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Light-Cone Quantized QCD and Novel Hadron Phenomenology 

S. J. Brodsky 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94309 

I review progress made in solving gauge theories such as collinear quantum chro- 
modynamics using light-cone Hamiltonian methods. I also show how the light- 
cone Fock expansion for hadron wavefunctions can be used to compute operator 
matrix elements such as decay amplitudes, form factors, distribution amplitudes, 
and structure functions, and how it provides a tool for exploring novel features 
of &CD. I also review commensurate scale relations, leading-twist identities which 
relate physical observables to each other, thus eliminating renormalization scale 
and scheme ambiguities in perturbative QCD predictions. 

1 Introduction 

The key challenge of nonperturbative quantum chromodynamics is to compute 
the spectrum of hadrons and gluonic states from first principles as well as 
determine the wavefunctions for each QCD bound state in terms of its quark 
and gluon degrees of freedom. If we had such a complete solution, then we could 
compute the quark and gluon structure functions and distribution amplitudes 
which control hard-scattering inclusive and exclusive reactions, as well as all 
of the operator matrix elements of currents which underlie electro-weak form 
factors and the weak decay amplitudes of the light and heavy hadrons. The 
knowledge of hadron wavefunctions would also provide a deep understanding 
of the physics of QCD at the amplitude level, illuminating exotic effects of the 
theory such as color transparency, intrinsic heavy quark effects, hidden color, 
diffractive processes, and the QCD van der Waals interactions. 

Solving a quantum field theory such as QCD is clearly not easy. However, 
highly non-trivial, one-space one-time relativistic quantum field theories which 
mimic many of the features of QCD have already been completely solved using 
light-cone Hamiltonian methods: In fact, virtually any (lfl) quantum field 
theory can be solved using the method of Discretized Light-Cone-Quantization 

(DLCQ). 2%3 In DLCQ, a quantum field theory is rendered discrete in momen- 
tum space by imposing periodic or anti-periodic boundary conditions. The 
Hamiltonian HLC, which can be constructed from the Lagrangian using light- 
cone time quantization, can then be diagonalized, in analogy to Heisenberg’s 
solution of the eigenvalue problem in quantum mechanics. In the one-space 
one-time theories, the diagonalization is a straightforward computational prob- 
lem, and the resulting eigenvalues and eigensolutions then provide the complete 
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spectrum of hadrons, together with their respective light-cone wavefunctions. 
A beautiful illustration of the application of light-cone quantization to 

the solution of a quantum field theory is the DLCQ analysis of “collinear” 
&CD: a variant of QCD(3 + 1) defined by dropping all of interaction terms in 

HL&cc” involving transverse 4 momenta. Even though this theory is effectively 
two-dimensional, the transversely-polarized degrees of freedom of the gluon 
field are retained as two scalar fields. Antonuccio and Dalley 5 have recently 
used DLCQ to solve this theory. The diagonalization of H$linear provides 
not only the complete bound and continuum spectrum of the collinear theory, 
but it also yields the complete ensemble of light-cone Fock state wavefunctions 
needed to construct the quark and gluon structure functions of each hadronic 
and gluonic state. For example, Antonuccio and Dalley obtain the spectrum of 
gluonia, and the polarized gluon and quark structure functions of the mesonic 
states. Although the collinear theory is a drastic approximation to physical 
QCD(3 + l), the phenomenology of its DLCQ solutions demonstrate general 
features of gauge theory, such as the peaking of the wavefunctions at minimal 
invariant mass, color coherence, and the helicity retention of leading partons 
in the polarized structure functions at z + 1. The DLCQ solutions of the one- 
space one-time. gauge theories can be obtained for arbitrary coupling strength, 
flavors, and colors. 

The solutions to collinear QCD provide a “standard candle” or theoretical 
laboratory in which other nonperturbative methods proposed to solve &CD, 
such as lattice gauge theory, Bethe-Salpeter methods, and various approxima- 
tions can be tested and compared. 

The fact that one actually solve a non-trivial relativistic quantum field the- 
ory in one space and one time gives hope that the full solutions to QCD(3+1) 
will eventually be accomplished. In these lectures I shall also discuss the pos- 
sibility that one can use the collinear theory as a first approximation to a 
procedure which systematically constructs the full wavefunction solutions of 
QCD(3+1). I will also outline the progress made in understanding hadrons at 
the amplitude level, using the light-cone Fock expansion as a physics tool for 
exploring novel features of QCD in hadron physics. I also review commensu- 
rate scale relations, a method which relates physical observables to each other, 
thus eliminating ambiguities due to scale and scheme ambiguities. 

2 The Light-Cone Fock Expansion 

The concept of the “number of constituents” of a relativistic bound state such 
as a hadron in quantum chromodynamics, is not only frame-dependent, but its 
value can fluctuate to an arbitrary number of quanta. Thus when a laser beam 
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crosses a proton at fixed “light-cone” time r = t + z/c = z” +x2, an interacting 
photon can encounter a state with any given number of quarks, anti-quarks, 
and gluons in flight (as long as np - no = 3). The probability amplitude 
for each such n-particle state of on-mass shell quarks and ,$uons in a hadron 
is given by a light-cone Fock state wavefunction &l~(xi, kli, Xi), where the 
constituents have positive longitudinal light-cone momentum fractions 

k+ k0+6 n x.=1 
xi=pf=po+pz) i=l 2 c ’ 

relative transverse momentum 

and helicities Xi. The ensemble {ti,,~ } of such light-cone Fock wavefunctions is 
a key concept for hadron physics, providing a conceptual basis for representing 
physical hadrons (and also nuclei) in terms of their fundamental quark and 
gluon degrees of freedom6 In the light-cone formalism, the vacuum is essentially 
trivial. Since each particle moves forward in light-cone time T with positive 
light-cone momenta fractions xi, light-cone perturbation theory is particularly 
simple and intuitive, involving many fewer diagrams than equal-time theory. 

The light-cone Fock expansion is defined in the following way: one first 
constructs the light-cone time evolution operator P- = P” - Pr and the 
invariant mass operator HLC = P-P+ - PT in light-cone gauge A+ = 0 from 
the QCD Lagrangian. The total longitudinal momentum P+ = P” + P” and 
transverse momenta fin are conserved, i.e., are independent of the interactions. 
The matrix elements of HLC on the complete orthonormal basis {In >} of the 
free theory Hi, = H~c(g = 0) can then be constructed. The matrix elements 
(n 1 HLC 1 m) connect Fock states differing by 0, 1, or 2 quark or gluon quanta, 
and they include the instantaneous quark and gluon contributions imposed by 
eliminating dependent degrees of freedom in light-cone gauge. 

In practice it is essential to introduce an ultraviolet regulator in order to 
limit the total range of (n 1 HLC 1 m), such as a “global” cutoff in the invariant 
mass of the free Fock states: 

M2, = 2 Ic: ; m2 < A&,ba, . 
i=l 

One can also introduce a “local” cutoff to limit the change in invariant mass 

IM: - M2,l < %,,I which provides spectator-independent regularization of 
the sub-divergences associated with mass and coupling renormalization. 
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The natural renormalization scheme for the coupling is cuv (Q), the effective 
charge defined from the scattering of two infinitely heavy quark test charges. 
The renormalization scale can then be determined from the virtuality of the 
exchanged momentum, as in the BLM and commensurate scale methods.rT8 I 
will discuss this further in Section 18. 

In the DLCQ method , the matrix elements (n ) HP2 1 m), are made dis- 

crete in momentum space by imposing periodic or anti-periodic boundary con- 
ditions in x- = x0 - xZ and Zl (see Section 3). Upon diagonalization of HLC, 
the eigenvalues provide the invariant mass of the bound states and eigenstates 
of the continuum. The projection of the hadronic eigensolutions on the free 
Fock basis define the light-cone wavefunctions. For example, for the proton, 

lx-4 = ~(“IP) 14 

= d^) ( z A.) ) uud) 3p/p 2, lr, s (4) 

The light-cone formalism has the remarkable feature that the $$L (xi) ZLi, X,) 

are invariant under longitudinal boosts; i.e., they are independent of the to- 
tal momentum Pf, ?l of the hadron. As we shall discuss below, given the 
$pv n,H, we can construct any electromagnetic or electroweak form factor from 

the diagonal overlap of the LC wavefunctions. ’ This is illustrated in detail in 
Section 6. Similarly, the matrix elements of the currents that define quark and 
gluon structure functions can be computed from the integrated squares of the 
LC wavefunctions!’ 

These properties of the LC formalism are all highly-nontrivial features. In 
contrast, in equal-time formalism, the evaluation of any electromagnetic form 
factor requires the computation of non-diagonal matrix elements of bound state 
Fock wavefunctions in which the parton number can change by two units; even 
worse, matrix elements involving spontaneous pair production or annihilation 
is also required, so a complete solution of the vacuum is also required. In 
light-cone quantization, the full vacuum is also the vacuum of the free theory 
and thus is trivial. Further, the equal-time computation is only valid in one 
Lorentz frame; boosting the result to a different frame is a dynamical problem 
as complicated as solving the complete Hamiltonian problem itself. 

In general, any hadronic amplitude such as quarkonium decay, heavy 
hadron decay, or any hard exclusive hadron process can be constructed as 
the convolution of the light-cone Fock state wavefunctions with quark-gluon 
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matrix elements lo 

Here MC? is the underlying quark-gluon subprocess scattering amplitude, 
where the (incident or final) hadrons are replaced by quarks and gluons with 

momenta zip+, zipi+Zli and invariant mass above the separation scale Mi > 
A2. The LC ultraviolet regulators thus provide a LC factorization scheme for 
elastic and inelastic scattering, separating the hard dynamical contributions 
with invariant mass squared M2 > h&al from the soft physics with M2 5 

A&3l which is incorporated in the nonperturbative LC wavefunctions. The 
DGLAP evolution of parton distributions can be derived by computing the 
variation of the Fock expansion with respect to A&,al.iO 

The use of the global cutoff to separate hard and soft physics is more than 
a convention; it is essential in order to correctly analyze the behavior of deep 
inelastic scattering structure functions in the Xbj + 1 endpoint regime?’ At 
large x, the spectator constituents of the hadron target are forced to stop, 
placing the struck quark far off shell. From the stand-point of the LC Hamil- 
tonian theory, the LC energy M2 - Mi becomes infinitely negative. Similarly, 
in the covariant formalism, the Feynman virtuality becomes infinitely space- 
like: k$ - rni = (p - P,)~ - rni = -x(M2 - Mi) -+ -(mz + k:)/(l - x) 
for x + 1. Here x is the light-cone momentum fraction of the light quark, p, 
is the four-momentum of the remnant spectator system with pi = rn: > 0. 
Thus in the large x regime, where kg becomes far off-shell, one cannot sep- 
arate the hard physics from the physics of the target wavefunction. The 
LC factorization scheme correctly isolates this phenomena. An important 
physical consequence is that DGLAP evolution is truncated; effectively, the 
starting evolution scale is of order -ks. Thus in the XB~ - 1 regime where 
w2 = (‘p f q)2 = (1 - xBj)Q2/xbj is fixed, the DGLAP evolution due to the 
radiation of hard gluons is truncated and the power law behavior (1 - XBj)” 
dictated by the underlying hadron wavefunctions is maintained. It is this fact 
which allows exclusive-inclusive duality in deep inelastic lepton scattering to be 
maintained: the nominal power law (dimensional counting) behavior of struc- 
ture functions at z + 1 and the power-law fall off of form factors at large Q2 
match at fixed W2. 

The simplest, but most fundamental, characteristic of a hadron in the 
light-cone representation, is the hadronic distribution amplitude,lO defined as 
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the integral over transverse momenta of the valence (lowest particle number) 
Fock wavefunction; e.g., for the pion 

(6) 

where the global cutoff Aglobal is identified with the resolution Q. The distribu- 
tion amplitude controls leading-twist exclusive amplitudes at high momentum 
transfer, and it can be related to the gauge-invariant Bethe-Salpeter wavefunc- 
tion at equal light-cone time r = x +. The distribution amplitude is boost and 
gauge invariant. Its log Q evolution can be derived from the perturbatively- 
computable tail of the valence light-cone wavefunction in the high transverse 
momentum regime.lOyll 

Exclusive processes are particularly challenging to compute in quantum 
chromodynamics because of their sensitivity to the unknown nonperturbative 
bound state dynamics of the hadrons. However, in some important cases, 
the leading power-law behavior of an exclusive amplitude at large momentum 
transfer can be computed rigorously in the form of a factorization theorem 
which separates the soft and hard dynamics. For example, the leading l/Q” 
fall-off of the meson form factors can be computed as a perturbative expansion 
in t-he QCD couplin~O~ll: 1 

J J 
1 

FM&Q’) = dx ~Y~M(~,Q)TH(~,Y/,Q~)~M(Y,~), (7) 
0 0 

where $M(x, Q) is the process-independent meson distribution amplitude which 
encodes the nonperturbative dynamics of the bound valence Fock state up to 
the resolution scale Q, and 

. 
%(x,y,Q2) = 164’17 

4PL) 
(1 _ x)(l - y)Q” (’ + o(cys)) (8) 

is the leading-twist perturbatively calculable subprocess amplitude 
r*q(x)a(l - x) + q(y)ij(l - y), obtained by replacing the incident and final 
mesons by valence quarks collinear up to the resolution scale Q. The contri- 
butions from non-valence Fock states and the correction from neglecting the 
transverse momentum in the subprocess amplitude from the nonperturbative 
region are higher twist, i.e., they are power-law suppressed. The transverse 
momenta in the perturbative domain lead to the evolution of the distribution 
amplitude and to next-to-leading-order (NLO) corrections in os. The contribu- 
tion from the endpoint regions of integration, x - 1 and y - 1, are power-law 
and Sudakov suppressed and thus can only contribute corrections at higher 
order in l/Q.” 
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The physical pion form factor must be independent of the separation scale 
Q. Again, it should be emphasized that the natural variable to make this 
separation is the light-cone energy, or equivalently the invariant mass M2 = 

kT’/x(l - x), of the off-shell partonic system.r2T10 Any residual dependence 
on the choice of Q for the distribution amplitude will be compensated by a 
corresponding dependence of the NLO correction in TH. However, the NLO 
prediction for the pion form factor depends strongly on the form of the pion 
distribution amplitude as well as the choice of renormalization scale p and 
scheme. I will discuss recent progress in eliminating such scheme and scale 
ambiguities and testing QCD in exclusive processes in Sections 18 and 19. 

. _ 

A catalog of applications of light-cone Fock wavefunctions to QCD pro- 
cesses is illustrated in Fig. 1. The light-cone expansion for a proton in terms of 
the complete set of color-singlet baryon number B = 1 free Fock states is illus- 
trated in Fig. la. The distribution amplitude which controls high momentum 
transfer mesonic processes is illustrated in Fig. lb. The meson distribution am- 
plitude ~M(x, Q) is defined such that the invariant mass M of the free partons 
in any intermediate state are cutoff at the ultraviolet scale Q. The relation of 
structure functions in deep inelastic lepton scattering to the integrated square 
of light-cone Fock wavefunctions is illustrated in Fig. lc. As shown in Fig. Id, 
the light-cone wavefunctions provide an exact basis for the computation of the 
matrix elements of spacelike local currents in terms of diagonal overlap inte- 
grals with xi = xi unchanged and parton number n = n’. Figure Id also illus- 
trates the factorization of the nucleon form factors at high momentum transfer 
in terms of the convolution of a hard-scattering amplitude T~(xi, yi, Q) (for 
the scattering the valence quarks from the initial to final direction) with the 
nucleon distribution amplitudes. Figure le illustrates the application of per- 
turbative QCD factorization to the Compton scattering amplitude at large -t 
and s. Figure If illustrates the computation of a non-forward matrix element 
of currents; specifically virtual Compton scattering where the incident photon 
has large incident virtuality q2 = -Q 2. Non-diagonal n’ = n - 2 Fock state 
convolutions are required when evaluating such processes in a collinear refer- 
ence frame. The computation of a weak decay matrix element B” -+ D+fZ in 
terms of light-cone Fock wavefunctions is illustrated in Fig. lg. Both diagonal 
and non-diagonal overlap integrals contribute. Finally, the perturbative QCD 
factorization of the dominant contribution to vector meson leptoproduction at 
large photon virtuality Q2 and high energy s >> -t, Q2 is illustrated in Fig. 
lh. The dominant contribution arises from longitudinally polarized photons, 
and the qij pair typically has small transverse size bl N l/Q. The coupling of 
the quark pair to the outgoing vector meson is controlled by the vector meson 
distribution amplitude. 
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(a) Light Cone Fock Expansion (d) Form Factors Qp- 51’ p’ (p’ h’l J+ (0) 1 ph) 
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(b) Distribution Amplitude 
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VP _ ’ 
I 

M,2< Q* 

P. h. p+q, h’=k 

Xl Yl 

TH =x x2 y* + . . . 

x3 Y3 

(c) Deep Inelastic Pp+!2’ X (p ) J+(z) J+(O) Ip) 

2 X3AY3 

= 
as f (Xi, Yig 00,) 

p+ 



. . 

(f) Virtual Compton y* p+y’p’ (g) Vector Meson Leptoproduction y* p -+ V” p’ 

(P’ A’1 J” (4 J”(O) ip h) 

Large- q2 = Q2 

!I i* (4) 

x 
P P’ 

Large-q2 = Q2 

0 

(h) Weak Exclusive Decay 

Figure 1: Computation of QCD processes in terms of light-cone Fock wavefunctions. The 
various processes are described in the text. 
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3 DLCQ: A Program for Solving QCD (3+1). 

The DLCQ method ’ consists of diagonalizing the light-cone Hamiltonian at 
fixed X+ on a free Fock basis { 1 n)}; i.e. the complete set of eigenstates of the 
free Hamiltonian HF, satisfying periodic or anti-periodic boundary conditions 
in X-. The eigenvalue problem is 

HLC IQ) = M2 IQ9 (9) 

(nIffL?clm)(ml@) = M2(nlW (10) 
with 

k+ = $7li > Cl p+=?!!K 
L 

Cni = K . (11) 
Here K, the “harmonic resolution,” is an arbitrary positive integer. The con- 
tinuum limit corresponds to K j co. The value of length L is an irrelevant 
boost parameter in that it never appears in physics results. Since there are 
only a finite number of partitions of a given K among the positive integers 
ni with Cni = K, the number of distribution Fock states are automatically 
rendered discrete. The transverse momenta are also made discrete by choosing 
periodic or anti-periodic conditions in x1. Then 

F-4 
The limit on the number of states is then controlled by the global cutoff. 

The diagonalization of the light-cone Hamiltonian thus becomes the prob- 
lem of diagonalizing large Hermitian matrices, a numerical analysis problem, 
solvable by Lanczos or other methods. In the case of l+l dimensions, the 
problem is completely tractable, so virtually any l+l quantum field theory 
can be solved in this manner. 

In the case of QCD (l+l) in A+ = 0 gauge, where there are no dynamical 
gluons, the only interaction terms arise from “instantaneous” gluon exchange: 

LC _ g2 HI -- 
1 

7r (k+ - c+y - (k+ :m+)2 1 (13) 

corresponding to t-channel or s-channel contributions in the amplitude 

ak+) ++> + ae+> q(n+) . (14) 
There is also a mass renormalization contribution to q(n+) generated from 
normal ordering 

6H=$ 5 $ 
m=l 

(15) 
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The solution to the diagonalization of the light-cone Hamiltonian produces 
not only the mass eigenvalues of the theory, but also the eigensolutions, as 
wavefunction coefficients in the LC Fock basis: 

where each Fock component ( n) has the same global and conserved quantum 
numbers as the eigenstate. The values of the light-cone momentum fractions 
are evaluated at 

x?-q-ni= 1 2 3 K-l . . - z 
P+ K 

;;T’F>Z’ K (17) 

Thus one samples the wavefunctions at rational points which approach the 
continuum theory at K + co. The absence of the end-points at xi = 0,l 
corresponds to the neglect of zero modes. Except for massless, collinear kr, 
such parton configurations are associated with infinitely massive free energy: 

. - 

and thus exceed the global cutoff limit. Physically, the x + 0 limit is associated 
with partons infinitely far in rapidity from the center of mass of the bound state 
itself 

yi--Y =hx.- z I (19) 

such partons are only relevant at very large energies W2 = (p + q)2 in the 
computation of structure functions. On the other hand, the LC Fock wave- 
functions do not necessarily vanish at xi = 0 since they may correspond to soft 
gluons with m2 and k, - . 2 - 0 In general, even the fermion distribution need 
not vanish at x + 0 in gauge theory since only the combination from the sum 
over states, 

(ZJ- -gA*)2 +m2 

EL 
X 1 i (20) 

has to be finite in the interacting theory. As Antonuccio and Dalley and I l3 
have recently shown, the cancellation of infinities at xi + 0 for fermions in 
gauge theory imposes strict “ladder relations” between Fock states with one 
or two more or less gluons in the bound state. We have also shown how this 
type of analysis leads to Regge power-law behavior of the quark distributions 
at z + 0. 
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Figure 2: Examples of quark and gluon distributions in meson bound states in collinear 
&CD. From Antonuccio and Dailey! (a) Lowest Jz = 0 mesonic state; (b) excited .I, = 1 

mesonic state; (c) longitudinal helicity asymmetry in lowest 2, = 1 mesonic state. 
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These interesting features are illustrated in Fig. 2a and 2b which shows the 
gluon G(z) and quark q(z) distributions of the lowest O-+ and first excited 
l-- mesonic bound states of collinear QCD (N, -+ co) from DLCQ! Neither 
the quark nor the gluon distributions vanish at x + 0. The polarization 
asymmetry for quarks and gluons with helicity aligned and anti-aligned to the 
J, spin of I-- ground state shown in Fig. 2c demonstrates the tendency 
toward helicity alignment at z -+ 1. 

4 Jet Hadronization in Light-Cone QCD 

One of the goals of nonperturbative analysis in QCD is to compute jet hadroniza- 
tion from first principles. The DLCQ solutions provide a possible method to 
accomplish this. By inverting the DLCQ solutions, we can write the “bare” 
quark state of the free theory as 

I Qo) = c 14 (n I Qo) (21) 
where now { ( n)} are the exact DLCQ eigenstates of HLC, and (n 1 qo) are 
the DLCQ projections of the eigensolutions. The expansion in automatically 
infrared and ultraviolet regulated if we impose global cutoffs on the DLCQ 
basis: 

X2<AM;<A2. (22) 

where AM: = Mi - (CMi)2. It would be interesting to study this type of jet 
hadronization at the amplitude level for the existing DLCQ solutions to QCD 
(lfl) and collinear &CD. 

5 Light-Cone Quantization and Renormalization Theory 

The renormalization procedure for LC Hamiltonian theory is well understood in 
perturbation theory. For example, mass and coupling renormalization counter 
terms can be introduced in the standard way in QED to absorb the ultraviolet 
divergences at each order of perturbation theory. An explicit method, “alter- 
nating denominators”, which provides an automatic method to construct the 
local counter terms, was usedi to compute the lepton anomalous moments 
through order cy2 and partly through order cy3. Lepage and I have employed an 
ultraviolet Hamiltonian renormalization scheme to derive the hard-scattering 
expansion for exclusive processes in &CD, including the evolution equations 
for the renormalized distribution amplitudes. Burkardt and Langnad5 have 
shown that kinetic and vertex mass renormalization counter terms are needed 
to restore the full invariance structure of the theory when one uses a light-cone 
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regulation such as the global cutoff. Burkardt? also has shown that tadpole 
diagram renormalization of g$4 theory is consistently handled in the LC theory 
as a zero mode component to the renormalization of the scalar particles. The 
renormalization of Yukawa theories has also been analyzed.17 Hiller, McCartor, 
and I are working on a program in which the full Lorentz-invariant structure of 
light-cone Hamiltonian theory is restored using generalized Pauli-Villars regu- 
larization. 

One of the advantages of DLCQ is that it provides a convenient infrared 
regularization of zero modes since they become discrete entities. In some model 
field theories, the zero modes take the place of the vacuum in reproducing the 
physics of spontaneous symmetry breaking. In other cases, such as the massive 
Schwinger model QED (l+l), the zero modes allow a simulation of external 
electric fields. As yet it is not clear whether LC zero roles play an essential 
role in analyzing QCD(S+l). 

6 Form Factors and Light-Cone Wavefunctions 

A critical advantage of the light-cone formalism is that the knowledge of the 
LC-Fock wavefunction is sufficient to compute the elastic electroweak form 
factors. It is remarkable that all such matrix elements can be computed from 
diagonal (parton-conserving) overlap integrals of the LC Fock wavefunctions. 
In this section I will review the light-cone formalism for the computation of 
form factors for both elementary and composite systems.r8Jg~g We can choose 
light-cane coordinates with the incident lepton directed along the z directior?O 
(p* 5 p” fp3): 

PP = (P+,P-, $3 = (P++?L) , q= (‘+%?i) , (23) 

where q2 = -2q . p = -qs and M = me is the mass of the composite system. 
The Dirac and Pauli form factors can be identifie@Jg from the spin-conserving 
and spin-flip current matrix elements (J+ = Jo + J3): 

Mt’t = (p+q,t y$qP,?) = 21qq2) ) (24) 

M;~ = (P+%t ~~~P.f> = -2(ql -iq2) q , (25) 

where t corresponds to positive spin projection S, = +3 along the 2 axis. 
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Each Fock-state wave function In) of the incident lepton is represented by 

the functions $E’*(x~, &i, Si), where 

kP z (k+,k-,&) = 
( 

xp+, k: +m2,& 
xP+ > 

specifies the light-cone momentum coordinates of each constituent i = 1, . . . , n, 
and Si specifies its spin projection Si. Momentum observation on the light 
cone requires 

?I 

c kli = 0 , 2 Zi’l, 
i=l i=l 

and thus 0 < xi < 1. The amplitude to find n (on-mass-shell) constituents 
in the lepton is then I/J(“) multiplied by the spinor factors 21s; (ki) /( k:)-li2 or 
wsi (ki)/(k’)1/2 for each constituent fermion or anti-fermion. The Fock state 
is off the ‘:energy shell”: 

The quantity (&i + mf)/ zi is the relativistic analog of the kinetic energy 
p?/2mi in the SchrGdinger formalism. 

The wave function for the lepton directed along the final direction p + q in 
the current matrix element is then 

where?r 
i&j = lgj + (1 - Zj)& 

for the struck constituent and 

& zx gi - x& 

for each spectator (i # j). The $’ are transverse to the p + q direction with 

2 -1 kli = 0 . 
i=l 

The interaction of the current J+(O) conserves the spin projection of the 
struck constituent fermion (;iis, y+u,)/k+ = ~S,,I. Thus from Eqs. (24) and 
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and 

1 
F’(q2) = zMt’L 

where ej is the fractional charge of each constituent. [A summation of all 
possible Fock states (n) and spins (S) is assumed.] The phase-space integration 
is 

71 

and 

(29) 
Equation (26) evaluated at q2 = 0 with Fl (0) = 1 is equivalent to wavefunction 
normalization. The anomalous moment a = F2(O)/Fl(O) can be determined 
from the coefficient linear in q1 - iq2 from the coefficient linear in q1 - iq2 from 
$$,, in Eq. (27). In fact, 

(summed over spectators), we can, after integration by parts, write explicitly 

The wave function normalization is 

(32) 

A sum over all contributing Fock states is assumed in Eqs. (31) and (32). We 
thus can express the anomalous moment in terms of a local matrix element at 
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zero momentum transfer. It should be emphasized that Eq. (31) is exact; it is 
valid for the anomalous element of any spin-i system. 

In the case of the electron’s anomalous moment to order Q in QED:922 
the contributing intermediate Fock states are the electron-photon states with 
spins I--$,1) and 1$,-l): 

vb’pl = 
M2- k:;X2 _ ';+"' 

x 

{ 

and 

The quantities to the left of the curly bracket in Eqs. (33) and (34) are the 
matrix elements of 

(p+ -;+j1/2 -Yse* (p+;l,2 and @+;1,2 Y'& (p+ -y.+)l,2 ' 

respectively, where &? = ??(A) = &(l/&)(? f iG)), E . k = 0, E+ = 0 in the 
light-cone gauge for vector spin projection S, = fl!*Jg For the sake of gen- 
erality, we let the intermediate lepton and vector boson have mass % and A, 
respectively. 

Substituting (33) and (34) into Eq. (31), one finds that only the I--$, 1) 
intermediate state actually contributes to a, since terms which involve differ- 
entiation of the denominator of &J cancel. We thus have? 

I”” J 
1 

I a=4Me2 - 
[;;i - (1 - x)M] /x(1 - x) 

167r3 o dx [M2 - (k; + G2)/(1 -2) - (k; + X2)/x12 ’ 
(35) 

or 

J 
1 

a=‘Y dx 
M [f% - M(l - x)] x(1 - x) 

n- 0 ~2~+f2(l-x)-M2x(1-x) ’ (36) 

which, in the case of QED (i;l = M, X = 0) gives the Schwinger results a = 
cr/27r. 

The general result (31) can also be written in matrix form: 

a 
2M= - C ej J[dxl [d2kl] $,‘Si . ZL+ 7 

j 
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where S is the spin operator for the total system and 2~ is the generator of 
“Galiean” transverse boosts ‘*J’ on the light cone, i.e., 31 ~21 = (S+L- + 
S-L+)/2 where Sk = (Sr f iS2) is the spin-ladder operator and 

L*=CXi &Fi&) 

i#j 
( 22 

(38) 

(summed over spectators) in the analog of the angular momentum operator 
j? x ti”. Equation (31) can also be written simply as an expectation value in 
impact space. 

The results given in Eqs. (26), (27), and (31) are also valid for calculating 
the anomalous moments and form factors of hadrons in quantum chromody- 
namics directly from the quark and gluon wave functions $(?l, x, S). These 
wave functions can also be used to construct the structure functions and dis- 
tribution amplitudes which control large momentum transfer inclusive and 
exclusive processes. 1g123 The charge radius of a composite system can also be 
written in the form of a local, forward matrix element: 

-aJ’l (q2) = 

&I2 
- C ej J[dx] [d2kl] $i,t 2 %,T . c39) 

qz=o j 

7 Magnetic and Electroweak Moments of Nucleons in the Light- 
Cone Formalism 

The use of covariant kinematics leads to a number of striking conclusions for 
the electromagnetic and weak moments of nucleons and nuclei. For exam- 
ple, magnetic moments cannot be written as the naive sum 2 = C 2, of 
the magnetic moments of the constituents, except in the nonrelativistic limit 
where the radius of the bound state is much larger than its Compton scale: 
RA MA >> 1. The deuteron quadrupole moment is in general nonzero even if 
the nucleon-nucleon bound state has no D-wave component?4 The breakdown 
of simple additivity for moments and the contradictions with the traditional 
nonrelativistic formalism, even for weak binding, is due to the fact that the 
so-called “static” moments must be computed as transitions between states of 
different momentum p” and pp + qp, with qp + 0. Thus one must construct 
current matrix elements between boosted states. The Wigner boost generates 
nontrivial corrections to the current interactions of bound systems. 25 Remark- 
ably, in the case of the deuteron, both the quadrupole and magnetic moments 
become equal to that of the Standard Model in the limit MdRd + 0. In this 
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limit, the three form factors of the deuteron have the same ratios as do those 
of the W boson in the Standard Mode1?4 

One can also use light-cone methods to show that the proton’s magnetic 
moment pLp and its axial-vector coupling gA have a relationship independent of 
the specific form of the light-cone wavefunction? At the physical value of the 
proton radius computed from the slope of the Dirac form factor, RI = 0.76 fm, 
one obtains the experimental values for both pP and CJA; the helicity carried 
by the valence u and d quarks are each reduced by a factor N 0.75 relative to 
their nonrelativistic values. At infinitely small radius RpMp -+ 0, pLp becomes 
equal to the Dirac moment, as demanded by the Drell-Hearn-Gerasimov sum 
rule?7y28 Another surprising fact is that as RI + 0 the constituent quark 
helicities become completely disoriented and QA + 0. 

One can understand the origins of the above universal features even in 
an effective three-quark light-cone Fock description of the nucleon. In such a 
model, one assumes that additional degrees of freedom (including zero modes) 
can be parameterized through an effective potential?g After truncation, one 
could in principle obtain the mass M and light-cone wavefunction of the three- 
quark bound-states by solving the Hamiltonian eigenvalue problem. It is rea- 
sonable to assume that adding more quark and gluonic excitations will only 
refine this initial 2g approximation. In such a theory the constituent quarks will 
also acquire effective masses and form factors. 

Since we do not have an explicit representation for the effective potential in 
the light-cone Hamiltonian PeG for three quarks, we shall proceed by making 
an Ansatz for the momentum-space structure of the wavefunction 9. Even 
without explicit solutions of the Hamiltonian eigenvalue problem, one knows 
that the helicity and flavor structure of the baryon eigenfunctions will reflect 
the assumed global SU(6) symmetry and Lorentz invariance of the theory. 
As we will show below, for a given size of the proton the predictions and 
interrelations between observables at Q2 = 0, such as the proton magnetic 
moment /.+ and its axial coupling gA, turn out to be essentially independent 
of the shape of the wavefunction? 

The light-cone model given by Ma3’ and by Schlumpf31 provides a frame- 
work for representing the general structure of the effective three-quark wave- 
functions for baryons. The wavefunction Q is constructed as the product of a 
momentum wavefunction, which is spherically symmetric and invariant under 
permutations, and a spin-isospin wave function, which is uniquely determined 
by SU(G)-symmetry requirements. A Wigner-Melosh rotation32p33 is applied to 
the spinors, so that the wavefunction of the proton is an eigenfunction of J and 
J, in its rest frames4l35$36 To represent the range of uncertainty in the possible 
form of the momentum wavefunction, one can choose two simple functions of 
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the invariant mass M of the quarks: 

&m.(M2) = NH.o. exp(-M2/2P2), (40) 

11, dower = N~owe,(l + M2/P2)-” , (41) 

where p sets the characteristic internal momentum scale. Perturbative QCD 
predicts a nominal power-law fall off at large Icl corresponding to p = 3.5?g 
The Melosh rotation insures that the nucleon has j = $ in its rest system. It 
has the matrix representation 33 

%(xi, k~i, m) = 
m + XiM - id. (fi X &) 

J(m + x~M)~ i- A& 
(42) 

with n’ = (O,O, l), and it becomes the unit matrix if the quarks are collinear, 
RM(x(zi, 0, m) = 1. Thus th e internal transverse momentum dependence of the 
light-cone wavefunctions also affects its helicity structure?5 

As we showed in Section 6, the Dirac and Pauli form factors Fi(Q2) and 
F2 (Q2) of the nucleons are given by the spin-conserving and the spin-flip matrix 
elements of the vector current J$ (at Q2 = -q2) g 

WQ2) = (P+q,t lJ;l~,f), (43) 

(&I - iQ2)FdQ2) = -2Mb+ q,T I Jv+bU . (44 
We then can calculate the anomalous magnetic moment a = limQz+s F2(Q2)? 
The same parameters as given by Schlumpf31 are chosen, namely m = 0.263 
GeV (6.26 GeV) for the up (down) quark masses, ,B = 0.607 GeV (0.55 GeV) 

for @power ($‘H.O.), and P = 3.5. Th e quark currents are taken as elementary 
currents with Dirac moments $. All of the baryon moments are well-fit 

if one takes the strange quark mass as 0.38 GeV. With the above values, the 
proton magnetic moment is 2.81 nuclear magnetons, and the neutron magnetic 
moment is -1.66 nuclear magnetons. (The neutron value can be improved by 
relaxing the assumption of isospin symmetry.) The radius of the proton is 0.76 
fm, i.e., MpRl = 3.63. 

In Fig. 3(a) we show the functional relationship between the anomalous 
moment up and its Dirac radius predicted by the three-quark light-cone model. 
The value of 

Rq = -f3d;g2) 1 
Q2=0 

(45) 

is varied by changing p in the light-cone wavefunction while keeping the quark 
mass m fixed. The prediction for the power-law wavefunction $power is given 

*The total proton magnetic moment is /+ = &(I + aP). 
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Figure 3: (a). The anomalous magnetic moment of the proton ap = F.(O) as a function 
of its Dirac radius M,Rl in Compton units. (b). The axial vector coupling of the neutron 
to proton beta-decay as a function of MpR1. In each figure, the broken line is computed 
from a wavefunction with power-law fall off and the solid curve is computed from a Gaussian 
wavefunction. The experimental values at the physical proton Dirac radius are indicated by 

the dotted line. 
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by the broken line; the continuous line represents tiH.0.. Figure 3(a) shows 
that when one plots the dimensionless observable ap against the dimension- 
less observable MRI the prediction is essentially independent of the assumed 
power-law or Gaussian form of the three-quark light-cone wavefunction. Dif- 
ferent values of p > 2 also do not affect the functional dependence of aP(MpR1) 
shown in Fig. 3(a). In this sense the predictions of the three-quark light-cone 
model relating the Q2 -+ 0 observables are essentially model-independent. The 
only parameter controlling the relation between the dimensionless observables 
in the light-cone three-quark model is m/M, which is set to 0.28. For the phys- 
ical proton radius MpRl = 3.63 one obtains the empirical value for ap = 1.79 
(indicated by the dotted lines in Fig. 3(a)). 

The prediction for the anomalous moment a can be written analytically 
as a = (7v)aNR, where uNR = 2Mp/3m is the nonrelativistic (R + oo) value 
and yv is given as 37 

3m 
yv(xi, kli,m> = M 

(1 - x3)M(m + x3M) - it,/2 

(m + QM)~ + it3 I- (46) 

The expectation value (yv) is evaluated ast 

(yvj = S[d3Wwl+12 
S~d3m42 . (47) 

. 

Let us now take a closer look at the two limits R --+ oo and R + 0. 
In the nonrelativistic limit we let ,B + 0 and keep the quark mass m and 
the proton mass Mp fixed. In this limit the proton radius RI + 00 and 
ap + 2Mp/3m = 2.38, since (yv) + 1 f Thus the physical value of the 
anomalous magnetic moment at the empirical proton radius MpRl = 3.63 is 
reduced by 25% from its nonrelativistic value due to relativistic recoil and 
nonzero LI ! 

To obtain the ultra-relativistic limit we let /3 + 00 while keeping m fixed. 
In this limit the proton becomes pointlike, MpRl + 0, and the internal trans- 
verse momenta /CL -+ co. The anomalous magnetic momentum of the proton 

tHere [d3k] E d&d~2zd~336(& + & + is). The third component of i is defined as ksi 3 

i(ziM - mzTzi,. This measure differs from the usual one used lg by the Jacobian fl $$ 

which can be absorbed into the wavefunction. 

tThis differs slightly from the usual nonrelativistic formula 1 + a = c, 2 2 due to the 

nonvanishing binding energy which results in Mp # 3m,. 
§The nonrelativistic value of the neutron magnetic moment is reduced by 31%. 
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goes linearly to zero as a = 0.43MpR1 since (7~) + 0. Indeed, the Drell- 
Hearn-Gerasimov sum rule 27~28 demands that the proton magnetic moment 
become equal to the Dirac moment at small radius. For a spin-i system 

a 
2 

[Op(S) - gA(S)] , (48) 

where up(A) is the total photo absorption cross section with parallel (anti- 
parallel) photon and target spins. If we take the point-like limit, such that the 
threshold for inelastic excitation becomes infinite while the mass of the system 
is kept finite, the integral over the photo absorption cross section vanishes and 
a = O? In contrast, the anomalous magnetic moment of the proton does not 
vanish in the nonrelativistic quark model as R --+ 0. The nonrelativistic quark 
model does not reflect the fact that the magnetic moment of a baryon is derived 
from lepton scattering at nonzero momentum transfer, i.e., the calculation of 
a magnetic moment requires knowledge of the boosted wavefunction. The 
Melosh transformation is also essential for deriving the DHG sum rule and 
low-energy theorems of composite systemsz5 

A similar analysis can be performed for the axial-vector coupling measured 
in neutron decay. The coupling gA is given by the spin-conserving axial current 
Ji matrix element 

gA(O) = @T-t IJA+b,t) . (49) 
The value for gA can be written as gA = (‘yA)gzR, with gzR being the nonrel- 
ativistic value of gA and with “/A given by37138 

YA(%,kli,m) = 
(m + 2~3M)~ - kt3 

(m + 2~3M)~ + IEt3 ’ 

In Fig. 3(b) the axial-vector coupling is plotted against the proton radius 
MpRl. The same parameters and the same line representation as in Fig. 3(a) 
are used. The functional dependence of gA ( MpR1) is also found to be indepen- 
dent of the assumed wavefunction. At the physical proton radius MpRl = 3.63, 
one predicts the value gA = 1.25 (indicated by the dotted lines in Fig. 3(b)), 
since (7~) = 0.75. The measured value is gA = 1.2573 f 0.0028?’ This is a 
25% reduction compared to the-nonrelativistic W(6) value gA = 5/3, which 
is only valid for a proton with large radius RI >> l/M,. The Melosh rotation 
generated by the internal transverse momentum 38 spoils the usual identifica- 
tion of the y+~s quark current matrix element with the total rest-frame spin 
projection s,, thus resulting in a reduction of gA. 

Thus, given the empirical values for the proton’s anomalous moment up 
and radius MpRl, its axial-vector coupling is automatically fixed at the value 
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gA = 1.25. This is an essentially model-independent prediction of the three- 
quark structure of the proton in &CD. The Melosh rotation of the light-cone 
wavefunction is crucial for reducing the value of the axial coupling from its 
nonrelativistic value 5/3 to its empirical value. The near equality of the ratios 
gA/gA(Rr + co) and a,/a,(R~ -+ co) as a function of the proton radius 
RI shows the wave-function independence of these quantities. We emphasize 
that at small proton radius the light-cone model predicts not only a vanishing 
anomalous moment but also lirnEl-+s gA(MpR1) = 0. One can understand this 
physically: in the zero radius limit the internal transverse momenta become 
infinite and the quark helicities become completely disoriented. This is in 
contradiction with chiral models, which suggest that for a zero radius composite 
baryon one should obtain the chiral symmetry result gA = 1. 

The helicity measures Au and Ad of the nucleon each experience the same 
reduction as does gA due to the Melosh effect. Indeed, the quantity Aq is 
defined by the axial current matrix element 

and the value for Aq can be written analytically as Aq = (yA)AqNR, with 
AqNR being the nonrelativistic or naive value of Aq and 7~ given by Eq. (50). 

The light-cone model also predicts that the quark helicity sum AX = 
Au + Ad vanishes as the proton radius RI becomes small. Note that AX 
depends on the proton size, and it should not be identified as the vector sum 
of the rest-frame constituent spins. The rest-frame spin sum is not a Lorentz 
invariant for a composite system.s8 Empirically, one can measure Aq from the 
first moment of the leading-twist polarized structure function gi (x,0). In the 

light-cone and parton model descriptions, Aq = Jt dx[q’(z) - ql(z)], where 

q’(x) and qJ(z) can be interpreted as the probability for finding a quark or 
antiquark with longitudinal momentum fraction 2 and polarization parallel or 
anti-parallel to the proton helicity in the proton’s infinite momentum frameJg 
[In the infinite momentum frame there is no distinction between the quark 
helicity and its spin projection s,.] Thus Aq refers to the difference of helicities 
at fixed light-cone time or at infinite momentum; it cannot be identified with 
q(sz = +f) - q(s, = -f), the spin carried by each quark flavor in the proton 
rest frame in the equal-time formalism. 

Thus the usual W(6) values AuNR = 4/3 and AdNR = -l/3 are only 
valid predictions for the proton at large MR1. At the physical radius the 
quark helicities are reduced by the same ratio 0.75 as is gA/gzR due to the 
Melosh rotation. Qualitative arguments for such a reduction have been given 
elsewhere?0t41 For MpRl = 3.63, the three-quark model predicts Au = 1, 
Ad = -l/4, and AX = Au -t Ad = 0.75. Although the gluon contribution 
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AG = 0 in our model, the general sum rule42 

~AE+AG+L, = f (52) 

is still satisfied, since the Melosh transformation effectively contributes to L,. 
Suppose one adds polarized gluons to the three-quark light-cone model. 

Then the flavor-singlet quark-loop radiative corrections to the gluon propaga- 
tor will give an anomalous contribution s(Aq) = -ZAG to each light quark 
helicityP3 The predicted value of QA = Au - Ad is of course unchanged. For 
illustration we shall choose %AG = 0.15. The gluon-enhanced quark model 
then gives values which agree well with the present experimental values. 

In summary, one sees that relativistic effects are crucial for understanding 
the spin structure of nucleons. By plotting dimensionless observables against 
dimensionless observables, we obtain relations that are independent of the 
momentum-space form of the three-quark light-cone wavefunctions. For exam- 
ple, the value of gA N 1.25 is correctly predicted from the empirical value of the 
proton’s anomalous moment. For the physical proton radius MpRl = 3.63, the 
inclusion of the Wigner-Melosh rotation due to the finite relative transverse 
momenta of the three quarks results in a N 25% reduction of the nonrelativis- 
tic predictions for the anomalous magnetic moment, the axial vector coupling, 
and the quark helicity content of the proton. At zero radius, the quark he- 
licities become completely disoriented because of the large internal momenta, 
resulting in the vanishing of gA and the total quark helicity AX. 

8 Constructing Hadron Wavefunctions in Light-Cone Quantized 

QCD 

Our ultimate goal is to actually calculate the light cone wavefunctions of the 
hadrons. In the next two sections, I will discuss possible methods in which one 
can obtain constraints and determine important properties of the wavefunc- 
tions, even in the absence of explicit solutions. 

A remarkable feature of collinear QCD is that although the theory is ef- 
fectively one-space and one-time, one still retains the two physical degrees of 
freedom from the transversely-polarized gluons. Thus the spectrum of collinear 
QCD contains gluonium states, as well as gluonic quanta in the higher Fock 
states of the mesons and baryons eigenstates of the theory. We have also seen 
that some of the features of the structure functions of hadrons in collinear 
&CD match well to the phenomenological features of QCD[S+l] such as the 
helicity retention of the leading constituents at large z + 1 in the polarized 
structure functions. 
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Recently Antonuccio, Pinsky and I have investigated the possibility that 
one may be able to construct useful models of the light-cone wavefunctions 
of QCD[S+l] by extension of the collinear QCD solutions. We have been 
considering two methods: 

(1) Minimal S u bt raction. Let us ignore the complications of spin and write 
the solution to the n-quarklantiquark light-cone wavefunction of a hadron in 
the collinear theory in the form 

Qn 
rn! +g2A2, + 

,A1 Xi I 

where the functional dependence of the operator X&‘n in the field variable 21 
connects Fock states of different gluon number. The natural generalization of 
this dependence to the transverse space dependence is 

It is interesting to note that the mechanical light-cone kinetic energy 

rnf + (%+I- g2L)2 

Xi 

is the essential variable which controls the dynamics of gauge theory. This 
is in agreement with the fact that in laser physics the effective mass of an 
electron in an intense laser beam is mztfective = rn: + e2A2. The laser analog 
also suggest that a classical approximation to the gauge field may be useful 
when the particle number is high. This could be appropriate when analyzing 
the physics of small Z. 

(2) The Light-Cone Lippmann-Schwinger Equation. In principle, we can 
also construct the wavefunctions of QCD(3+1) starting with collinear QCD(l+l) 
solutions by systematic perturbation theory in AH, where AH contains the 
terms linear and quadratic in the transverse momenta ?li which are neglected 
in the Hamilton HO of collinear &CD. We can write the exact eigensolution of 
the full Hamiltonian as 

1 
$(3+1) = +(l+l) + M2 _ H + ie AH$(l+q > 

where 

1 1 1 

M2-H+iir=M2-Ho+k+ M2-H+k 
AH 1 

M2 - Ho + ie 
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can be represented as the continued iteration of the Lippmann Schwinger re- 
solvant. Note that the matrix (M’ - Ho)-l is known to any desired precision 
from the DLCQ solution of collinear &CD. 

In each of these methods, the resulting wavefunction can be considered 
as approximate solution to 3+1 QCD hadron wavefunctions which could be 
subsequently improved by variational or other methods. 

9 Determining the Far Off-Shell Behavior of Hadron LC Wavefunc- 
tions 

In many cases of physical interest we are specifically interested in the behav- 
ior of the LC wavefunctions in the far-off-shell domain where Mi exceeds the 
global cutoff. This occurs for large parton momenta, Ic: + co, xi --+ 1 and for 
massive quanti-antiquark fluctuations. In fact, in such domains, we can con- 
struct the wavefunction perturbatively and obtain rigorous QCD predictions. 

The basic method is as followsi Suppose we can solve 

HLC(P) ( @) = M2 ( ti’“‘) (53) 

in the soft-domain with Mt < p2, where p2 is of the order of a few GeV2. 
Then 

(54) 

We can also define the complement projection operator Q(b) with P(p)+Q(j‘) = 
1. The-full solution satisfies H 1 $I) = M2 1 T+!J) or 

PHI’ I$) +PHQ Id = M2P I$$ 

Therefore 

QHPI+)+QHQ Iti) = M2Q I$) . (55) 

Iti) = ) @“‘) + 442 -‘QHQ QH* I+"') (56) 

where only high mass (Mi > p2) perturbatively calculable intermediate states 
appear. An example is the behavior of the valence wavefunction at large in- 
ternal transverse momentum. One finds at large il = & 

N 
x(1 - 2) 1 

- - 

6 
46) 

I 
dy K, (2, Y> $4~ 9:) 

0 
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where 

4(y,Q2) = 1”’ 2 Y$s)(Y,~) 

is the meson distribution amplitude, which takes the role of the wavefunction 
“at-the-origin” in analogous nonrelativistic calculations. The simple CK~ (qi)/qT 
fall-off of the valence wavefunction is the key input to the derivation of dimen- 
sional counting rules for form factors and other exclusive processes in QCD!14 
One can also derive the evolution equation for 

WY, Q2) 
d log Q2 

(59) 

from this result and the simple properties of the one-gluon exchange kernel. 

10 Structure Functions at the End-Point 

The x + 1 behavior of quark and gluon wavefunctions is controlled by far- 
off-shell configuration and thus can be analyzed perturbatively. The dominant 
contributions come from the lowest Fock states which contain the partons. For 
example the quark distribution in the nucleon can be computed from two iter- 
ations of the gluon exchange kernel which transfers the light-cone momentum 
to the struck quark from the two spectators which are required to stop. The 
result is a nominal power-law fall-off at x + 1: q?(z) - (1 - x)~ for quarks 
with helicity aligned with the proton and qs - (1 - x)~ for quarks anti-aligned. 
Similarly the I qqqg) Fock state yields g?(x) - (1 - x)” for gluons with helicity 
aligned and gi - (1 - x)~ for gluons helicity anti-aligned. Thus the partons 
with x + 1 tend to have the same sign helicity as the bound state?’ 

In the absence of full solutions to the light-cone wavefunctions, one can 
construct a simple phenomenology of the polarized and anti-polarized structure 
functions by imposing a smooth connection between the perturbative QCD 
constraints at z -+ 1, and Regge behavior at x + 0, and the momentum 
and Bjorken sum rules. A complete discussion can be found in the literatureP4 
Recently Leader et al. have shown that this parametrization agrees remarkably 
well with the available data from SLAC and CERNP5 Figure 4 shows the 
nominal form of the helicity distributions Aq( z) = q?(x) - qL (x), for the valance 
quarks and gluons in the proton. 
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Figure 4: Model form for the polarized quark and gluon distributions of the proton satisfying 
empirical constraints and the perturbative QCD and Regge input conditionsP4 From Leader 

et al?= 

11 Intrinsic Hardness 

The light-cone wavefunctions contain high fluctuations of arbitrary mass; i.e. 
nonzero probabilities for massive pairs, massive sea quarks, etc. These fluc- 
tuations are of two types: extrinsic qg, gg or qif high mass pairs which are 
associated with the substructure of the constituents and are contained in or- 
dinary DGLAP evolution; and intrinsic functions which are due to the physics 
of the bound state wavefunction itself. For example intrinsic sea quark pairs 
QQ arise from diagrams which are interconnected to the valence quarks of the 
bound state hadron and thus depend on the valence quark correlations. It is 
easy to see that the leading perturbative contribution to intrinsic pairs falls as 

where M is the pair mass and T is the leading anomalous dimension associated 
with the valence wavefunction. The probability of any configurations with 
M2 > Mfj is then 

a4+2r 
P(M2>M&-+, 

0 
(61) 
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which implies a remarkably slow fall-off for large off-shell fluctuations. The 
result is universal for any intrinsic parton pair 

M2 + P: = rnf + zii + rni + zi2 

21 +x2 Xl x2 

with 

(62) 

(63) 

i.e. for large relative Icl and/or large quark mass. Hoyer and I 46 call this 
“intrinsic hardness.” In the case of intrinsic charm or bottom pairs in the 
nucleon, the LC wavefunction is maximized when Mi is minimized; i.e. for 

where ml = d m2 + i?i. Thus the maximal intrinsic charm-bottom config- 

urations occur at equal rapidity; i.e. where the heavy partons have highest 
momentum fractions. This is in contrast to the usual extrinsic sea quark which 
are subconstituents of the gluons and have low x. The extrinsic quarks evolve 
rapidly with a probability increasing as power of log Q2/M2. 

It is thus important to distinguish two types of quark and gluon contribu- 
tions to the nucleon sea measured in deep inelastic lepton-nucleon scattering: 
“extrinsic” and “intrinsic”. 47 The extrinsic sea quarks and gluons are created 
as part of the lepton-scattering interaction and thus exist over a very short 
time AT N l/Q. These factorizable contributions can be systematically de- 
rived from the QCD hard bremsstrahlung and pair-production (gluon-splitting) 
subprocesses characteristic of leading twist perturbative QCD evolution. In 
contrast, the intrinsic sea quarks and gluons are multi-connected to the valence 
quarks and exist over a relatively long lifetime within the nucleon bound state. 
Thus the intrinsic qiij pairs can arrange themselves together with the valence 
quarks of the target nucleon into the most energetically-favored meson-baryon 
fluctuations. 

Another interesting distinction between extrinsic and intrinsic sea quarks 
is that due to nonperturbative effects, the intrinsic contributions are generally 
not symmetric for sea quark and anti-quarks. For example, in the muonium 
atom (p+e-) an intrinsic r+~- pair would be asymmetric since the r+ tends to 
be attracted to the electron and the r- tends to be attracted to the opposite- 
sign muon. Thus the r- would be expected to have a higher (x) than the r+. 
It is also possible to consider the nucleon wavefunction at low resolution as a 
fluctuating system coupling to intermediate hadronic Fock states such as non- 
interacting meson-baryon pairs. The most important fluctuations are most 
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likely to be those closest to the energy shell and thus have minimal invariant 
mass. For example, the coupling of a proton to a virtual K+A pair pro- 
vides a specific source of intrinsic strange quarks and antiquarks in the proton. 
Since the s and S quarks appear in different configurations in the lowest-lying 
hadronic pair states, their helicity and momentum distributions are distinct. 
Ma and I 48 have used an intermediate meson-baryon fluctuation model to 
model the possible s versus S and c versus E asymmetries of the intrinsic dis- 
tributions of the nucleon. We utilize a boost-invariant light-cone Fock state 
description of the hadron wavefunction which emphasizes multi-parton con- 
figurations of minimal invariant mass. We find that such fluctuations predict 
a striking sea quark/antiquark asymmetry in the corresponding momentum 
and helicity distributions in the nucleon structure functions. In particular, the 
strange and anti-strange distributions in the nucleon generally have completely 
different momentum and spin characteristics. The helicity structure of the in- 
trinsic ss is strongly asymmetric: the s quark from a A(~ds) K(U) is aligned 
with the A helicity and (because of parity) is 100% anti-aligned with the nu- 
cleon spin. On the other hand, the s from the pseudoscalar kaon is unaligned. 
Ma and I have shown that this picture of quark and antiquark asymmetry in 
the momentum and helicity distributions of the nucleon sea quarks has support 
from a number of experimental observations, and we have suggested processes 
to test and measure this quark and antiquark asymmetry in the nucleon sea. 

11.1 Phenomenological Consequences of Intrinsic Charm and Bottom 

Microscopically, the intrinsic heavy-quark Fock component in the rr- wave- 
function, IiidQo), is generated by virtual interactions such as gg -+ Qg where 
the gluons couple to two or more projectile valence quarks. The probability 
for Qs fluctuations to exist in a light hadron thus scales as (~i(m$)/rn$ rela- 

4g tive to leading-twist production. This contribution is therefore higher twist, 
and power-law suppressed compared to sea quark contributions generated by 
gluon splitting. When the projectile scatters in the target, the coherence of 
the Fock components is broken and its fluctuations can hadronize, forming 

5o new hadronic systems from the fluctuations. For example, intrinsic CE fluctu- 
ations can be liberated provided the system is probed during the characteristic 
time At = 2pi,b/M$ that such fluctuations exist. For soft interactions at mo- 
mentum scale p, the intrinsic heavy quark cross section is suppressed by an 
additional resolving factor c( p2/m 651 The nuclear dependence arising from . 

the manifestation of intrinsic charm is expected to be UA M (TNA~/~, charac- 
teristic of soft interactions. 

In general, the dominant Fock state configurations are not far off shell 

31 



and thus have minimal invariant mass M2 = Ci ml/xi where ml is the 
transverse mass of the ith particle in the configuration. Intrinsic QQ Fock 
components with minimum invariant mass correspond to configurations with 
equal-rapidity constituents. Thus, unlike sea quarks generated from a single 
parton, intrinsic heavy quarks tend to carry a larger fraction of the parent 
momentum than do the light 47 quarks. In fact, if the intrinsic Q& pair coalesces 
into a quarkonium state, the momentum of the two heavy quarks is combined 
so that the quarkonium state will carry a significant fraction of the projectile 
momentum. 

There is substantial evidence for the existence of intrinsic ci? fluctuations 
in the wavefunctions of light hadrons. For example, the charm structure func- 
tion of the proton measured by EMC is significantly larger than that predicted 

52 by photon-gluon fusion at large znj. Leading charm production in TN and 
hyperon-N collisions also requires a charm source beyond leading twist?gT53 
The NA3 experiment has also shown that the single J/$J cross section at large 
zF is greater than expected from gg and q?j production.r’4 The nuclear de- 
pendence of this forward component is diffractive-like, as expected from the 
BHMT mechanism. In addition, intrinsic charm may account for the anoma- 
lous longitudinal polarization of the J/v) at large XF seen in TN -+ J/+X 
interactionsP5 Further theoretical work is needed to establish that the data on 
direct J/T) and xi production can be described using the higher-twist intrinsic 
charm mechanism?’ 

A recent analysis by Harris, Smith and Vogt 56 of the excessively large 
charm structure function of the proton at large z as measured by the EMC 
collaboration at CERN yields an estimate that the probability PC? that the 
proton contains intrinsic charm Fock states is of the order of 0.6% f 0.3%. In 
the case of intrinsic bottom, perturbative QCD scaling predicts 

(65) 

more than an order of magnitude smaller. We can speculate that if super- 
partners of the quarks or gluons exist they must also appear in higher Fock 
states of the proton, such as luzld gluino gluino). At sufficiently high energies, 
the diffractive excitation of the~proton will produce these intrinsic quarks and 
gluinos in the proton fragmentation region. Such supersymmetric particles can 
bind with the valence quarks to produce highly unusual color-singlet hybrid 
supersymmetric states such as luud gluino) at high zF. The probability that the 
proton contains intrinsic gluinos or squarks scales with the appropriate color 
factor and scales inversely with the heavy particle mass squared relative to the 
intrinsic charm and bottom probabilities. This probability is directly reflected 
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in the production rate when the hadron is probed at a hard scale Q which is 
large compared to the virtual mass M of the Fock state. At low virtualities, 
the rate is suppressed by an extra resolution factor of Q2/M2. The forward 
proton fragmentation regime is a challenge to instrument at HERA, but it may 
be feasible to tag special channels involving neutral hadrons or muons. In the 
case of the gas jet fixed-target ep collisions such as at HERMES, the target 
fragments emerge at low velocity and large backward angles, and thus may be 
accessible to precise measurement. 

Double Quarkonium Hadroproduction It is quite rare for two charmo- 
nium states to be produced in the same hadronic collision. However, the NA3 
collaboration has measured a double J/T/J production rate significantly above 
background in multi-muon events with K- beams at laboratory momentum 
150 and 280 GeV/c and a 400 GeV/c proton beam. 57 The relative double to 
single rate, ~++/a+, is (3 f 1) x low4 for pion-induced production, where a$ 
is the integrated single $ production cross section. A particularly surprising 
feature of the NA3 n-N -+ $J+X events is that the laboratory fraction of the 
projectile momentum carried by the $$ pair is always very large, “$1~ 2 0.6 
at 150 GeV/c and z++ 2 0.4 at 280 GeV/c. In some events, nearly all of the 
projectile momentum is carried by the $1c, system! In contrast, perturbative 
gg and qij fusion processes are expected to produce central $J$ pairs, centered 
around the mean value, (z+$) M 0.4-0.5, in the laboratory. The predicted 
$J$ pair distributions from the intrinsic charm model provide a natural expla- 
nation of the strong forward production of double J/lc, hadroproduction, and 
thus gives strong phenomenological support for the presence of intrinsic heavy 
quark states in hadrons. 

It is clearly important for the double J/$ measurements to be repeated 
with higher statistics and at higher energies. The same intrinsic Fock states 
will also lead to the production of multi-charmed baryons in the proton frag- 
mentation region. The intrinsic heavy quark model can also be used to predict 
the features of heavier quarkonium hadroproduction, such as ‘YT, ‘I+, and 
(~5) (Fb) pairs. Predictions for these events have been given by Ramona Vogt 
and myself. 

Leading-Particle Effect in Open Charm Production According to PQCD 
factorization, the fragmentation of a heavy quark jet is independent of the pro- 
duction process. However, there are strong correlations between the quantum 
numbers of D mesons and the charge of the incident pion beam in rrN + DX 
reactions. This effect can be explained as being due to the coalescence of the 
produced intrinsic charm quark with co-moving valence quarks. The same 
higher-twist recombination effect can also account for the suppression of J/qb 
and Y production in nuclear collisions in regions of phase space with high 

33 



particle densityPg 
It is of particular interest to examine the fragmentation of the proton when 

the electron strikes a light quark and the interacting Fock component is the 
IuudcE) or luudbs) state. These Fock components correspond to intrinsic charm 
or intrinsic bottom quarks in the proton wavefunction. Since the heavy quarks 
in the proton bound state have roughly the same rapidity as the proton itself, 
the intrinsic heavy quarks will appear in the proton fragmentation region. 
One expects heavy quarkonium and also heavy hadrons to be formed from the 
coalescence of the heavy quark with the valence u and d quarks, since they 
have nearly the same rapidity. 

12 Intrinsic Charm and the J/G + pn problem 

One of the most dramatic problems confronting the standard picture of quarko- 
nium decays is the J/G + prr 58 puzzle. This decay occurs with a branching 
ratio of (1.28 f O.lO)%:’ and it is the largest two-body hadronic branching 
ratio of the J/G. The J/Q is assumed to be a CC bound state pair in the 9(1S) 
state. One then expects the IJ’ = q(2S) to decay to pr with a comparable 
branching ratio, scaled by a factor - 0.15, due to the ratio of the !P(2S) to 
!P(lS) wavefunctions squared at the origin. In fact, B($’ + pr) < 3.6 x 10e5 
6o more than a factor of 50 below the expected rate. Most of the branching ra- 
iios for exclusive hadronic channels allowed in both J/lc, and $’ decays indeed 
scale with their lepton pair branching ratios, as would be expected from decay 
amplitudes controlled by the quarkonium wavefunction near the origin:‘T6’ 

B(+’ + h) 
B(J/$ + h) 2L 

B($’ + e+e-) 
B(J/$ + e+e-) 

= 0.147 f 0.023 (66) 

where h denotes a given hadronic channel. The Jill, -+ pr and J/$ -+ KK* 
decays also conflict dramatically with perturbative QCD hadron helicity con- 
servation: all such pseudoscalar/vector two-body hadronic final states are for- 
bidden at leading twist if helicity is conserved at each vertex?0y61 

Marek Karliner and I62 have recently shown that such anomalously large 
decay rates for the J/ll, and their suppression for @(2S) follow naturally from 
the existence of intrinsic charm 1 tjqk) Fock components of the light vector 
mesons. For example, consider the light-cone Fock representation of the p: 

The !Pp- wavefunction will be 
equal ra$&ty for the constituents 

and in the spin configuration where the ua are in a pseudoscalar state, thus 
minimizing the QCD spin-spin interaction. The EC in the 1 &EC) Fock state 
carries the spin projection of the p. We also expect the wavefunction of the EC 
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quarks to be in an S-wave configuration with no nodes in its radial dependence, 
in order to minimize the kinetic energy of the charm quarks and thus also 
minimize the total invariant mass. 

The presence of the 1 uai%) Fock state in the p will allow the J/$I + pr 
decay to occur simply through rearrangement of the incoming and outgoing 
quark lines; in fact, the I ud~c) Fock state wavefunction has a good overlap 

with the radial and spin 1 CC) and I u;i) wavefunctions of the J/ll, and pion. 
Moreover, there is no conflict with hadron helicity conservation, since the Cc 
pair in the p is in the l- state. On the other hand, the overlap with the $’ will 
be suppressed, since the radial wavefunction of the n = 2 quarkonium state 
is orthogonal to the node-less CC in the I udti) state of the p. This simple 
argument provides a compelling explanation of the absence of $J’ -+ pn and 
other vector pseudoscalar-scalar states.7 

13 Light-Cone Wavefunction Description of the Spin Anomaly in 
Deep Inelastic Polarized Structure Functions 

One of the most interesting distinguishing characteristics between extrinsic 
and intrinsic heavy quarks is their contributions to the Ellis-Jaffe sum rule 

Jb’dwdx,Q) f or o arized deep inelastic scattering cross sections. The ex- P 1 
trinsic contributions to structure functions can be identified with photon-gluon 
fusion processes since they derive from QQ constituents of the gluon. However, 
one obtains zero contribution to the Ellis-Jaffe sum rule from y*g -+ q?j at tree 
level if the gluon is on-shell k2 = 0. This follows from the DHG sum rule: the 
tree graph contribution to64 

s O” dv 

vth 

; Aa(ab + cd) (67) 

vanishes for any two-to-two polarized cross sections if a is an on-shell gauge 
particle. Thus the anomaly contribution -a AG to the Ellis-Jaffe sum rule 
arises from off-shell gluons with I k2 I 2 4mQ. 2 63rThe final state which contributes 

physically to such configurations consists of Q and s jets recoiling against the 
scattered lepton plus a third jet scattering at pi > mQ, corresponding to a 
quark (or gluon) which emitted the off-shell gluon. The intrinsic contributions, 
on the other hand, consist of one high pT heavy quark jet recoiling against the 

TThe possibility that the radial configurations of the initial and final states could be 
playing a role in the J/$J -+ pa puzzle was first suggested by S. Pinsky,s3 who however had 
in mind the radial wavefunctions of the light quarks in the p, rather than the wavefunction 
of the Cc intrinsic charm components of the final state mesons. 
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lepton. Also, as noted above, the AQ(z) and AQ(z) in general are different 
helicity distributionsP8 

14 Direct Measurement of the Light-cone Valence Wavefunction. 

Diffractive multi-jet production in heavy nuclei provides a novel way to measure 
the shape of the LC Fock state wavefunctions. For example, consider the 
reaction 66@7 

TA + Jetr + Jet2 + A’ (68) 

at high energy where the nucleus A’ is left intact in its ground state. The 
transverse momenta of the jets have to balance so that zli + ilz = & < 72~~ , 
and the light-cone longitudinal momentum fractions have to add to 21 +zz N 1 
so that APL < ‘Ril. The process can then occur coherently in the nucleus. 
Because of color transparency; i.e. the cancellation of color interactions in 
a small-size color-singlet hadron, the valence wavefunction of the pion with 
small impact separation, will penetrate the nucleus with minimal interactions, 
diffracting into jet pairss6 The 21 = 2, 22 = 1 - 2 dependence of the di-jet 
c@tribu_tions will thus reflect the shape of the pion distribution amplitude; the 
lcli - lclz relative transverse momenta of the jets also gives key information 
on the underlying shape of the valence pion wavefunction. The QCD analysis 
can be confirmed by the observation that the diffractive nuclear amplitude 
extrapolated to t = 0 is linear in nuclear number A, as predicted by QCD color 
transparency. The integrated diffractive rate should scale as A2/Ri N A4i3. 
A diffractive experiment of this type is now in progress at Fermilab using 500 
GeV incident pions on nuclear targetss8 

Data from CLEO for the yy* + rr” transition form factor favor a form for 
the pion distribution amplitude close to the asymptotic solution” $yyrnpt(~) = 
&&(l - X) to th e perturbative QCD evolution equation.sg~70~71 It will be 
interesting to see if the diffractive pion to di-jet experiment also favors the 
asymptotic form. 

It would also be interesting to study diffractive tri-jet production using pro- 
ton beams pA + Jetr + Jet2 + Jets + A’ to determine the fundamental shape 
of the 3-quark structure of the valence light-cone wavefunction of the nucleon 
at small transverse separation. Conversely, one can use incident real and vir- 
tual photons: y*A -+ Jetr + Jet2 + A’ to confirm the shape of the calculable 
light-cone wavefunction for transversely-polarized and longitudinally-polarized 
virtual photons. Such experiments will open up a remarkable, direct window 
on the amplitude structure of hadrons at short distances. 
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15 Other Applications of Light-Cone Quantization to Hadron Phe- 
nomenology 

The light-cone formalism provides the theoretical framework which allows for 
a hadron to exist in various Fock configurations. For example, quarkonium 
states not only have valence Qg components but they also contain Q&g and 
Q&g9 states in which the quark pair is in a color-octet configuration. Similarly, 
nuclear LC wave functions contain components in which the quarks are not in 
color-singlet nucleon sub-clusters. In some processes, such as large momentum 
transfer exclusive reactions, only the valence color-singlet Fock state of the 
scattering hadrons with small inter-quark impact separation bl = 0(1/Q) can 
couple to the hard scattering amplitude. In reactions in which large numbers of 
particles are produced, the higher Fock components of the LC wavefunction will 
be emphasized. The higher particle number Fock states of a hadron containing 
heavy quarks can be diffractively excited, leading to heavy hadron production 
in the high momentum fragmentation region of the projectile. In some cases the 
projectile’s valence quarks can coalesce with quarks produced in the collision, 
producing unusual leading-particle correlations. Thus the multi-particle nature 
of the LC wavefunction can manifest itself in a number of novel ways. For 
example: 

Regge behavior. The light-cone wavefunctions J&/H of a hadron are not 
independent of each other, but rather are coupled via the equations of mo- 
tion. Recently Antonuccio, Dalley and I l3 have used the constraint of finite 
“mechanical” kinetic energy to derive“ladder relations” which interrelate the 
light-cone wavefunctions of states differing by 1 or 2 gluons. We then use these 
relations to derive the Regge behavior of both the polarized and unpolarized 
structure functions at x + 0, extending Mueller’s derivation of the BFKL hard 
QCD pomeron from the properties of heavy quarkonium light-cone wavefunc- 
tions at large NC &CDT2 

Analysis of diffractive vector meson photoproduction. The light-cone Fock 
wavefunction representation of hadronic amplitudes allows a simple eikonal 
analysis of diffractive high energy processes, such as -y*(Q2)p + pp, in terms 
of the virtual photon and the vector meson Fock state light-cone wavefunctions 
convoluted with the gp + gp near-forward matrix element 73 See Fig. lh. One 
can easily show that only small transverse size bl - l/Q of the vector meson 
wavefunction is involved. The hadronic interactions are minimal, and thus the 
r*(Q2)N + pN reaction can occur coherently throughout a nuclear target in 
reactions such as without absorption or shadowing. The y*A -+ q5A process 
thus provides a natural framework for testing QCD color transparencyT4 

37 



- 

Structure functions at large xbj. The behavior of structure functions where 
one quark has the entire momentum requires the knowledge of LC wavefunc- 
tions with x -+ 1 for the struck quark and x -+ 0 for the spectators. As 
mentioned in Section 2, this is a highly off-shell configuration, and thus one 
can rigorously derive quark-counting and helicity-retention rules for the power- 
law behavior of the polarized and unpolarized quark and gluon distributions 
in the z + 1 endpoint domain. Evolution of structure functions is minimal 
in this domain because the struck quark is highly virtual as z + 1; i.e. the 
starting point Qi for evolution cannot be held fixed, but must be larger than 
a scale of order (m2 + k:)/(l - z)~O 

Color Transparency QCD predicts that the Fock components of a hadron 
with a small color dipole moment can pass through nuclear matter without 
interactions.s6l74 Thus in the case of large momentum transfer reactions, where 
only small-size valence Fock state configurations enter the hard scattering am- 
plitude, both the initial and final state interactions of the hadron states be- 
come negligible. Color Transparency can be measured though the nuclear 
dependence of totally diffractive vector meson production dg/dt(y*A + VA). 
For large photon virtualities (or for heavy vector quarkonium), the small color 
dipole moment of the vector system implies minimal absorption. Thus, re- 
markably, QCD predicts that the forward amplitude y*A + VA at t + 0 
is nearly linear in A. One is also sensitive to corrections from the non- 
linear A-dependence of the nearly forward matrix element that couples two 
gluons to the nucleus, which is closely related to the nuclear dependence of 
the gluon structure function of the nucleus. 73 The integral of the diffractive 
cross section over the forward peak is thus predicted to scale approximately as 
A2/R; - A4i3. Evidence for color transparency in quasi-elastic p leptoproduc- 
tion y*A + p”N(A - 1) has recently been reported by the E665 experiment at 
Fermilab 75 for both nuclear coherent and incoherent reactions. A test could 
also be carried out at very small tmin at HERA, and would provide a striking 
test of QCD in exclusive nuclear reactions. There is also evidence for QCD 
“color transparency” in quasi-elastic pp scattering in nuclei? In contrast to 
color transparency, Fock states with large-scale color configurations interact 
strongly and with high particle number production. 77 

Hidden Color The deuteron form factor at high Q2 is sensitive to wavefunc- 
tion configurations where all six quarks overlap within an impact separation 
bli < 0(1/Q); the leading power-law fall off predicted by QCD is Fd(Q2) = 
f (a,(Q2))/(Q2)5, where, asymptotically, f (a,(Q2)) 0: CX,(&~)~+~~?‘~ The deriva- 
tion of the evolution equation for the deuteron distribution amplitude and its 
leading anomalous dimension y is given in Ref. 7g In general, the six-quark 
wavefunction of a deuteron is a mixture of five different color-singlet states. 
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The dominant color configuration at large distances corresponds to the usual 
proton-neutron bound state. However at small impact space separation, all 
five Fock color-singlet components eventually acquire equal weight, i.e., the 
deuteron wavefunction evolves to 80% “hidden color.” The relatively large 
normalization of the deuteron form factor observed at large Q2 points to siz- 
able hidden color contributions?0 

Spin-Spin Correlations in Nucleon-Nucleon Scattering and the Charm 
Threshold One of the most striking anomalies in elastic proton-proton scat- 
tering is the large spin correlation ANN observed at large anglessl At fi N 5 
GeV, the rate for scattering with incident proton spins parallel and normal 
to the scattering plane is four times larger than that for scattering with anti- 
parallel polarization. This strong polarization correlation can be attributed 
to the onset of charm production in the intermediate state at this energys2 
The intermediate state IuuduudcC) has odd intrinsic parity and couples to the 
J = S = 1 initial state, thus strongly enhancing scattering when the incident 
projectile and target protons have their spins parallel and normal to the scat- 
tering plane. The charm threshold can also explain the anomalous change in 
color transparency observed at the same energy in quasi-elastic pp scattering. 
A crucial test is the observation of open charm production near threshold with 
a cross section of order of lpb. 

The &CD Van Der Waals Potential and Nuclear Bound Quarlconium The 
simplest manifestation of the nuclear force is the interaction between two heavy 
quarkonium states, such as the T(bb) and the J/q(&). Since there are no va- 
lence quarks in common, the dominant color-singlet interaction arises simply 
from the exchange of two or more gluons. In principle, one could measure 
the interactions of such systems by producing pairs of quarkonia in high en- 
ergy hadron collisions. The same fundamental QCD van der Waals potential 
also dominates the interactions of heavy quarkonia with ordinary hadrons and 
nuclei. The small size of the QQ bound state relative to the much larger 
hadron allows a systematic expansion of the gluonic potential using the op- 
erator product 83 expansion. The coupling of the scalar part of the interaction 
to large-size hadrons is rigorously normalized to the mass of the state via the 
trace anomaly. This scalar attractive potential dominates the interactions at 
low relative velocity. In this way one establishes that the nuclear force be- 
tween heavy quarkonia and ordinary nuclei is attractive and sufficiently strong 
to produce nuclear-bound quarkonium. 83~84 Recently, Miller and I have shown 
that the corrections to the gluon exchange potential from meson exchange con- 
tributions are relatively negligible, and we show how deuteron targets can be 
used to measure the J/$-nucleon cross section?5 Navarra and I have shown 
that exclusive decays of B mesons at B factories such as the B + J/$@I can 
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provide a sensitive search tool for finding possible J/$-baryon resonancess6 

16 Commensurate Scale Relations 

A critical problem in making reliable predictions in quantum chromodynamics 
is how to deal with the dependence of the truncated perturbative series on 
the choice of renormalization scale and scheme. For processes where only the 
leading and next-to-leading order predictions are known, the theoretical un- 
certainties from the choice of renormalization scale and scheme are often much 
larger than the experimental uncertainties. The uncertainties introduced by 
the conventions in the renormalization procedure are amplified in processes in- 
volving more than one physical scale such as jet observables and semi-inclusive 
reactions. In the case of jet production at e+e- colliders, the jet fractions de- 
pend both on the total center of mass energy s and the jet resolution parameter 
y (which gives an upperbound ys to the invariant mass squared of each individ- 
ual jet). different scale-setting strategies can lead to very different behaviors 
for the renormalization scale in the small y region. In the case of QCD pre- 
dictions for exclusive processes such as the decay of heavy hadrons to specific 
channels and baryon form factors at large momentum transfer, the scale ambi- 
guities for the underlying quark-gluon subprocesses are even more acute since 
the coupling constant as(p) enters at a high power. Furthermore, since the 
external momenta entering an exclusive reaction are partitioned among the 
many propagators of the underlying hard-scattering amplitude, the physical 
scales that control these processes are inevitably much softer than the overall 
momentum transfer. 

The renormalization scale ambiguity problem can be resolved if one can 
optimize the choices of scale and scheme according to some sensible criteria. 
In the BLM procedure 7, the renormalization scales are chosen such that all 
vacuum polarization effects from the QCD ,f3 function are re-summed into the 
running couplings. The coefficients of the perturbative series are thus identi- 
cal to the perturbative coefficients of the corresponding conformally invariant 
theory with p = 0. The BLM method has the important advantage of “pre- 
summing” the large and strongly divergent terms in the PQCD series which 
grow as n!(crSfie)“, i.e., the infrared renormalons associated with coupling con- 
stant renormalization. 72,87 Furthermore, the renormalization scales Q* in the 
BLM method are physical in the sense that they reflect the mean virtuality of 
the gluon propagators. 7~87~88~8g In fact, in the or,(Q) scheme, where the QCD 
coupling is defined from the heavy quark potential, the renormalization scale 
is by definition the momentum transfer caused by the gluon. 

A basic principle of renormalization theory is the requirement that re- 
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lations between physical observables must be independent of renormalization 
scale and scheme conventions to any fixed order of perturbation theorya In this 
section, I shall discuss high precision perturbative predictions which have no 
scale or scheme ambiguities. These predictions, called “Commensurate Scale 
Relations,” ” are valid for any renormalizable quantum field theory, and thus 
may provide a uniform perturbative analysis of the electroweak and strong 
sectors of the Standard Model. 

Commensurate scale relations relate observables to observables, and thus 
are independent of theoretical conventions such as choice of intermediate renor- 
malization scheme. The scales of the effective charges that appear in commen- 
surate scale relations are fixed by the requirement that the couplings sum all of 
the effects of the nonzero p function, as in the BLM method? The coefficients 
in the perturbative expansions in the commensurate scale relations are thus 
identical to those of a corresponding conformally-invariant theory with ,0 = 0. 

A helpful tool and notation for relating physical quantities is the effec- 
tive charge. Any perturbatively calculable physical quantity can be used to 
define an effective charge g2~g3~g4 by incorporating the entire radiative correc- 
tion into its definition. An important result is that all effective charges (YA(Q) 
satisfy the Gell-Mann-Low renormalization group equation with the same PO 
and pi; different schemes or effective charges only differ through the third and 
higher coefficients of the /3 function. Thus, any effective charge can be used 
as a reference running coupling constant in QCD to define the renormalization 
procedure. More generally, each effective charge or renormalization scheme, 
including MS, is a special case of the universal coupling function o(Q, pn). got7 
Peterman and Stiickelberg have shown go that all effective charges are related 
to each other through a set of evolution equations in the scheme parameters 

P 7%. 
For example, consider the entire radiative corrections to the annihilation 

cross section expressed as the “effective charge” cm(Q) where Q = ,/Z: 

R(Q)s3C&j[l++]. 

f 
(69) 

Similarly, we can define the entire radiative correction to the Bjorken sum rule 
as the effective charge crgl (Q) where Q is the lepton momentum transfer: 

I�d⌧ ☯gTP(⌧,Q2) -g,en(⌧,Q2)] q ; I=/ ☯l - +] . (70) 

The commensurate scale relations connecting the effective charges for ob- 
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servables A and B have the form 

HA = ~B(QB) (1 + rA,nF + . . .) , (71) 

where the coefficient rA/B is independent of the number of flavors nF contribut- 
ing to coupling constant renormalization. We calculate the coefficients in the 
next section. The ratio of scales XAIB = QA/QB is unique at leading order and 
guarantees that the observables A and B pass through new quark thresholds 
at the same physical scale. One also can show that the commensurate scales 
satisfy the transitivity rule XAIB = XAICXC,B, which is the renormalization 
group property which ensures that predictions in PQCD are independent of the 
choice of an intermediate renormalization scheme C. In particular, scale-fixed 
predictions can be made without reference to theoretically-constructed renor- 
malization schemes such as MSb. QCD can thus be tested in a new and precise 
way by checking that the observables track both in their relative normalization 
and in their commensurate scale dependence. 

A scale-fixed relation between any two physical observables A and B can 
be derived by applying BLM scale-fixing to their respective perturbative pre- 
dictions in, say, the MS scheme, and then algebraically eliminating am The 
choice of the BLM scale ensures that the resulting commensurate scale relation 
between A and B is independent of the choice of the intermediate renormal- 
ization scheme? Thus, using this formalism, one can relate any perturbatively 
calculable observable, such as the annihilation ratio R,+,-, the heavy quark 
potential, and the radiative corrections to structure function sum rules to each 
other without any renormalization scale or scheme ambiguity? Commensu- 
rate scale relations can also be applied in grand unified theories to make scale 
and scheme invariant predictions which relate physical observables in different 
sectors of the theory. 

Scales that appear in commensurate scale relations are physical since they 
reflect the mean virtuality of the gluons in the underlying hard subprocess?Tsg 
As emphasized by Mueller,‘2 commensurate scale relations isolate the effect of 
infrared renormalons associated with the nonzero ,0 function. The usual facto- 
rial growth of the coefficients in perturbation theory due to quark and gluon 
vacuum polarization insertions is eliminated since such effects are resummed 
into the running couplings. The perturbative series is thus much more conver- 
gent. 

It is interesting to compare Pad6 resummation predictions for single-scale 
perturbative QCD series in which the initial renormalization scale choice is 
taken as the characteristic scale p = Q as well as the BLM scale ~1 = Q*. 
One finds g5 that the Pad6 predictions for the summed series are in each case 
independent of the initial scale choice, an indication that the Pad6 results are 
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thus characteristic of the actual QCD prediction. However, the BLM scale 
generally produces a faster convergence to the complete sum than the conven- 
tional scale choice. This can be understood by the fact that the BLM scale 
choice immediately sums into the coupling all repeated vacuum polarization 
insertions to all orders, thus eliminating the large (/3ecr,)” terms in the series 
as well as the n! growth characteristic of the infrared renormalon structure of 
PQCD?6172 

17 The Generalized Crewther Relation 

In 1972 Crewther g7 derived a remarkable consequence of the operator product 
expansion for conformally-invariant gauge theory. Crewther’s relation has the 
form 

3S = KR’ (72) 

where S is the value of the anomaly controlling 7r” + yy decay, K is the value of 
the Bjorken sum rule in polarized deep inelastic scattering, and R’ is the isovec- 
tor part of the annihilation cross section ratio o(e+e- +hadrons)/cT(e+e- + 
p+p-). Since S is unaffected by QCD radiative corrections,s8 Crewther’s rela- 
tion requires that the QCD radiative corrections to R,+,- exactly cancel the 
radiative corrections to the Bjorken sum rule order by order in perturbation 
theory. 

. _ 

However, Crewther’s relation is only valid in the case of conformally- 
invariant gauge theory, i.e. when the coupling CX, is scale invariant. However, 
in reality the radiative corrections to the Bjorken sum rule and the annihila- 
tion ratio are in general functions of different physical scales. Thus Crewther’s 
relation cannot be tested directly in QCD unless the effects of the nonzero p 
function for the QCD running coupling are accounted for, and the energy scale 
fi in the annihilation cross section is related to the momentum transfer Q 
in the deep inelastic sum rules. Recently Broadhurst and Kataevgg have ex- 
plicitly calculated the radiative corrections to the Crewther relation and have 
demonstrated explicitly that the corrections are proportional to the QCD ,O 
function. 

We can use the known exp.ressions to three loops 1oo~101~102 in MS scheme 
and choose the leading-order and next-to-leading scales Q* and Q** to re-sum 
all quark and gluon vacuum polarization corrections into the running couplings. 
The values of these scales are the physical values of the energies or momentum 
transfers which ensure that the radiative corrections to each observable passes 
through the heavy quark thresholds at their respective commensurate physi- 
cal scales. The final result connecting the effective charges (see Section 1) is 
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remarkably simple: 

(73) 

The coefficients in the series (aside for a factor of CF, which can be absorbed 
in the definition of a,) are actually independent of color and are the same in 
Abelian, non Abelian, and conformal gauge theory. The non-Abel&r structure 
of the theory is reflected in the scales Q* and Q**. Note that the a calculational 
device; it simply serves as an intermediary between observables and does not 
appear in the final relation (73). This is equivalent to the group property de- 
fined by Peterman and Sttickelberggo which ensures that predictions in PQCD 
are independent of the choice of an intermediate renormalization scheme. (The 
renormalization group method was developed by Gell-Mann and Low lo3 and 
by Bogoliubov and Shirkov!04) 

The connection between the effective charges of observables given by Eq. 
(73) is a prime example of a “commensurate scale relation” (CSR). A funda- 
mental test of QCD will be to verify empirically that the related observables 
track in both normalization and shape as given by the CSR. The commensu- 
rate scale relations thus provide fundamental tests of QCD which can be made 
increasingly precise and independent of the choice of renormalization scheme 
or other theoretical convention. More generally, the CSR between sets of phys- 
ical observables automatically satisfy the transitivity and symmetry properties 
lo5 of the scale transformations of the renormalization “group” as originally 
defined by Peterman and go Stiickelberg. The predicted relation between ob- 
servabies must be independent of the order one makes substitutions; i.e. the 
algebraic path one takes to relate the observables. 

The relation between scales in the CSR is consistent with the BLM scale- 
fixing procedure7 in which the scale is chosen such that all terms arising from 
the QCD P-function are resummed into the coupling. Note that this also im- 
plies that the coefficients in the perturbation CSR expansions are independent 
of the number of quark flavors f renormalizing the gluon propagators. This 
prescription ensures that, as in quantum electrodynamics, vacuum polarization 
contributions due to fermion pairs are all incorporated into the coupling o(p) 
rather than the coefficients. The coefficients in the perturbative expansion 
using BLM scale-fixing are the same as those of the corresponding confor- 
mally invariant theory with ,0 = 0. In practice, the conformal limit is defined 
by be,,& + 0, and can be reached, for instance, by adding enough spin-half 
and scalar quarks as in N = 4 supersymmetric &CD. Since all the running 
coupling effects have been absorbed into the renormalization scales, the BLM 
scale-setting method correctly reproduces the perturbation theory coefficients 
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of the conformally invariant theory in the p + 0 limit. 

The commensurate scale relation between ogl and on given by Eq. (73) 
implies that the radiative corrections to the annihilation cross section and the 
Bjorken (or Gross-Llewellyn Smith) sum rule cancel at their commensurate 
scales. The relations between the physical cross sections can be written in the 
forms: 

R,+,- (s) Ji: dxd’h Q2) - 9Xx> Q”) = 1 _ Apo23 

3Cei $A/SV 
(74) 

and 

R,+,-(s) .I; dxG’pb, Q2) + F?(x, Q2) = 1 _ Apo-.3 

3Cei 6 , (75) 

provided that the annihilation energy in R,+,- (s) and the momentum transfer 
Q appearing in the deep inelastic structure functions are commensurate at 

NLO: fi = Q* = Qexp[$ - 2c3 + (g + gcs - 2<: - g)pOZ(Q)]. The light- 
by-light correction to the CSR for the Bjorken sum rule vanishes for three 
flavors. The term Ape;i3 with A = en (Q**/Q*) is the third-order correction 
arising from the difference between Q** and Q’; in practice this correction is 
negligible: for a typical value 2 = o~(Q)/r = 0.14, ApcZ3 = 0.007. Thus at the 
magic energy fi = Q*, the radiative corrections to the Bjorken and GLLS sum 
rules almost precisely cancel the radiative corrections to the annihilation cross 
section. This allows a practical test and extension of the Crewther relation to 
nonconformal &CD. 

As an initial test of Eq. (75), we can compare the CCFR measurement 

lo6 of the Gross-Llewellyn Smith sum rule 1 - GF3 = i Jt dx[F,“‘(x, Q2) + 

Fr’(x, Q2)] = i(2.5 f 0.13) at Q2 = 3 GeV2 and the parameterization of the 
annihilation data lo7 1 + &!^R = R,+,- (s)/3 c ei = 1.20. at the commensurate 
scale fi = Q* = 0.38Q = 0.66 GeV. The product is (1 + Gn)(l - 6~~) = 
l.00f0.04, which is a highly nontrivial check of the theory at very low physical 
scales. More recently, the El43 lo8 experiment at SLAC has reported a new 
value for the Bjorken sum rule at Q2 = 3 GeV2: l?y--I’y = 0.163fO.OlO(stat)f 
O.OlG(syst). The Crewther product in this case is also consistent with QCD: 
(1 + &)(I - a,,) = 0.93 f 0.11. 

In a paper with Gabadadze, Kataev and Lu 8 we show that it is also 
possible and convenient to choose one unique mean scale Q* in LYR(Q) so that 
the perturbative expansion will also reproduce the coefficients of the geometric 
progression. The possibility of using a single scale in the generalization of the 
BLM prescription beyond the next-to-leading order (NLO) was first considered 

log by Grunberg and Kataev. The new single-scale Crewther relation has the 
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form: 

Sgl (Q) = &(Q*) - 6$&j*) + &@*) + . . . , (76) 

The generalized Crewther relation provides an important test of &CD. 
Since the Crewther formula written in the form of the CSR relates one ob- 
servable to another observable, the predictions are independent of theoretical 
conventions, such as the choice of renormalization scheme. It is clearly very 
interesting to test these fundamental self-consistency relations between the 
polarized Bjorken sum rule or the Gross-Llewellyn Smith sum rule and the 
e+e--annihilation R-ratio. Present data are consistent with the generalized 
Crewther relations, but measurements at higher precision and energies will be 
needed to decisively test these fundamental connections in &CD. 

It is worthwhile to point out that commensurate scale relations are derived 
within the framework of perturbation theory in leading twist and do not involve 
the nonperturbative contributions to the Adler’s function D(Q2)110 and the R- 
ratio, as well as to the polarized Bjorken and the Gross-Llewellyn Smith sum 
rules. ‘11~112 These nonperturbative contributions are expected to be significant 
at small energies and momentum transfer. In order to make these contributions 
comparatively negligible, one should choose relatively large values for s and 
Q2. In order to put the analysis of the experimental data for lower energies on 
more solid ground, it will be necessary to understand whether there exist any 
Crewther-type relations between nonperturbative order O(1/Q4)-corrections 
to the Adler’s D-function ‘lo and the order 0(l/Q2) higher twist contributions 
to the -deep-inelastic sum rules!“~1’2 

Commensurate scale relations such as the generalized Crewther relation 
discussed here open up additional possibilities for testing &CD. One can com- 
pare two observables by checking that their effective charges agree both in 
normalization and in their scale dependence. The ratio of leading-order com- 
mensurate scales XAIB is fixed uniquely: it ensures that both observables A 
and B pass through heavy quark thresholds at precisely the same physical 
point. The same procedure can be applied to multi-scale problems; in gen- 
eral, the commensurate scales Q*, Q**, etc. will depend on all of the available 
scales. 

The coefficients in a CSR are identical to the coefficients in a conformal 
theory where explicit renormalon behavior does not appear. It is thus reason- 
able to expect that the series expansions appearing in the CSR are convergent 
when one relates finite observables to each other. Thus commensurate scale 
relations between observables allow tests of perturbative QCD with higher and 
higher precision as the perturbative expansion grows. 
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18 Renormalization Scale Fixing In Exclusive Processes 

As we have noted, perturbative QCD can be used to analyze a number of 
exclusive processes involving large momentum transfers, including the decay 
of heavy hadrons to specific channels such as B -+ nn and T -+ p~j, baryon 
form factors at large t, and fixed 8c.m. hadronic scattering amplitudes such as 

‘13 up -+ r+n at high energies. As in the case of inclusive reactions, factoriza- 
tion theorems for exclusive processes l”~ll allow the analytic separation of the 
perturbatively-calculable short-distance contributions from the long-distance 
nonperturbative dynamics associated with hadronic binding. 

The scale ambiguities for the underlying quark-gluon subprocesses are par- 
ticularly acute in the case of QCD predictions for exclusive processes, since the 
running coupling a, enters at a high power. Furthermore, since each external 
momentum entering an exclusive reaction is partitioned among the many prop- 
agators of the underlying hard-scattering amplitude, the physical scales that 
control these processes are inevitably much softer than the overall momen- 
tum transfer. Exclusive process phenomenology is further complicated by the 
fact that the scales of the running couplings in the hard-scattering amplitude 
depend themselves on the shape of the hadronic wavefunctions. 

In this section we will discuss the application of the BLM method to fix 
the renormalization scale of the QCD coupling in exclusive hadronic ampli- 
tudes such as the pion form factor, the photon-to-pion transition form fac- 
tor and yy -+ T+X- at large momentum transfer. Renormalization-scheme- 
independent commensurate scale relations will be established which connect 
the hard scattering subprocess amplitudes that control these exclusive pro- 
cesses to other QCD observables such as the heavy quark potential and the 
electron-positron annihilation cross section. Because the renormalization scale 
is small, we will argue that the effective coupling is nearly constant, thus ac- 
counting for the nominal (dimensional counting) scaling behavior ‘14 of the 
data1W16 

The heavy-quark potential V(Q2) can be identified as the two-particle- 
irreducible scattering amplitude of test charges, i.e., the scattering of an in- 
finitely heavy quark and antiquark at momentum transfer t = -Q2. The rela- 
tion 

~~CF~(Q~) V(Q’) = - Q2 , 

with CF = (Ns - 1)/2Nc = 4/3, then defines the effective charge a~(&). 
This coupling provides a physically-based alternative to the usual MS scheme. 
Recent lattice gauge calculations have provided strong constraints on the nor- 
malization and shape of ov(Q2). 
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As in the corresponding case of Abelian QED, the scale Q of the coupling 
crv(Q) is identified with the exchanged momentum. All vacuum polarization 
corrections due to fermion pairs are incorporated in terms of the usual vacuum 
polarization kernels defined in terms of physical mass thresholds. The first 
two terms PO = 11 - 2nf/3 and ,& = 102 - 38nf/3 in the expansion of the ,0 
function defined from the logarithmic derivative of ov(Q) are universal, i.e., 
identical for all effective charges at Q2 >> 4m2f. The coefficient ps for (YV has 

recently been calculated in the MS scherne.l17 
The scale-fixed relation between CYV and the conventional MS coupling is 

am(Q) = aV(e5j6Q) 1 + FT + ... (78) 

above or below any quark mass threshold. The factor e5i6 N 0.4346 is the ratio 
of commensurate scales between the two schemes to this order. It arises because 
of the convention used in defining the modified minimal subtraction scheme. 
The scale in the MS scheme is thus a factor N 0.4 smaller than the physical 
scale. The coefficient 2C~/3 in the NLO term is a feature of the non-Abelian 
couplings of &CD; the-same coefficient occurs even if the theory had been 
conformally invariant with ,& = 0. The commensurate scale relation between 
(YV, as defined from the heavy quark potential, and crm provides an analytic 

extension of the MS scheme in which flavor thresholds are automatically. taken 
into account at their proper respective scales. 118~g1 The coupling crv provides 
a natural scheme for computing exclusive amplitudes. Once we relate form 
factors to effective charges based on observables, there are no ambiguities due 
to scale or scheme conventions. 

The use of av as the expansion parameter with BLM scale-fixing has 
also been found to be valuable in lattice gauge theory, greatly increasing the 
convergence of perturbative expansions relative to those using the bare lattice 
couplings* In fact, new lattice calculations of the T spectrumrlg have been 
used to determine the normalization of the static heavy quark potential and 
its effective charge: 

cxf’(8.2 GeV) = 0.196(3), (79) 

where the effective number of-light flavors is nf = 3. The corresponding 
modified minimal subtraction coupling evolved to the 2 mass using Eq. (78) 
is given by 

a’5’(MZ) = 0.115(2). 
MS (80) 

This value is consistent with the world average of 0.117(5), but is significantly 
more precise. These results are valid up to NLO. 
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19 Hard Exclusive Two-Photon Reactions 

Exclusive two-photon processes such as yy + hadron pairs and the transi- 
tion form factor y*y -+ neutral mesons play a unique role in testing quantum 
chromodynamics because of the simplicity of the initial state.lO At large mo- 
mentum transfer the direct point-like coupling of the photon dominates at 
leading twist, leading to highly specific predictions which depend on the shape 
and normalization of the hadron distribution amplitudes $~(zi, Q), the basic 
valence bound state wavefunctions. The most recent exclusive two-photon pro- 
cess data from CLEO 12’ provides stringent tests of these fundamental QCD 
predictions. 

Exclusive processes are particularly sensitive to the unknown nonperturba- 
tive bound state dynamics of the hadrons. However, in some important cases, 
the leading power-law behavior of an exclusive amplitude at large momentum 
transfer can be computed rigorously via a factorization theorem which sepa- 
rates the soft and hard dynamics. The key ingredient is the factorization of 
the hadronic amplitude at leading twist. As in the case of inclusive reactions, 
factorization theorems for exclusive processes 10~11~113 allow the analytic sep- 
aration of the perturbatively-calculable short-distance contributions from the 
long-distance nonperturbative dynamics associated with hadronic binding. For 
example, the amplitude yy -+ n+r- factorizes in the form 

1 

J J 
1 

M -yy+T+7r- = dx dy~,(x,Q)TH(x,y,Q)~=(y,Q) (81) 
0 0 

where &(x, a) is in the pion distribution amplitude and contains all of the soft, 
nonperturbative dynamics of the pion qij wavefunction integrated in relative 
transverse momentum up to the separation scale k: < 02, and TH is the 
quark/gluon hard scattering amplitude for yy + (qij)(q?j) where the outgoing 
quarks are taken collinear with their respective pion parent. To lowest order 
in cr,, the hard scattering amplitude is linear in (Y,. The most convenient 
definition of the coupling is the effective charge cuv(Q2), defined from the 
potential for the scattering of two infinitely heavy test charges, in analogy to 
the definition of the QED running coupling. Another possible choice is the 
effective charge @R(S), defined-from the QCD correction to the annihilation 
cross section: I&+,-+hadrons(s) q & (1 + (YR(s)/~). One can relate LYV and 
CYR to am to NNLO using commensurate scale relations?’ 

The contributions from non-valence Fock states and the correction from 
neglecting the transverse momentum in the subprocess amplitude from the 
nonperturbative region are higher twist, i.e., power-law suppressed. The trans- 
verse momenta in the perturbative domain lead to the evolution of the distri- 
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bution amplitude and to next-to-leading-order (NLO) corrections in (Y,. The 
contribution from the endpoint regions of integration, x - 1 and y - 1, are 
power-law and Sudakov suppressed and thus can only contribute corrections 
at higher order in l/Q.‘” 

The QCD coupling is typically evaluated at quite low scales in exclusive 
processes since the momentum transfers has to be divided among several con- 
stituents. In the BLM procedure, the scale of the coupling is evaluated by 
absorbing all vacuum polarization corrections with the scale of the coupling or 
by taking the experimental value integrating over the gluon virtuality. Thus, 
in the case of the (timelike) pion form factor the relevant scale is of order 

Q *2 N e- 3M2 7rYT- g & ME+,- assuming the asymptotic form of the pion dis- 

tribution amplitude dyYrnpt = &fir x(1 - x). At such low scales, it is likely 
that the coupling is frozen or relatively slow varying. 

In the BLM procedure, the renormalization scales are chosen such that all 
vacuum polarization effects from the QCD ,6 function are re-summed into the 
running couplings. The coefficients of the perturbative series are thus identi- 
cal to the perturbative coefficients of the corresponding conformally invariant 
theory with p = 0. The BLM method has the important advantage of “pre- 
summing” the large and strongly divergent terms in the PQCD series which 
grow as n!(c~&,)~, i.e., the infrared renormalons associated with coupling con- 
stant renormalization?2s7 Furthermore, the renormalization scales Q* in the 
BLM method are physical in the sense that they reflect the mean virtuality of 
the gluon propagators.s7~7~88~8g In fact, in the ov(Q) scheme, where the QCD 
coupling is defined from the heavy quark potential, the renormalization scale is 
by definition the momentum transfer caused by the gluon. Because the renor- 
malization scale is small in the exclusive yy processes discussed here, we will 
argue that the effective coupling is nearly constant, thus accounting for the 
nominal scaling behavior of the dataf’5v”6 

Ji, Pang, Robertson, and I 71 have recently analyzed the pion transition 
form factor Fr.7 -+ x0 obtained from ey + e’7r0, the timelike pion form 
obtained from e+e- + @K, and the yy + T+F processes, all at NLO 
in crv. The assumption of a nearly constant coupling in the hard scatter- 
ing amplitude at low scales provides an explanation for the phenomenolog- 
ical success of dimensional counting rules for exclusive processes; i.e., the 
power-law fall-off follows the nominal scaling of the hard scattering ampli- 
tude Mhad - TH - [p~]~-~ where n is in the total number of incident and 
final fields entering TH?~~ 

The transition form factor has now been measured up to Q2 < 8 GeV2 
in the tagged two-photon collisions ey + e’rr” by the CLEO and CELLO 
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collaborations. In this case the amplitude has the factorized form 

QdQ2) = 5 J 
1 dxht(x, Q”)T,H,,(xc, Q2), 

0 

where the hard scattering amplitude for yy* + qij is 

T,H,(x> Q2) = (1 -;,Q2 (I + ~(a,)). (83) 

The leading QCD corrections have been computed by Bra&en 12’ and Dittes 
and Radyushkin 122; however, the NLO corrections are necessary to fix the 
BLM scale at LO. Thus it is not yet possible to rigorously determine the BLM 
scale for this quantity. We shall here assume that this scale is the same as that 
occurring in the prediction for F,. For the asymptotic distribution amplitude 
we thus predict 

Q2Frr(Q2) = 2fn 1- ;e) . 

As we shall see, given the phenomenological form of crv we employ (discussed 
below), this result is not terribly sensitive to the precise value of the scale. 

An important prediction resulting from the factorized form of these results 
is that the normalization of the ratio 

= am(e -14i6Q) (1 - 0.56?) 

(85) 

(86) 

= av(em312 
Q)( 7r> 

1+ 1.439 (87) 

= aR(e5112--2c3 Q) (1 - 0.65:) 

is formally independent of the form of the pion distribution amplitude. The 
am correction follows from combined references. 121~122~123 The next-to-leading 
correction given here assumes the asymptotic distribution amplitude. 

We emphasize that when we relate R, to av we relate observable to ob- 
servable and thus there is no scheme ambiguity. Furthermore, effective charges 
such as QV are defined from physical observables and thus must be finite even 
at low momenta. A number of proposals have been suggested for the form of 
the QCD coupling in the low-momentum regime. For example, Petronzio and 
Parisi 124 have argued that the coupling must freeze at low momentum transfer 
in order that perturbative QCD loop integrations be well defined. Mattingly 
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and Stevenson’07 have incorporated such behavior into their parameterizations 
of oR at low scales. Gribov 125 has presented novel dynamical arguments re- 
lated to the nature of confinement for a fixed coupling at low scales. Zerwasr26 
has noted the heavy quark potential must saturate to a Yukawa form since 
the light-quark production processes will screen the linear confining potential 
at large distances. Cornwall 127 and others 128~12g have argued that the gluon 
propagator will acquire an effective gluon mass m, from nonperturbative dy- 
namics, which again will regulate the form of the effective couplings at low 
momentum. We shall adopt the simple parameterization 

w(Q) = po ln ($-p) ’ 

which effectively freezes the av effective charge to a finite value for Q2 2 4mi. 
We can use the nonrelativistic heavy quark lattice results ‘lg~13’ to fix 

the parameters. A fit to the lattice data of the above parameterization gives 
A” = 0.16 GeV if we use the well-known momentum-dependent nf.i31 Further- 
more, the value rni = 0,19 GeV2 gives consistency with the frozen value of (YR 
advocated by Mattingly and Stevenson. lo7 Their parameterization implies the 
approximate constraint o~(Q)/r N 0.27 for Q = ,/% < 0.3 GeV, which leads 
to av(0.5 GeV) N 0.37 using the NLO commensurate scale relation between 
av and on. The resulting form for av is shown in Fig. 5. The corresponding 
predictions for oR and on using the CSRs at NLO are also shown. Note 
that for low Q2 the couplings, although frozen, are large. Thus the NLO and 
higher-order terms in the CSRs are large, and inverting them perturbatively 
to NLO does not give accurate results at low scales. In addition, higher-twist 
contributions to (YV and (LR, which are not reflected in the CSR relating them, 
may be expected to be important for low Q2.i32 

It is clear that exclusive processes such as the photon-to-pion transition 
form factors can provide a valuable window for determining the magnitude 
and the shape of the effective charges at quite low momentum transfers. In 
particular, we can check consistency with the cxv prediction from lattice gauge 
theory. A complimentary metkod for determining av at low momentum is to 
use the angular anisotropy of e+e- -+ QQ at the heavy quark thresholds. 133 
It should be emphasized that the parameterization (89) is just an approximate 
form. The actual behavior of a~(&~) at low Q2 is one of the key uncertainties 
in QCD phenomenology. 

As we have emphasized, exclusive processes are sensitive to the magnitude 
and shape of the QCD couplings at quite low momentum transfer: Q;” N 
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Figure 5: The coupling function a~(&~) as given in Eq. (89). Also shown are the corre- 
sponding predictions for as and a~ following from the NLO commensurate scale relations. 
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ee3Q2 z Q2/20 and Qk2 2~ 134 Q2/50. The fact that the data for exclusive 
processes such as form factors, two photon processes such as yy + rr+rr-, and 
photoproduction at fixed 8,.,. are consistent with the nominal scaling of the 
leading-twist QCD predictions (dimensional counting) at momentum transfers 
Q up to the order of a few GeV can be immediately understood if the effective 
charges (YV and oR are slowly varying at low momentum. The scaling of 
the exclusive amplitude then follows that of the subprocess amplitude TH with 
effectively fixed coupling. Donnachie and Landshoff 135 have also argued that a 
frozen coupling is needed to explain the observed tP8 scaling of da/dt (pp + pp) 
at large s >> -t. Note also that the Sudakov effect of the end point region 
is the exponential of a double log series if the coupling is frozen, and thus is 
strong. 

0.25 I I I I 

0.2 

0.15 
Q2%(Q2) 

(GeV o 1 

. _ 
0.05 

0 

T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ., . . . . . . . . . . . 

0 2 4 6 8 10 

Q2 (GeV2) 

Figure 6: The y -+ no transition form factor. The solid line is the full prediction including 
the QCD correction [Eq. (go)]; the dotted line is the LO prediction Q2Fyx(Q2) = 2fn. 

In Fig. 6, we compare the recent CLEO data 12’ for the photon to pion 
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transition form factor with the prediction 

Q2Fyr(Q2) = 2f, 
5 av (em312Q) 

1 - i 
7r >- 

The flat scaling of the Q2FrT(Q2) data from Q2 = 2 to Q2 = 8 GeV2 pro- 
vides an important confirmation of the applicability of leading twist QCD to 
this process. The magnitude of Q2FrT(Q2) is remarkably consistent with the 
predicted form, assuming the asymptotic distribution amplitude and including 
the LO QCD radiative correction with (rv(e-3/2Q)/n N 0.12. Radyushkin,r36 
Ong 137 and Kroll’jg have also noted that the scaling and normalization of the 
photon-to-pion transition form factor tends to favor the asymptotic form for 
the pion distribution amplitude and rules out broader distributions such as 
the two-humped form suggested by QCD sum rules. 13* One cannot obtain a 
unique solution for the nonperturbative wavefunction from the F,, data alone. 
However, we have the constraint that 

(assuming the renormalization scale we have chosen in Eq. (84) is approxi- 
mately correct). Thus one could allow for some broadening of the distribution 
amplitude with a corresponding increase in the value of av at low scales. 

We have also analyzed the yy + rr+rr-, K+K- data. These data exhibit 
true leading-twist scaling (Fig. 7), so that one would expect this process to be 
a good test of theory. One can show that to LO 

g (yy + 7T+7T-) wmt2 
. _ g (yy -b /4+/A-) = 1 - cos4 e,.,. (92) 

in the CMS, where dt = (s/2)d(cos@,.,. ) and here F,(s) is the time-like pion 
form factor. The ratio of the time-like to space-like pion form factor for the 
asymptotic distribution amplitude is given by 

If we simply continue Eq. (89) to negative values of Q2 then for 1 < Q2 < 10 
GeV2, and hence 0.05 < Q*2 < 0.5 GeV2, the ratio of couplings in Eq. (93) 
is of order 1.5. Of course this assumes the analytic application of Eq. (89). 
Thus if we assume the asymptotic form for the distribution amplitude, then 
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Figure 7: Two-photon annihilation cross section 477 + n+n-,K+K-) as a function of 
CMS energy, for 1 cos 6* 1 < 0.6. 

We also note that the normalization of (YV could be larger at low mo- 
mentum than our estimate. This would also imply a broadening of the pion 
distribution amplitude compared to its asymptotic form since one needs to 
raise the expectation value of l/(1 - x) in order to maintain consistency with 
the magnitude of the F,,(Q2) data. A full analysis will then also require 

lIThe contribution from kaons is obtained at this order simply by resealing the prediction 
for pions by a factor (fK/frr)4 N 2.2. 
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consideration of the breaking of scaling from the evolution of the distribution 
amplitude. In any case, we find no compelling argument for significant higher- 
twist contributions in the few GeV regime from the hard scattering amplitude 
or the endpoint regions, since such corrections violate the observed scaling 
behavior of the data. 

The analysis we have presented here suggests a systematic program for 
estimating exclusive amplitudes in QCD (including exclusive B-decays) which 
involve hard scattering. The central input is ov(O), or 

1 Q: 
CYV = -7j 

Q J dQ’2av(Q’2), 0; 5 1 GeV2, 
0 0 

which largely controls the magnitude of the underlying quark-gluon subpro- 
cesses for hard processes in the few-GeV region. In this work, the mean cou- 
pling value for Q$ 21 0.5 GeV2 is Cyv 21 0.38. The main focus will then be to 
determine the shapes and normalization of the process-independent meson and 
baryon distribution amplitudes. 

The leading-twist scaling of the observed cross sections for exclusive two- 
photon processes and other fixed 8,, reactions can be understood if the effec- 
tive coupling a~(&*) is approximately constant in the domain of Q* relevant 
to the underlying hard scattering amplitudes. In addition, the Sudakov sup- 
pression of the long-distance contributions is strengthened if the coupling is 
frozen because of the exponentiation of a double log series. We have also found 
that the commensurate scale relation connecting the heavy quark potential, as 
determined from lattice gauge theory, to the photon-to-pion transition form 
factor is in excellent agreement with ye + roe data assuming that the pion 
distribution amplitude is close to its asymptotic form &fXx( 1 -x). We also re- 
produce the scaling and approximate normalization of the yy + n+rr-, K+K- 
data at large momentum transfer. However, the normalization of the space- 
like pion form factor F,(Q2) obtained from electroproduction experiments is 
somewhat higher than that predicted by the corresponding commensurate scale 
relation. This discrepancy may be due to systematic errors introduced by the 
extrapolation of the y*p + r+n electroproduction data to the pion pole. 

20 Acknowledgments 

Much of the content of these lectures is based on collaborations with Matthias 
Burkardt, Sid Drell, Paul Hoyer, Chueng Ji, Marek Karliner, Peter Lepage, 
Hung Jung Lu, Bo-Qiang Ma, Alex Pang, Hans Christian Pauli, Dave Robert- 
son, Ivan Schmidt, Felix Schlumpf, and Ramona Vogt. I am particularly grate- 
ful to Professors Chueng Ji and Dong-Pi1 Min for their invitation to this school. 

57 



This work is supported in part by the U.S. Department of Energy under con- 
tract no. DE-AC03-76SF00515. 

References 

1. For recent reviews of light-cone quantization and its applications to &CD, 
see S. J. Brodsky, H. C. Pauli, and S. S. Pinsky, SLAC-PUB-7484, hep- 
ph/9705477, and A. Harindranath, hep-ph/9612244, Lectures given at 
International School on Light-Front Quantization and Non-Perturbative 
&CD, hep-ph/9612244. 

2. H. C. Pauli and S. J. Brodsky, Phys. Rev. D32, 2001 (1985). 
3. S. J. Brodsky and H. C. Pauli, SLAC-PUB-5558, published in Schladming 

1991, Proceedings. 
4. S. Dalley, and I. R. Klebanov, Phys. Rev. D47, 2517 (1993). 
5. F. Antonuccio and S. Dalley, Phys. Lett. B376, 154 (1996), hep- 

ph/9512106, and references therein. 
6. For a review and further references, see S. J. Brodsky and D. G. Robert- 

son published in the proceedings of ELFE (European Laboratory for 
Electrons) Summer School on Confinement Physics, Cambridge, Eng- 
land, hep-phf9511374 

7. S. J. Brodsky, G. P. Lepage and P. B. Mackenzie, Phys. Rev. D28, 228 
(1983). 

8. S. J. Brodsky, G. T. Gabadadze, A. L. Kataev, and H. J. Lu, Phys. Lett. 
372B, 133 (1996). 

9. S. J. Brodsky and S. D. Drell, Phys. Rev. D22, 2236 (1980). 
10. S. J. Brodsky and G. P. Lepage, Phys. Rev. Lett. 53, 545 (1979); Phys. 

Lett. 87B, 359 (1979); G. P. Lepage and S. J. Brodsky, Phys. Rev. 
D22, 2157 (1980). S.J. Brodsky and G.P. Lepage, Phys. Rev. D24, 
2848 (1981). S. J. Brodsky and G. P. Lepage, Phys. Rev. D24, 1808 
(1981). A review of exclusive processes in QCD and further references 
is given in S. J. Brodsky and G. P. Lepage, in Perturbative Quantum 
Chromodynamics, A. H. Mueller, Ed. (World Scientific, 1989). 

11. A. V. Efremov and A. V. Radyushkin, Theor. Math. Phys. 42, 97 
(1980). 

12. C.-R. Ji, A. Pang, and AI Szczepaniak, Phys. Rev. D52, 4038 (1995). 
13. F. Antonuccio, S. J. Brodsky, and S. Dalley, SLAC-PUB-7472, hep- 

ph/9705413. 
14. S. J. Brodsky, R. Roskies, R. Suaya, Phys.Rev. D8, 4574 (1973). 
15. A. Langnau and M. Burkardt , Phys. Rev. D47 3452 (1993); Phys. Rev. 

D44 3857 (1991). 

58 



16. M. Burkardt, Phys. Rev. D47,4628 (1993) and M. Burkardt, Adv. Nucl. 
Phys. 23, 1 (1996). 

17. M. Burkardt, Phys. Rev. D54, 2913 (1996) and M. Burkardt and H. El- 
Khozondar, Phys. Rev. D55, 6514 (1997). 

18. See J. D. Bjorken, J. B. Kogut, and D. E. Soper, Phys. Rev. D3, 1382 
(1971)) and references therein. 

19. A summary of light-cone perturbation-theory calculation rules for gauge 
theories is given by G. P. Lepage and S. J. Brodsky, Phys. Rev. D22, 
2157 (1980). 

20. This is the light-cone analog of the infinite-momentum frame introduced 
in S. D. Drell. D. J. Levy, and T. M. Yan, Phys. Rev. Lett. 22, 744 
(1969). See also S. J. Brodsky, F. E. Close, and J. F. Gunion, Phys. Rev. 
D6, 177 (1972). 

21. S. D. Drell and T. M. Yan, Phys. Rev. Lett. 24, 181 (1970). 
22. Related calculations in the infinite-momentum frame are given in S. J. 

Chang and S. K. Ma, Phys. Rev. 180, 1506 (1969); J. D. Bjorken, et al., 
Ref. ‘*; D. Foerster, Ph.D. Thesis, University of Sussex, 1972; and S. J. 
Brodsky, R. Roskies, and R. Suaya, Phys. Rev. D8, 4574 (1973). The 
infinite-momentum-frame calculation of the order-a2 contribution to the 
anomalous moment of the electron is also given in the last reference. 

23. S. J. Brodsky, T. Huang, and G. P. Lepage, Published in Banff Summer 
Inst.1981:83 (QCD161:B23:1981) 

24. S. J. Brodsky and J. R. Hiller, Phys. Rev. C28, 475 (1983). 
25. S. J. Brodsky and J. R. Primack, Ann. Phys. 52 315 (1969); Phys. Rev. 

174, 2071 (1968). 
26. S. J. Brodsky and F. Schlumpf, Phys. Lett. B329, 111 (1994). 
27. S. B. Gerasimov, Yad. Fiz. 2, 598 (1965) [Sov. J. Nucl. Phys. 2, 430 

(1966)]. 
28. S. D. Drell and A. C. Hearn, Phys. Rev. Lett. 16, 908 (1966). 
29. R. J. Perry, A. Harindranath and K. G. Wilson, Phys. Rev. Lett. 65, 

2959 (1990). 
30. B.-Q. Ma, Phys. Rev. C 43, 2821 (1991); ht. J. Mod. Phys. E 1, 809 

(1992) . 
31. F. Schlumpf, Phys. Rev. D47, 4114 (1993); Mod. Phys. Lett. A8, 2135 

(1993); Phys. Rev. D48;4478 (1993); J. Phys. G 20, 237 (1994). 
32. E. Wigner, Ann. Math. 40, 149 (1939). 
33. H. J. Melosh, Phys. Rev. D9, 1095 (1974); L. A. Kondratyuk and 

M. V. Terent’ev, Yad. Fiz. 31, 1087 (1980) [Sov. J. Nucl. Phys. 31, 561 
(1980)]; D. V. Ah1 uwalia and M. Sawicki, Phys. Rev. D47, 5161 (1993). 

34. L. L. Frankfurt and M. I. Strikman, Nucl. Phys. B 148, 107 (1979), 

59 



. 

Phys. Rep. 76, 215 (1981); L. A. Kondratyuk and M. I. Strikman, Nucl. 
Phys. A426, 575 (1984); L. L. Frankfurt, T. Frederico, and M. Strikman, 
Phys. Rev. C48, 2182 (1993). 

35. F. Coester and W. N. Polyzou, Phys. Rev. D26, 1349 (1982); P. L. 
Chung, F. Coester, B. D. Keister and W. N. Polyzou, Phys. Rev. C37, 
2000 (1988). 

36. H. Leutwyler and J. Stern, Ann. Phys. 112, 94 (1978). 
37. P. L. Chung and F. Coester, Phys. Rev. D44, 229 (1991). 
38. B.-Q. Ma, J. Phys. G17, L53 (1991); B.-Q. Ma and Qi-Ren Zhang, 

2. Phys. C58, 479 (1993). 
39. Particle Data Group, Phys. Rev. D45 (Part 2), 1 (1992). 
40. G. Karl, Phys. Rev. D45, 247 (1992). 
41. H. Fritzsch, Mod. Phys. Lett. A5, 625 (1990). 
42. R. L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990). 
43. A. V. Efremov and 0. V. Teryaev, Proceedings of the International Sym- 

posium on Hadron Interactions (Bechyne), eds. J. Fischer, P. Kolar and 
V. Kundrat (Prague), 302 (1988); G. Altarelli and G. G. Ross, Phys. 
Lett. B212, 391 (1988); R. D. Carlitz, J. C. Collins and A. H. Mueller, 
Phys. Lett. B214; 229 (1988). 

44. S. J. Brodsky, M. Burkardt, and I. Schmidt, Nucl. Phys. B441, 197 
(1995)) hep-ph/9401328 

45. E. Leader, A. V. Sidorov, and D. B. Stamenov, hep-ph/9708335 
46. P. Hoyer, S. J. Brodsky, SLAC-PUB-5374, Published in Nashville Part. 

Prod.1990: 238-255 (QCD161:T736:1990). 
47. S. J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, Phys. Lett. B93, 

451 (1980); S. J. Brodsky, C. Peterson, and N. Sakai, Phys. Rev. D23 
2745 (1981). 

48. S. J. Brodsky and B.-Q. Ma, Phys.Lett. B381, 317 (1996). hep- 
ph/9604393 

49. R. Vogt and S. J. Brodsky, Nucl. Phys. B438, 261 (1995). 
50. S. J. Brodsky, P. Hoyer, A. H. Mueller, W.-K. Tang, Nucl. Phys. B369, 

519 (1992). 
51. S. J. Brodsky, J. C. Collins, S. D. Ellis, J. F. Gunion, and A. H. Mueller, 

Snowmass Summer Study 1984:227 (QCD184:S7:1984). 
52. J. J. Aubert, et al., Nucl: Phys. B123, 1 (1983). 
53. S. J. Brodsky, W.-K. Tang, and P. Hoyer, Phys. Rev. D52, 6285 (1995). 
54. J. Badier, et al., 2. Phys. C 20, 1010 (1983). 
55. C. Biino, et al., Phys. Rev. Lett. 58, 2523 (1987). 
56. B. W. Harris, J. Smith, and R. Vogt, hep-ph/9508403, Nucl. Phys. 

B461, 181 (1996); E. Hoffmann, R. Moore, 2. Phys. C20, 71 (1983). 

60 



57. J. Badier, et al., Phys. Lett B114, 457 (1982), ibid. 158, 85 (1985). 
58. M.E.B. Franklin et al., Phys. Rev. Lett. 51, 963 (1983); G. Trilling, 

J. Phys. (Paris) Colloq. 43, C3-81 (1982); E. Bloom, J. Phys. (Paris) 
Colloq. 43, C3-407 (1982). 

59. Particle Data Group, Review of Particle Physics, Phys. Rev. D54, 1 
(1996). 

60. BES Collaboration, J.Z. Bai et al., Phys. Rev. D54, 1221 (1996). This 
upper limit is substantially more stringent than 8.3 x 10e5 quoted in Ref. 
59 

61. S. J. Brodsky, G. P. Lepage, and S. F. Tuan, Phys. Rev. Lett. 59, 621 
(1987). 

62. S. J. Brodsky and M. Karliner, Phys. Rev. Lett. 78, 4682 (1997), hep- 
ph/9704379 

63. S. S. Pinsky, Phys. Lett. B236, 479 (1990). 
64. S. J. Brodsky and I. A. Schmidt, Phys. Lett. B351, 344 (1995). 
65. S. J. Brodsky and I. Schmidt (to be published). 
66. G. Bertsch, S. J. Brodsky, A. S. Goldhaber, and J. F. Gunion, Phys. 

Rev. Lett. 47, 297 (1981). 
67. L. Frankfurt, G. A. Miller, and M. Strikman, Phys. Lett. B304, 1 (1993), 

hep-ph/9305228 
68. R. Weiss-Babai, representing Fermilab E791 collaboration, proceedings 

of Hadron 97 conference, BNL (1997), to be published 
69. P. Kroll and M. Raulfs, Phys. Lett. B387, 848 (1996). 
70. I. V. Musatov and A. V. Radyushkin, hep-ph/9702443. 
71. S. J. Brodsky, C.-R. Ji, A. Pang, and D. G. Robertson, SLAC-PUB-7473, 

hep-ph/9705221. 
72. A. H. Mueller, Nucl. Phys. B250, 327 (1985). A. H. Mueller, NucI. 

Phys. B415, 373 (1994). A. H. Mueller, Phys. Lett. B308, 355 (1993). 
73. S. J. Brodsky, L. Frankfurt, J. F. Gunion, A. H. Mueller, and M. Strik- 

man, Phys. Rev. D50, 3134 (1994). hep-ph/9402283. 
74. S. J. Brodsky and A. H. Mueller, Phys. Lett. 206B, 685 (1988). 
75. Adams, et al., Phys. Rev. Lett. 74, 1525 (1995). 
76. S. Heppelmann, Nucl. Phys. B (Proc. Suppl.) 12, 159 (1990), and 

references therein. 
77. B. Blaettel, G. Baym, L. -L. Frankfurt, H. Heiselberg, and M. Strikman, 

Phys. Rev. D47, 2761 (1993). 
78. S. J. Brodsky and B. T. Chertok, Phys. Rev. D14, 3003 (1976). 
79. S. J. Brodsky, C.-R. Ji, and G. P. Lepage, Phys. Rev. Lett. 51, 83 

(1983). 
80. G. R. Farrar, K. Huleihel, and H. Zhang, Phys. Rev. Lett. 74, 650 

61 



I 
: 

(1995). 
81. A. D. Krisch, Nucl. Phys. B (Proc. Suppl.) 25, 285 (1992). 
82. S. J. Brodsky and G. F. de Teramond, Phys. Rev. Lett. 60, 1924 (1988). 
83. M. Luke, A. V. Manohar and M. J. Savage, Phys. Lett. B288, 355 

(1992). 
84. S. J. Brodsky, G. F. de Teramond, and I. A. Schmidt, Phys. Rev. Lett. 

64, 1011 (1990). 
85. S. J. Brodsky and G. A. Miller, SLAC-PUB-7553, hep-ph/9707382 
86. S. J. Brodsky and F. S. Navarra, SLAC-PUB-7445, hep-ph/9704348 
87. P. Ball, M. Beneke and V. M. Braun, Phys. Rev. D52, 3929 (1995); 

P. Ball, M. Beneke and V. M. Braun, Nuc1. Phys. B452, 563 (1995). 
hep-ph/9502300 

88. G. P. Lepage and P. B. Mackenzie, Phys. Rev. D48, 2250 (1993). 
89. M. Neubert, Phys. Rev. D51, 5924 (1995); Phys. Rev. Lett. 76, 3061 

(1996). 
90. E. C. G. Stiickelberg and A. Peterman, Helv. Phys. Acta 26 (1953) 499; 

A. Peterman, Phys. Rev.53C, 157 (1979). 
91. S. J. Brodsky and H. J. Lu, Phys. Rev. D51, 3652 (1995). H. J. Lu 

and S. J. Brodsky, Phys. Rev. D48, 3310 (1993). 
92. G. Grunberg, Phys. Lett. B95, 70 (1980); Phys. Lett. BllO, 501 (1982); 

Phys. Rev. D29, 2315 (1984). 
93. A. Dhar and V. Gupta, Phys. Rev. D29, 2822 (1984). 
94. V. Gupta, D. V. Shirkov and 0. V. Tarasov, Int. J. Mod. Phys. A6, 

3381 (1991). 
95. S. J. Brodsky, J. Ellis, E. Gardi, M. Karliner, and M. Samuel, hep- 

ph/9706467; M. A. Samuel, J. Ellis, and M. Karliner, Phys. Rev. Lett. 
74, 4380 (1995). 

. _ 96. G. ‘t Hooft, in The whys of Subnuclear Physics, Proceedings of the Inter- 
national School, &ice, Italy, 1977, Subnuclear Series Vol. 15 (Plenum, 
New York, 1979). 

97. R. J. Crewther, Phys. Rev. Lett. 28, 1421 (1972). 
98. W. A. Bardeen, Phys. Rev. D184, 1848 (1969). 
99. D. J. Broadhurst and A. L. Kataev, Phys. Lett. B315, 179 (1993). 
100. S. A. Larin and J.A.M. Vermaseren, Phys. Lett. B259, 345 (1991). 
101. S. G. Gorishny, A. L. Kataev, and S. A. Larin, Phys. Lett. B259, 144 

(1991). 
102. L. R. Surguladze and M. A. Samuel, Phys. Rev. Lett. 66, 560 (1991), 

Phys. Rev. Lett. 66, 24163 (1991). 
103. M. Gell-Mann and F. E. Low, Phys. Rev. D95, 1300 (1954). 
104. N. N. Bogoliubov and D. V. Shirkov, Dok. Akad. Nauk SSSR 103,391 

62 



(1955). 
105. S. J. Brodsky and H. J. Lu, SLAC-PUB-6000 (1993). 
106. CCFR Collab., W. C. Leung et al., Phys. Lett. B317, 655 (1993); A. 

L. Kataev, A. V. Sidorov, Phys. Lett. B331, 179 (1994). 
107. A. C. Mattingly and P. M. Stevenson, Phys. Rev. D49, 437 (1994). 
108. El43 Collab., K. Abe et al., SLAC-PUB 95-6734. 
109. G. Grunberg and A. L. Kataev, Phys. Lett. B279, 352 (1992). 
110. M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B147, 

385 (1979). 
111. R.L. Jaffe and M. Soldate, Phys. Rev. D26, 49 (1982); E.V. Shuryak 

and A.I. Vainshtein, Nucl. Phys. B199, 451 (1982); Nucl. Phys. B201, 
141 (1982); X. J i and M. Unrau, Phys. Lett. B333, 228(1994). 

112. R. W. Brown, K. L. Kowalski, and S. J. Brodsky, Phys. Rev. D28, 
624 (1983); S. J. Brodsky and R. W. Brown, Phys. Rev. Lett. 49, 966 
(1982). 

113. S. J. Brodsky and G. P. Lepage, in Perturbative Quantum Chromody- 
namics, A. H. Mueller, Ed. (World Scientific, 1989). 

114. S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31, 1153 (1973); 
Phys.Rev. Dll, 1309 (1975). 

115. C.-R. Ji, A. Sill and R. Lombard-Nelsen, Phys. Rev. D36, 165 (1987). 
116. C.-R. Ji and F. Amiri, Phys. Rev. D42, 3764 (1990). 
117. M. Peter, Phys. Rev. Lett. 78, 602 (1997); hep-ph/9702245. 
118. S. J. Brodsky, M. Gill, G. Mirabelli, M. Melles, and J. Rathsman (in 

preparation). 
119. .C. T. H. Davies et. al., Phys. Rev. D52, 6519 (1995). C.T.H. Davies, 

K. Hornbostel, G. P. Lepage, A. Lidsey, J. Shigemitsu, J. Sloan, Phys. 
Lett. B345, 42 (1995). 

120. J. Gronberg et al. CLNS-97-1477, (1997), hep-ex/9707031; J. Dominick, 
et al., Phys. Rev. D50, 3027 (1994). 

121. E. Braaten and S.-M. Tse, Phys. Rev. D35, 2255 (1987). 
122. F. M. Dittes and A. V. Radyushkin, Sov. J. Nucl. Phys. 34, 293 

(1981); Phys. Lett. 134B, 359 (1984). 
123. R. D. Field, R. Gupta, S. Otto, and L. Chang, NucZ. Phys. B186, 429 

(1981). 
124. G. Parisi and R. Petronzio, Phys. Lett. 95B, 51 (1980). 
125. V. N. Gribov, Lund Report No. LU-TP 91-7, 1991 (unpublished). 
126. K. D. Born, E. Laermann, R. Sommer, P. M. Zerwas, and T. F. Walsh, 

Phys. Lett. 329B, 325 (1994). 
127. J. M. Cornwall, Phys. Rev. D26, 1453 (1982). 
128. A. Donnachie and P. V. Landshoff, Nucl. Phys. B311, 509 (1989). 

63 



I . 

129. M. Gay Ducati, F. Halzen and A. A. Natale, Phys. Rev. D48, 2324 
(1993). 

130. A. X. El-Khadra, G. Hackney, A. Kronfeld and P. B. Mackenzie, Phys. 
Rev. Lett. 69, 729 (1992). 

131. D. V. Shirkov and S. V. Mikhailov, 2. Phys. C63, 463 (1994). 
132. M. Beneke, V. M. Braun, and N. Kivel, Phys. Lett. B404,315 (1997); 

V. M. Braun, hep-ph/9505317. 
133. S. J. Brodsky, A. H. Hoang, J. H. Kuhn, and T. Teubner, Phys. Lett. 

359B, 355 (1995). 
134. N. Isgur and C. H. Lewellyn-Smith, Phys. Rev. Lett. 52, 1080 (1984); 

Phys. Lett. 217B, 535 (1989); Nucl. Phys. B317, 526 (1989). 
135. A. Donnachie and P. V. Landshoff, Phys. Lett. B387, 637 (1996), 

hep-ph/9607377. 
136. A. V. Radyushkin, Acta Phys. Polon. B26, 2067 (1995). 
137. S. Ong, Phys. Rev. D52, 3111 (1995). 
138. V. L. Chernyak and A. R. Zhitnitsky, Phys. Rep. 112, 173 (1984). 

64 


