal point,

going into its Higgs or Coulomb branches. Along these branches the low energy theory in

spacetime is free, and we should be able to �nd the correct low energy spectrum in our

quantum mechanical description. We will see how the quantum numbers for these states

arise in this section.

It is not clear to us that the deformed theory can be described using only the degrees

of freedom (2.8) that were involved in formulating the critical theory. In principle, there

are two ways to analyze the theory away from the conformal point. We could either

perform the perturbation in the full gauge theory and then take the gQM ! 1 limit

(while keeping the perturbation parameters �nite), or work directly in the theory which

describes the Higgs branch of the quantum mechanics in the gQM !1 limit, and analyze

the perturbations in that model. As we will discuss in some detail below, we have di�culty

�nding the correct spacetime spectrum using the second approach.
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We interpret this di�culty as resulting from the fact that this approach does not

include information about states localized at the singularities at the boundaries of the

Higgs branch. These quantum-mechanical variables, though decoupled from the interior of

the Higgs branch at the conformal point, may still be important after we deform the theory

away from the conformal point. Because of the tube metric, the singularities of the Higgs

branch still decouple from the graviton/gauge boson states which live on the Coulomb

branch. After turning on the deformations (2.4), the quantum mechanical Higgs branch is

(generically) lifted, and the wave functions of all states are concentrated near the origin

of the Higgs branch. Thus, it is not a surprise that the degrees of freedom related to the

singularities in the Higgs branch are required to describe the states after the deformation.

It would be interesting to understand better the role of the singularities at the boundaries

of the Higgs branch, both in this theory and in the (2; 0) theories described in [13].

3.1. The Coulomb Branch

First, let us discuss the Coulomb branch of the spacetime theory (this is not to be

confused with the Coulomb branch of the quantum mechanics). On this branch the �ve-

branes are (generically) all separated from each other and from the ninebrane. There is

a tensor multiplet and a hypermultiplet (forming a tensor multiplet of (2; 0) supersym-

metry) living on each �vebrane. For simplicity, let us focus on the case k = 1 (the other

cases generically give k copies of this). Moving into the Coulomb branch away from the

critical point is done by turning on X
(4)

9 , and we expect to �nd the �vebrane states lo-

calized in the moduli space near X9 = X
(4)

9 (speci�cally, when half of the eigenvalues

of X9 are equal to one of the eigenvalues of X
(4)

9 ). In this region the 0-8 strings are

all massive and the SO(N) gauge theory is broken by the VEV of X9 to U(N=2) (here

we take N to be even). In the IR, the theory reduces exactly to the quantum mechan-

ics of D0-branes and D4-branes (with 8 supersymmetries) discussed in [13], which is a

supersymmetric quantum mechanics on the moduli space of U(k) instantons. In both

cases the spacetime spectrum should include a tensor multiplet and a hypermultiplet for

k = 1 2. Thus, we should �nd 16 ground states of this theory, which should be in the

f(1;3) (1;1)g+ f(1;1) (1;1)g+ f(1;1) (2;2)g+ f(1;2) (1;2)g+ f(1;2) (2;1)g represen-

tation of the SO(4)k �SO(4)? global symmetry. This representation arises by quantizing

the fermion zero modes of the U(N=2)-singlet components of the fermions �L and �R

appearing in table (2.3).

2 In the (2; 0) case it was not clear if a k = 1 theory which was decoupled from the Coulomb

branch existed or not [28], but here we are reaching this theory by a perturbation from a theory

that was already decoupled from gravity, so there is no problem.
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Note that in formulating the critical theory for k = 1, we discarded �L because it

became in�nitely massive on the interior of the Higgs branch (2.7). But, as just noted,

quantizing its zero modes gives the correct degeneracy and quantum numbers to describe

the tensor multiplet on the spacetime Coulomb branch. This is the �rst di�culty we �nd

in attempting to describe the deformations away from the critical theory using only the

degrees of freedom involved in formulating the �xed point itself.

In general, there is a correspondence between ground states of the supersymmetric

quantummechanics on a spaceX and cohomology classes ofX. Thus, we expect the modes

of the tensor multiplet, which should exist for any integer value of momentum around the

circle in the E8�E8 theory (i.e. for all even values of N in the original SO(N) theory), to

correspond to cohomology classes of the moduli space of our theory. In the case k = 1 and

for non-zero X9, this space is simply the moduli spaceM
eN
(U(1)) of eN = N=2 instantons

in a U(1) gauge group. Since these instantons are necessarily all of zero size, this space is

just

M
eN
(U(1)) = IR4eN=S

eN
: (3:1)

For eN = 1, we have simply a 0-brane/4-brane system, and the required state is just

the bound state of [29]. Indeed, this state becomes completely localized on the 4-brane in

the Mp !1 limit.

For higher values of eN , it is not apriori clear which cohomology should be used,

since the states are all associated with the (orbifold) singularities of the moduli space.

It is natural to conjecture that the quantum mechanical ground states are given by the

orbifold cohomology of this space [30] (this is more justi�ed in the 1+1 dimensional theory

described in section 4, but our theory is just a dimensional reduction of that theory). This

gives a state for every partition of eN [31], in agreement with our expectation of �nding

a single state for any integer value of momentum of the tensor multiplet. Quantizing the

zero modes of �L and �R then gives this state the Lorentz quantum numbers of a tensor

multiplet and a hypermultiplet in the (1; 0) spacetime theory. These states are examples

of states living at the singularities of the Higgs branch, as discussed above.

3.2. The Higgs Branch

The other branch of the spacetime theory is the Higgs branch, in which the �vebranes

in spacetime turn into large E8 instantons. We are only interested in the regime in which

a quantum �eld theory description, decoupled from gravity, remains valid. Let us de-

note by eH the canonically normalized (dimension 2) scalar �eld in spacetime whose VEV

parameterizes the Higgs branch. The �eld theory regime is

eH <<M2
p : (3:2)
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On dimensional grounds, eH is related to the scale size � of the instanton/�vebrane by

eH =M3
p�: (3:3)

Thus, the �eld theory regime is

� << lp; (3:4)

where the �vebrane is still thin in Planck units. In the regime � > lp, the �vebrane becomes

thick, gravity fails to decouple, and the matrix description necessarily involves the degrees

of freedom (2.7) as well as (2.8). In the �eld theory regime (3.4), as discussed above, one

might hope to describe the theory using only the degrees of freedom (2.8). However, as

with the spacetime Coulomb branch, we will encounter di�culties in realizing this.

We will analyze here only the case where the instantons are all embedded in a single

SU(2). In this case, the E8 gauge symmetry in spacetime is broken to E7, and its SO(16)

subgroup (which appears explicitly in the quantum mechanics) is broken to SO(12) �

SU(2). In the quantum mechanics, we go into this branch by turning on the parameters

corresponding to the 4-8 strings H and to the 4-4 strings X
(4)

? . Note that turning on only

the 4-8 strings when the instantons are all in the same SU(2) still leaves all but one of

the �vebranes/instantons at zero-size, so we still have a non-trivial conformal theory for

k > 1. In the quantum mechanics we see that not all of the Higgs branch is lifted in that

case. In contrast, from (2.5) we can easily see that turning on both H and X
(4)

? gives a

mass to all the �elds v and  R, and to 4k of the �elds  L and �L. The �rst 12 components

of �L (in the fundamental representation of the unbroken SO(12) and of SO(N)) remain

massless, as do 4 combinations of �L and  L (again, in the fundamental of SO(N)).

Naively, when we turn on H the �elds v and  R become massive, and there is no

longer an in�nite tube in the Coulomb branch of the gauge theory, so gravity does not

seem to decouple from our theory. However, as discussed above, we should be careful in

how we normalize H. In spacetime, we want eH to remain �nite as Mp goes to in�nity.

This corresponds to having a �nite H in the theory describing the Higgs branch in the

gQM !1 limit. In this limit, even for �niteH there is still an in�nite tube in the Coulomb

branch, and gravity still decouples from the Higgs branch of the 6D SCFT.

For simplicity, we will analyze here only the case k = 1, where the combinations that

remain massless are exactly the 4 �elds  L
3. The hypermultiplet H which obtains a VEV

on the Higgs branch is (using (2.4)) charged under SU(2)R�SO(16)�Sp(1), where SU(2)R

3 Since to get a free low-energy theory in spacetime for k > 1 we are forced to turn on 4-4

strings, the general case decomposes in the IR into k copies of this case (living at di�erent values

of X?, corresponding to the eigenvalues of X
(4)
?

).
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is the �rst SU(2) factor in SO(4)? (which is identi�ed with the SU(2)R symmetry of the

spacetime theory). Giving it a VEV breaks this symmetry to SU(2)R0 �SO(12)�SU(2),

where SU(2)R0 is a subgroup of SO(16) and SU(2)R, and the last SU(2) is a subgroup of

SO(16) and Sp(1) (but note that away from the small instanton point this is a perturbative

gauge symmetry from the heterotic point of view). The fermions in the fundamental

representation of SO(N) which remain massless are the �L, in the (1;12;1) representation,

and  L, in the (1;1;2) representation (and in the 2 of the other SU(2) factor in SO(4)?).

Since the v �elds are all massive, the Higgs branch of the theory after the perturbation

is given simply by the space of Xks, which is IR4N=SN . What states do we expect to

�nd in this case? The massless states of the spacetime theory on the Higgs branch are

30 hypermultiplets. One of these hypermultiplets, which corresponds to the transverse

position of the instanton / �vebrane (and is free everywhere in the moduli space) is in the

f(1;1) (2;2)g + f(1;2) (1;2)g representation of the SO(4)k � SO(4)? global symmetry

(where SO(4)? now includes the new SU(2)R0 group instead of the old SU(2)R). The other

hypermultiplets are all in the 2(f(1;1) (2;1)g+ f(1;2) (1;1)g) representation, and in the
1
2
56+ 1 representation of the unbroken E7 gauge group in spacetime. This representation

decomposes into a 1
2
(32;1) + 1

2
(12;2) + (1;1) of the SO(12) � SU(2) that we see in the

quantum mechanics. According to (2.1), the momentum modes of the �rst representation

should appear for odd values of N , while all the others should appear for even values of

N . Of course, this does not mean that the momentum quantum number in the E8 � E8

string theory depends on the representation: from (2.1) one sees that for N = nS odd, PE

must be a spinorial representation of SO(16)� SO(16) but mE can be odd or even.

As in the 0-8 system [18-20], we expect the structure of the ground states for odd

(even) values of N to be the same as for N = 1 (N = 2), with the only change being in the

structure of the wave functions for the 0-8 bound states. T duality and S duality relate

our system to a heterotic SO(32) string theory with some non-trivial instanton bundle,

and there we can show that the appropriate states exist (the calculation is essentially as

in [32], and the presence of torsion does not change the results in this case [33]).

Let us analyze �rst the case N = 1. In this case, the moduli space is just IR4, so we

have only the ground state. The 12 remaining fermions �L are completely free in this case

(since the gauge symmetry is just O(1) � ZZ2), so they have zero modes. On the other

hand, as explained in [22], the  Ls are sections of the SU(2) instanton bundle that lives in

the X? directions. In this background they do not contribute any additional degeneracy.

Quantization of the �L zero modes gives states in the 32+320 representation of the SO(12)

group. As in [19,20], imposing a ZZ2 � O(1) gauge constraint removes half of these states

and leaves us just with a 32. Adding the �R zero modes turns each of these states into
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a half-hypermultiplet in spacetime, so we get exactly the expected spectrum of states for

this value of N .

In fact, for N = 1 we can �nd the right states also if we work only with the degrees of

freedom (2.8) involved in the critical theory. Then v and its superpartners, as well as four

of the �elds �L, are lifted by H, and quantizing the zero modes of the remaining fermions

�L and �R provides us with the required 1
2
32 hypermultiplets (after taking into account

the ZZ2 constraint).

For N = 2, the situation is more complicated (as it was also in the 0-8 case), since the

interactions between the �elds play an important role in constructing the states. To realize

these states in our formulation, we turn the operators (including �L and  L) into creation

and annihilation operators (as in [20]). We expect the ground states in the quantum

mechanics to be the same as those in the corresponding 1 + 1 dimensional sigma model,

where a level-matching constraint will force us to have two �L or  L oscillators in the

sector where they are anti-periodic (and no states will arise from other sectors). In the

quantum mechanics, there will be a gauge constraint (analogous to the level-matching

constraint of the heterotic string) which will force the total charge of a state under the

SO(2) gauge symmetry to be equal to one [20]. We expect to �nd ground states of the

form �L Lj0i (where � and  are now creation operators), multiplied by an appropriate

wave function which turns this state into an SO(4)k�SO(4)?-singlet. These states will be

in the (12;2) representation of the SO(12)�SU(2) global symmetry corresponding to the

remaining spacetime gauge symmetry, and again the �R zero modes will turn them into

half-hypermultiplets. The 29th and 30th hypermultiplets will arise from states involving

two  Ls (contracted to form a singlet of the SU(2) gauge symmetry), again with an

appropriate wave function for the rest of the �elds. It would be interesting to perform the

Born-Oppenheimer calculations explicitly, and see that exactly states of this form arise.

The IR theory of the degrees of freedom (2.8) is complicated in this case, and we have

not been able to �nd these states directly by deforming that theory. Presumably, this is

again a result of the theory at the singularities of the Higgs branch mixing with the theory

describing the interior of the Higgs branch as we deform away from the conformal point.

4. String Theories for string Theories

The Higgs branch of the quantum mechanics formulated above is expected to de-

scribe the (1; 0) superconformal theory in spacetime. In [13], a similar quantum mechanics

described the (2; 0) superconformal theories in spacetime. The corresponding 1 + 1 di-

mensional theory (which gives the quantum mechanics upon dimensional reduction) was

11



conjectured [13,28] to correspond to the \little string" theory of the type IIA NS �vebrane

[34,35], which reduces at low energies to the superconformal theory. Similarly, we expect

the 1 + 1 dimensional theory with (0; 4) supersymmetry to describe the \little string"

theory of the heterotic E8 �E8 �vebrane, de�ned by the limit gs ! 0 in that theory [34].

The �eld content and interactions of this theory are the same as those described above,

with X9 now becoming part of the 1+1 dimensional gauge �eld. The only di�erence is that

there are now 32 chiral fermions �L, since we can no longer ignore the states of the \other

wall" (these states are also required for anomaly cancellation). As in the Matrix theory

descriptions of the heterotic string [36-38], half of these fermions have periodic boundary

conditions and the other half have anti-periodic boundary conditions. The X9 positions of

the D0-branes turn into the Wilson loop around the circle, and half of the �L fermions are

massless when the value of this Wilson loop corresponds to the D0-branes being at each of

the two walls. However, this theory should still have a parameter X
(4)

9 , corresponding to

the X9 position of the �vebranes4, and the  fermions (as well as their bosonic partners)

should only be massless when the Wilson loop is equal to the eigenvalues of X
(4)

9 . This is

realized in the 1+ 1 dimensional �eld theory by having the boundary conditions for the  

�elds around the circle twisted by an arbitrary X
(4)

9 matrix (in the adjoint representation

of Sp(k)), namely

 (x + 2�) = exp(X
(4)

9 ) (x) : (4:1)

The vs have similar boundary conditions. Note that such boundary conditions are not

possible for the �L �elds since a potential would be generated if their boundary condition

were di�erent [40].

We conjecture that the Higgs branch of this theory, in the gYM ! 1 and large N

limits, gives an in�nite momentum frame description of the \little string" theory of the

heterotic E8 �E8 �vebrane at zero coupling. At low energies this theory goes over to the

quantum mechanics of the previous sections, as expected. Note that the spacetime theory

in this case includes two strings even for a single �vebrane, coming from the membranes

stretched between the �vebrane and the two end of the world ninebranes. The sum of the

tensions of these two strings is the heterotic string tension M2
s , but their ratio depends on

the parameter X
(4)

9 described above.
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