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1 Introduction

Questions of stability in Hamiltonian systems can usually be addressed by

restricting attention to a Poincar�e section �, which has dimension one less

than the e�ective dimension of phase space [1]. (For an autonomous system in d

degrees of freedom the e�ective dimension is that of the energy surface, namely

2d�1; for a non-autonomous system in d degrees of freedom and Hamiltonian

periodic in the time the e�ective dimension is 2d + 1, the dimension of the

so-called extended phase space.) In the autonomous case suppose that there

is a T -periodic orbit �, and choose � so that it intersects � transversely at z0.

Then a point z in a su�ciently small neighborhood U � � of z0 will return

to � in a time t(z) close to T . If �(z; t) is the time evolution map that takes

z = z(0) into z(t), then the Poincar�e return map is M = �(z; t(z)) with z

restricted to U . In the non-autonomous case with T�periodic Hamiltonian,

a convenient choice for � consists of the entire 2d�dimensional phase space.

Then the Poincar�e map is simply M = �(z; T ). The full-turn map of particle

accelerator theory is a Poincar�e map under this de�nition, but in that theory

the independent variable t is not actually the time, but rather arc-length

s along a closed reference orbit [2,3]. Thus, the map describes the change

in phase space coordinates when the particle makes a full turn around the

accelerator ring.

The Poincar�e section is a convenient arena in which to study stability by

methods such as long-term mapping and construction of quasi-invariants, or

to study resonance structure [4]. Its lower dimension in comparison to e�ec-

tive phase space can be critical in making it easier to compute and visualize

quantities of interest such as quasi-invariant surfaces.

In numerical work on non-integrable ows, the basic dynamical model is often

provided by a symplectic integrator [5{8]. The orbits of the integrator, the

numerical ow, de�ne a numerical Poincar�e map M . (In the case of an au-

tonomous system, part of the algorithm to determine M consists of locating

the intersection of the orbit with the Poincar�e section [9,10]. Since it is easy

to locate the intersection approximately, some iterative procedure or a local

change of variable will su�ce to locate it exactly.) The use of M , de�ned in

this way as the result of numerical integration, is fairly common in the liter-

ature of dynamical systems. Another idea is to devise an approximate closed

formula forM . If the approximation ~M could be evaluated much more quickly

than M itself, one might be able to follow much longer orbits and make better

estimates of long-term stability than would otherwise be possible. This ap-

proach has been pursued seriously by authors in accelerator theory, because

something of the sort provides the only hope of following orbits over the long

times that are involved in high-energy hadronic storage rings. The particle

beams are stored for the order of one day, during which time there may be
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about 1011 interactions with localized non-linear magnetic �elds [11]. It is far

too expensive to follow such long orbits by symplectic integration through

each of the nonlinear regions, even though it is considered adequate to use

only a few integration steps per region.

In early work, ~M was represented by a truncated power series [12,13]. Although

that worked quite well at small oscillation amplitudes, it was doubtful at large

amplitudes near the e�ective border of stability (the \dynamic aperture"),

because the violation of the symplectic condition was too large (for feasible

orders of truncation)[14]. One response to the requirement of symplecticity,

the one that we pursue, is to construct in closed form the canonical, mixed-

variable generator of a map ~M , rather than ~M itself. The resulting implicit

de�nition of ~M adds only moderately to the cost of iterating the map. Another

idea, due to Irwin [15] and pursued by Dragt and Abell [16,17], results in a map
~M that is both explicit and symplectic, but the approximation theory of that

technique is di�cult to manage, and the prospects of a practical advantage still

uncertain. By contrast, the approximation theory for the generating function is

rather simple, as was shown in [18] and will be shown again here in a di�erent

framework.

In prior work by the authors and their collaborators [19,18,4] the generator

was expressed in canonical polar coordinates. It was given as a Fourier series in

angles, the Fourier coe�cients being spline functions of actions. An advantage

of this approach is that the Fourier coe�cients can be represented explicitly in

terms of the map M . A disadvantage is that coordinate singularities arise in

problems with more than one degree of freedom, at points in phase space where

just one action variable vanishes. No such singularities occur in Cartesian

coordinates. Cartesian coordinates have been used by other authors [20{22],

but only in schemes in which the generator is given as a truncated power

series. Since the generator in any coordinate system has singularities at large

phase-space amplitudes (possibly complex), the power series may show poor

convergence at large amplitudes. We are therefore led to examine a spline

expansion, which is likely to be more robust in the large-amplitude regime,

and in any case should allow quicker map iteration. Quicker iteration arises

from the fact that one has only to evaluate the local, low-order polynomial

components of the splines, rather than all terms of a multidimensional power

series.

As far as we know, maps ~M giving a close approximation to M for non-

trivial ows have been used only in accelerator physics. It seems likely that the

method could be valuable in other Hamiltonian problems with a few degrees

of freedom, in subjects such as plasma physics, models of galactic dynamics,

and semi-classical quantization of small molecules. The construction of quasi-

invariant surfaces [24], as well as computation of long orbits, is aided by fast

mapping.
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2 Generating Function as a Line Integral

For simplicity in notation we consider a system in one degree of freedom. The

generalization to two or more degrees of freedom will be obvious, at least when

the motions are decoupled at the linear level as in the case studied in Ref.[18].

The map M de�ned by a symplectic integrator will be denoted in Cartesian

coordinates (x; p) as follows. If M : (x; p) 7! (x0; p0) then

x0 = cos(2��) x + sin(2��) p+X(x; p) ; (1)

p0= � sin(2��) x+ cos(2��) p+ P (x; p) : (2)

or, in terms of the rotation matrix R for angle 2��,

z0 = Rz +N(z) ; (3)

where z = (x; p)T and N(z) = (X(x; p); P (x; p))T are column vectors. The

positive constant � is the tune or winding number. We suppose that X and P

have the forms

X(x; p) =
nX

q=2

Xq(x; p) ; P (x; p) =
nX

q=2

Pq(x; p) ; (4)

where Xq and Pq are homogeneous polynomials of degree q and n is �nite.

A typical symplectic integrator [5,6], applied to the Hamiltonian H(x; p; s) of

an accelerator model, produces such a map. Here the independent time-like

variable is s, the arc length along a closed reference orbit, andH is periodic in s

with period equal to the circumference C of the reference orbit. The Poincar�e

section � is the two-dimensional phase space. Each step of the integrator

produces a polynomial map representing transport through a simple magnetic

element or a fraction of such an element. A composition of a �nite number of

steps corresponding to a full turn around the accelerator yields a map of form

(3)-(4), with n for a typical magnetic lattice being quite large (as much as

several thousand). The integrator may represent the e�ect of linear magnetic

elements as exact rotations. Some codes follow that procedure, while others

use similar algorithms for linear and nonlinear elements.

In de�ning the generating function we have to distinguish two domains of the

tune parameter �, one in which cos(2��) does not vanish, and one in which

sin(2��) does not vanish. Any � falls into one of the two cases

(i) : j cos(2��)j > 1=
p
2 ; (5)

(ii) : j sin(2��)j � 1=
p
2 : (6)

3



For convenience we choose this division of �-space, while remarking that a less

symmetric division could sometimes be better in higher dimensional problems

in which � is a vector. Now suppose for the moment that the nonlinear term

N in Eq.(3) were absent. Then in case (i) we could solve (1) for x as a function

of p and x0 and, correspondingly, we could represent the map by means of a

generating function L(p; x0) and the equations

p0 = Lx0(p; x0) ; x = Lp(p; x
0) ; (7)

where subscripts denote partial derivatives. From the linear map and integra-

tion of (7) one �nds

L(p; x0) =
1

cos(2��)
px0 � tan(2��)

2
(p2 + x02) ; (8)

a result that is unique up to a constant addend. On the other hand, in case

(ii) we can solve Eq.(1) for p as a function of x and x0, and represent the map

through a di�erent generating function L(x; x0) and the equations

p0 = �Lx0(x; x0) ; p = Lx(x; x
0) ; (9)

with

L(x; x0) =
1

sin(2��)
xx0 � cot(2��)

2
(x2 + x02) : (10)

In a region of phase space su�ciently close to the origin, we expect that the

full nonlinear equation (1) will behave like the linear equation as far as solving

for x or p is concerned, thanks to the fact that X begins with quadratic terms.

Thus we look for a generator depending on (p; x0) in case (i), but one depending

on (x; x0) in case (ii). Henceforth we deal only with case (i), since (ii) can be

treated similarly.

We write the full generator as

S(p; x0) = L(p; x0) +G(p; x0) ; (11)

where L is the generator of the linear map as given by Eq.(8). The map (3) is

to be de�ned implicitly by the equations

p0= p= cos(2��)� x0 tan(2��) +Gx0(p; x0) ; (12)

x =x0= cos(2��)� p tan(2��) +Gp(p; x
0) : (13)
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It is well known, and easy to verify by direct computation, that a map de�ned

by (12) and (13) is symplectic, for any G 2 C2. The existence of G such that

these equations do indeed de�ne the map (3) is implied by the existence of

a suitable solution x(p; x0) of Eq.(1), provided that the map is symplectic.

This argument was outlined by Berz in the framework of formal Taylor ex-

pansions [21]. We repeat his argument with more detail and without appeal

to expansions.

Let us de�ne I(r) to be the open interval (�r; r) and assume the following:

{ (A) There exists a unique solution x(p; x0) of (1) of the form

x = �p tan(2��) + x0= cos(2��) + F (p; x0) (14)

for (p; x0) 2 I(r)� I(r) = S(r), with F 2 C1[S(r)].

{ (B) The Jacobian of the transformation x 7! x0 at �xed p, namely @x0=@x =

cos 2�� +Xx(x; p) from Eq.(1), is non-zero in the image of S(r) under the

transformation x(p; x0).

{ (C) The map (3) is symplectic.

Under assumption (A) we can express the gradient of G as a function (p; x0).

De�ning the vector � = (p; x0) we have

G� = (�) ; (15)

where  2 C1[S(r)] and

1=F (p; x0) ; (16)

2=� sin(2��)F (p; x0) +

P (�p tan(2��) + x0= cos(2��) + F (p; x0); p) : (17)

These expressions are obtained by comparing Eqs. (1) and (2) with Eqs. (12)

and (13), using assumption (A) to express functions of (x; p) in terms of (p; x0).

In order that Eq.(15) have a C2 solution it is clearly necessary that curl  =

@2=@�1�@1=@�2 = 0. Conversely, Stokes's theorem ensures that if curl  = 0

in S(r), then (15) has a C2 solution in S(r) given by the path-independent

line integral

G(�) =

�Z
�0

! ; ! = 1d�1 + 2d�2 : (18)

A solution of (15) is obviously unique up to a constant addend.
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It is a matter of calculation to show that assumptions (B) and (C) above imply

that curl  = 0, hence that a solution of (15) exists. In calculating curl  we

encounter derivatives of F which may be obtained in terms of the function

X(x; p) by di�erentiating the equation that de�nes F , namely

F (p; x0) = �X(�p tan(2��) + x0= cos(2��) + F (p; x0); p)= cos(2��) ;(19)

which results from substituting the assumed form (14) in (1). The resulting

expressions have a divisor cos(2��) + Xx, which is non-zero by assumption

(B). In this two-dimensional example the symplectic condition on the Jacobian

matrix D of the map is equivalent to detD = 1, or

cos(2��)(Xx + Pp) + sin(2��)(Xp � Px) +XxPp �XpPx = 0 : (20)

Now by using the derivatives of F and Eq.(20) one can verify that curl  = 0.

In two or more degrees of freedom the steps of the computation follow the

same lines but are less obvious; see Ref.[18].

Finally we show that assumptions (A) and (B) hold if the square S(r) is su�-

ciently small by applying the contraction mapping theorem to Eq.(1) written

in the form

x = A(x; p; x0) = [x0 � p sin(2��)�X(x; p)]= cos(2��) : (21)

We look for a solution x in the complete metric space �I(s), the closure of I(s).

If x 2 �I(s) and (p; x0) 2 S(r), then A(x; p; x0) = O(r)+O(sr)+O(s2)+O(r2)

by Eq.(4); hence A as a function of x takes �I(s) into itself if s and r are

su�ciently small. Also, for x1; x2 2 �I(s), the mean value theorem and (4) give

jA(x1; p; x0)� A(x2; p; x
0)j � 1

j cos(2��)j sup
�2�I(s);p2I(r)

jXx(�; p)jjx1 � x2j

=(O(r) +O(s))jx1 � x2j � �jx1 � x2j ; (22)

with � < 1 for r and s small. Thus the contraction mapping principle im-

plies that there is a unique solution of Eq.(1) in �I(s) for r su�ciently small.

Moreover, we have already demanded that sup jXxj=j cos(2��)j < 1, so that

assumption (B) holds. It remains to show that x(p; x0) 2 C1[S(r)], but that

follows immediately from an appropriate form of the implicit function theorem

[23] (or from a simple direct argument using (19)) since x � A(x; p; x0) is a

polynomial in all three variables. In fact, x has continuous derivatives of all

orders, as does the generator G as given by Eq.(18).
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3 Construction of the Generator from Numerical Values of the

Symplectic Map

We now turn to the question of how to represent and determine the generator

G in a numerical setting. Our plan is to represent the i of Eqs.(16),(17)

in a spline basis, then carry out the integral (18) analytically to obtain the

desired approximation ~G to G. When ~G is used in place of G to de�ne a map

implicitly through (12) and (13), it is important that the derivatives ~Gx0 and
~Gp be evaluated exactly, since otherwise we cannot expect the implicit map to

be exactly symplectic. Accordingly, we shall take the derivatives analytically,

by di�erentiating the splines and integrals of splines that will serve to represent
~G.

We �rst look for the values of i on a mesh fpi; x0jg, then do spline interpola-

tion to approximate the function o� the mesh. Thus we require the function

F (p; x0), which expresses the solution of (1) through (14), at the mesh points.

We have seen that this function can be obtained by the simple iteration used

in the proof of the contraction mapping principle, for (p; x0) near the origin.

By using instead a Newton iteration or one of its variants, one has a chance

to extend the solution to a larger region of the parameter (p; x0). Here one

might use a linear extrapolation from the last good solution to obtain a �rst

guess for an iteration at the next larger value of the parameter, or use a more

sophisticated continuation method based on a di�erential equation with p or

x0 as independent variable. In any case the iteration will involve several eval-

uations of the map function X(x; p) and possibly its derivatives, which can

be an excessive expense in the case of complicated systems such as particle

accelerators.

To reduce cost we suggest that X(x; p) �rst be evaluated on a mesh, with

the mesh points in p being the same as the pi above, and the resulting values

interpolated by splines in x to give an approximation ~X(x; pi) for all x and all

i. Now ~X can be used in a Newton iteration, to determine an approximation
~F (pi; x

0

j) � F (pi; x
0

j), all i; j. The derivative required in Newton's method is

obtained analytically by di�erentiating splines. If the mesh is su�ciently �ne,
~F will be a close approximation to the exact F , and it can be used as a �rst

guess in a �nal Newton iteration using the exact X to determine the exact

F on the mesh. It should be possible to get a solution after relatively few

iterations, using a modi�ed Newton method (not quadratically convergent)

based on the approximate derivative ~Xx given by splines. Notice that the

evaluation of P in Eq.(17) at the �nal value of x is free, since X and P are

always evaluated together by the symplectic integrator. The �nal iteration

gives directly the exact values of  on the mesh, modulo round-o� error, if the

iteration is carried to machine precision.
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In practice it may turn out that ~F gives an adequate approximation without

re�nement, or that it is more economical to improve ~F by re�ning the mesh

rather than by the �nal iteration described. To simplify the approximation

theory let us assume, however, that F and  are given exactly on the mesh.

Let us digress a moment to give another motivation for the initial interpola-

tion of map functions. At little extra expense the interpolation of values of

X(x; p) on a mesh can be augmented with an interpolation of P (x; p) to give

explicit, approximate map functions ~X(x; p); ~P (x; p). This explicit map should

be quite useful, in at least two ways. First, it can give a close �rst guess for

a Newton solution of Eq.(13), the latter being a necessary step in iterating

the map de�ned by the generator. Second, the explicit map can save time in

the construction of quasi-invariant tori, an important application of maps in

which exact symplecticity is not essential [24].

Now that  is given on the mesh, it remains to interpolate the values on the

mesh and then carry out the integral (18). We denote the interpolation by ~

and represent it in a tensor-product B-spline basis [25]. Taking spline knots

and end conditions the same in both dimensions we can write

~(p; x0) =
X
i;j

gijBi(p)Bj(x
0) ; (23)

where gij = (g
ij
1 ; g

ij
2 ) is a vector and the Bi are one-dimensional B-splines of

order k with maximum smoothness allowed for that k; i.e., they are made up

of polynomials of degree not greater than k � 1, and have k � 2 continuous

derivatives. A convenient choice of path for the integral (18) in the (p; x0)-

plane consists of the straight line from (0; 0) to (0; x0), followed by the straight

line from (0; x0) to (p; x0). Then our approximation ~G to the exact G is

~G(p; x0) =

x0Z
0

~2(0; u)du+

pZ
0

~1(u; x
0)du : (24)

Introducing (23) and de�ning the constant g
j
2 =

P
i g

ij
2 Bi(0) we have

~Gp(p; x
0)= ~1(p; x

0) =
X
i;j

g
ij
1 Bi(p)Bj(x

0) ; (25)

~Gx0(p; x0)= ~2(0; x
0) +

pZ
0

@~1

@x0
(u; x0)du

=
X
j

g
j
2Bj(x

0) +
X
ij

g
ij
1 B

0

j(x
0)

pZ
0

Bi(u)du : (26)
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In iterating the implicit map de�ned by Eqs. (12) and (13), we have to solve

(13) for x0 by Newton's method. For that reason it is expedient to require

that Gp(p; x
0) have a continuous second derivative with respect to x0, so that

the standard su�cient conditions for convergence of Newton's method can be

applied [26]. If we take the spline order k � 4 we can provide such smoothness

in the formula (25).

The formula (25) is quite suitable as it stands for numerical evaluation. One

can use de Boor's stable recursive algorithm for B-spline evaluation, and take

advantage of the fact that the Bi are locally supported; i.e., only k of the

Bi(x) are non-zero at any x. Thus for k = 4 only sixteen terms in the sum

(25) will be non-zero at any (p; x0). For evaluation of (26) we have to deal

with integrals of B-splines, which are not locally supported. Most of the cost

of non-local support can be avoided by computing and storing, once for all,

the integrals over complete inter-knot intervals. Suppose that the knots are at

points pr, with pr+1 � pr, and de�ne �r(p) to be the characteristic function

of the half-open interval [pr; pr+1);(for the largest value of r+1 make this the

closed interval). Then

X
i

g
ij
1

pZ
0

Bi(u)du =
X
i

g
ij
1

X
r

�r(p)

� prZ
0

+

pZ
pr

�
Bi(u)du : (27)

After de�ning the constants

Cj
r =

X
i

g
ij
1

prZ
0

Bi(u)du ; (28)

we can write (26) as

~Gx0(p; x0)=
X
j

g
j
2Bj(x

0) +

X
j

B0

j(x
0)
X
r

�r(p)

�
Cj

r +
X
i

g
ij
1

pZ
pr

Bi(u)du

�
: (29)

The remaining integral involves only one of the polynomial components of Bi.

Suppose that (p; x0) is �xed. Then at most k values of j contribute non-zero

terms to this formula, and for a given j, only one value of r and at most k

values of i contribute. As in the case of (25), the full sum is \mostly empty",

and we have a formulation that seems suitable for fast iteration of the map.

One could avoid integrals of splines and simplify coding by representing ~G

directly in the tensor product basis, by interpolating values of (24). It seems
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worthwhile, however, to avoid an extra layer of approximation by working with

Eq.(29).

4 Convergence of the Spline Approximation

We wish to show that our spline approximation to the gradient of the gen-

erator, ( ~Gp; ~Gx0), converges to the exact gradient, (Gp; Gx0), when the mesh

fpi; x0jg is re�ned inde�nitely. Since we have already treated the nonlinear part
of the problem in passing from the given map to the function , this is sim-

ply a matter of applying known convergence results for spline interpolation to

Eqs.(25) and (26). As an example, we apply a theorem of Carlson and Hall

[27] on bicubic spline interpolation in a rectangle. Those authors use a tensor

product basis of cubic splines (k = 4) with continuous second derivatives at

the knots and Hermite end conditions; i.e., the value of the partial derivative

of the function at the endpoints in either variable is speci�ed, as is the mixed

second derivative at each of the four corners. Let f(x1; x2) be any function in

C4(D), where D is a rectangle in the (x1; x2)-plane, and let hi be the maxi-

mum mesh step in the xi-direction. If s(x1; x2) is the bicubic spline interpolant

with Hermite end conditions, then the theorem of Carlson and Hall is that for

all (x1; x2) 2 D,

k(f � s)(i;j)k � �4�j;i h
4�i
1 kf (4�j;j)k+ �2i�2jh

2�i
1 h

2�j
2 kf (2;2)k

+ �4�i;j h
4�j
2 kf (i;4�i)k ; 0 � i; j � 2 ; (30)

where f (i;j) = @i+jf=@xi@xj and k � k is the supremum norm. The constants

�i;j are given in Table 1 of Ref.[27].

Since  has continuous fourth derivatives in some rectangle D centered at the

origin (in fact is in C1(D)), this can be applied to Eqs.(25), (26) to get the

following error bounds:

jGp(p; x
0)� ~Gp(p; x

0)j = j1(p; x0)� ~1(p; x
0)j

� �40h
4
1k

(4;0)
1 k+ �220h

2
1h

2
2k

(2;2)
1 k+ �40h

4
2k

(0;4)
1 k ; (31)

jGx0(p; x0)� ~Gx0(p; x0)j

� j2(0; x0)� ~2(0; x
0)j+

����
pZ
0

�
@1(u; x

0)

@x0
� @~1(u; x

0)

@x0

�
du

����
� �40h

4
1k

(4;0)
2 k+ �220h

2
1h

2
2k

(2;2)
2 k+ �40h

4
2k

(0;4)
2 k

+ jpj
�
�30h

4
1k

(3;1)
1 k+ �20�21h

2
1h2k

(2;2)
1 k+ �41h

3
2k

(0;4)
1 k

�
: (32)
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With h1 = h2 = h we have O(h4) uniform convergence of one derivative, but

only O(h3) for the other, in the rectangle D.

To provide derivatives of  at the endpoints for the Hermite boundary condi-

tion, one would have to know derivatives of the map function N(z) of Eq.(3).

Those can be obtained by automatic di�erentiation [28,29,13] of the symplec-

tic integration algorithm, a technique that is available in some accelerator

tracking codes. Alternatively, the derivatives might be approximated by us-

ing one-sided numerical di�erentiation from function values on the basic mesh

alone. Szeto reports O(h4) convergence for cubic spline interpolation in that

scheme, at least in one dimension, if numerical di�erentiation of appropri-

ately high order is used [30]. For not-a-knot boundary conditions, requiring

no derivatives, he �nds O(h3).
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