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Abstract 
 This article represents a series of three lectures describing topics needed to understand the 
design of typical gaseous wire detectors used in large high energy physics experiments; 
including the electrostatic design, drift of electrons in the electric and magnetic field, the 
avalanche, signal creation, limits on the position accuracy as well as some problems one 
encounters in practical operations. Reader should also refer to Ref. 1-4. 
  
  Chapter 1 
 
1.1. Two-dimensional electrostatic field in a drift cell  
 This lecture will cover the following topics: 
a) numerical solution for wires only, 
b) analytical solution for wires and pads, 
c) numerical solution for any shape of electrodes, 
d) numerical solution for wires, pads and dielectric. 
 We start the lecture by reminding the Gauss law in the integral form: 
    

  

Φ =
 
E •d

 
S 

S
∫ =

1
ε r ε0

Qi
i
∑  (1.1) 

where ∑Qi is sum of all charges within the volume defined by surface S, Φ  is total flux of 
electric field   

 
E  through surface S, ε r  is effective relative dielectric constant, ε = εr ε0  is the 

dielectric constant of the medium within the surface S and ε0  = 8.85 pF/m  is permitivity of 
free space. 
1.2. Two-dimensional electrostatic field (wires only, no dielectric)  
Example #1- Find the potential and the electric field of an infinitely long charged line with 
charge per unit length λ (surface S is defined a cylinder of length L and radius r; ε r  = 1): 

  Φ = 2 π r L E =
λ L

ε0
 (1.2) 

                                                
* Lectures given at ICFA Instrumentation School, Guanajuato, Mexico, June 7-18, 1997. 
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The potential distribution V(r) is then: 
   

  
V(r) = − E(r) d r∫ = −

λ

2 π ε0

d r

r∫ = −
λ

2 π ε0
n r + C  (1.3) 

 To determine the linear charge λ , we need a boundary condition. This is done by relating 
the wire voltage Vo and the linear charge λ  on the surfaces of the conductor, such as a 
grounded tube surrounding the wire (ra is anode wire radius, rc  is cathode tube radius): 

  

  

V0 =
 
E .d
 
r 

r
a

r
c

∫ =
λ

2 π ε0
n

r
c

ra
 (1.4) 

The electric field on the surface of the wire with radius ra is then: 

  Ea =
1

2 π ε0

λ

r
a

 (1.5) 

 In case of anode wire, Ea will be used to estimate the wire gain. Typical values of the 
electric field on the anode wire surface is 200-400 kV/cm; whereas on the cathode wire 
surface it is less than 20 kV/cm.  
Example #2 - Determine the electric gradient on the surface of cathode wires:  

E

Flux =
 2 d L E

 
 
Fig.1 - Geometry of the drift cell; cathode plane is made of 100 µm dia. Cu-Be wires   
  separated by d = 2.5 mm gap; drift field is E = 950 V/cm, wire length L. 
 
 The field lines in the middle of drift cell have to end on the cathode wire charges. 
Therefore field flux Φ  = 2 d L Edrift field = λ L ε0 = 2 L π  Rcath. Ecathode wire radius and 

Ecathode wire radius = d Edrift field/(π rcath.) = 0.25 x 950/(π  50 x 10-4) ~ 15.1 kV/cm.   
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Example #3 - Determine the two-dimensional potential and electric field in the drift cell.  
Input variables:  Vi - voltages on each wire, i = 1,..N 
    

  
 
r i  - wire positions, i = 1,...N 

    a i  - wire radii, i = 1,...N 

    L - length of the wire 
Output variables: λ i  - charge per unit length, i = 1,...N 

  Using the superposition principle and the Gauss law (see Example #1), the potential at 
any point within the cell is a result of a summation of potentials resulting from individual 
linear charges on the wires: 

    

  

V(
 
r ) =

1

2 π ε0
Pik λi

k = 1

N

∑ ,
 
r ≠
 
r i  (1.8) 

where  Pik are called potential coefficients: 
    

  
P ik = n (

 
r i −
 
r k ) , i ≠ k  (1.9) 

    
    P ii = n(ai )  

 This method is quite general - it can be applied to calculate the potential for charges of any 
type (point, line, ring, etc.). To determine the linear charges λ k , we need a boundary 
condition. This is done by relating the wire voltages Vi and the linear charges λ k  on the 

surfaces of conductors: 

 Vi =
1

2π ε0
Pik

k = 1

N
∑ λk  (1.10) 

In addition, one can assume that the total charge of the system is zero λi
i = 1

N
∑ = 0 . 

One can rewrite the equation (1.10) in the matrix form: 

    

0
V1
.
VN

! 

" 

# 
# 

$ 

% 

& 
& 

=
1

2π ε 0

0 1 . 1
1 . . .
. . P ik
1 . . .

! 

" 

# 
# 

$ 

% 

& 
& 
.

λ0
λ1
.
λN

! 

" 

# 
# 

$ 

% 

& 
& 

 (1.11) 

  input  known unknown 

Solution is:  λ i = 2 π ε0 C ik
k = 1

N
∑ Vk   (1.12) 

where Cii   are called coefficients of capacitance and Cik, i≠ k are called coefficients of 
induction. Once we know the linear charges   λi  on each wire, the potential and electric field 

in space anywhere between the wires is given by: 
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V(
 
r ) =

1

2 π ε0
λi

k = 1

N

∑ n(
 
r −
 
r i ),

 
r ≠
 
r i  (1.13) 

 

  

 
E (
 
r ) = − grad V(

 
r ) =

1

2 π ε0

− λi

(  r −  r 
i

)2
k = 1

N

∑ (
 
r −
 
r i )  (1.14) 

 The electrostatic force per unit length of wire i created by the rest of the system can be 
calculated as follows (wire i has a length L): 

 

  

 
F (
 
r i ) =

1

2π ε0
λi
 
E (
 
r i ) = (

1

2 π ε0
)2 L λi

λ k

(  r 
i
−
 r 

k
)2

k = 1

N

∑ (
 
r i −
 
r k)  (1.15) 

1.3. Analytic solution of the Laplace equation for geometries  
  with wires and pads (no dielectric)  
 The following method is discussed by P.M. Morse and H. Feshbach [4].  
1.3.1. The simplest problem is a single wire and a conducting plane (pad plane):  

      
    Fig.2 - Single wire and a pad plane. 
 
 We assume that the y axis is parallel to the direction of the wires, zero potential of the   
 conducting plane (z = 0), and charge per unit of length λ . The solution of the Laplace   
 equation is a complex potential   F (in MKS units): 

     
  
F(Y = x + i z) = V + i χ = −

λ

2 π ε0
n

(Y − Y0)

(Y − Y 0 )
 (1.16) 

 where Y = x + i z  is a coordinate of a general point, Y0 = x0 + i z0  is the position of 
 the wire, Y 0 = x0 − i z0  is the complex conjugate of Y0 . The real potential: 

   
  
V(x, z) = Re F(Y) = −

λ

2 π ε 0
n [

(x − x0 )
2+ (z − z0)

2

(x − x0 )
2+ (z + z0)

2 ]  (1.17) 

1.3.2. We can expand the problem to a system of many wires located above the   
  conducting plane using the superposition principle - see Fig. 3: 
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F(Y = x + i z) = −

λ

2 π ε0
n

(Y − Yk
0 )

(Y − Y k
0 )

k = −∞

k = +∞

∑  (1.18) 

 where Yk
0  is the coordinate of the k-th wire. If all wires of the grid are spaced with   

 uniform pitch s then one can write: 
      Yk

0 = x0 + ks + i z0, (k =…−2, −3,0,1,2,…)  (1.19) 
where   x0  and   z0  are the wire coordinates for k = 0. The complex potential can then be 
written as a sum, which can be solved: 

  
F(Y = x + i z) = −

λ

2 π ε0
n

(Y − Y0 − k s)

(Y − Y 0 − ks)
=

k = −∞

k = +∞

∑
  
−

λ

2 π ε0
n

sin[(π / s)(Y − Y0) ]

sin[(π / s)(Y − Y 0) ]
 (1.20) 

and the corresponding real potential: 

 
  
V(x, z) = Re F(Y) = −

λ

2 π ε 0
n

sin2 [(π / s)(x − x0) ]+ sinh
2 [(π / s)(z − z0 )]

sin2 [(π / s)(x − x0) ]+ sinh
2 [(π / s)(z + z0 )]

  (1.21) 

1.3.3. With similar superposition techniques one can then construct the potential  
  distribution of more complex electrode structures [3,5] - see Fig. 4: 
 

    
 Fig.3 - Wire grid and a pad plane.  Fig.4 - A typical TPC geometry. 
 
1.4. Numerical solution of Laplace equation for any shape of  
 the electrodes (no dielectric) 
 A good reference is K.J. Binns and P.J. Lawrenson [6]; see also S. Yellin [7]. The 
numerical solution is based on the following steps: (a) conductor surfaces are specified by 
linking smooth curves,(b) create equally spaced lattice points with spacing d, (c) determine 
the topology of a given lattice point relative to the electrode structure; then assign an estimate 
of the potential per each lattice point, (d) the potential at each interior point of a group of four 
is average of its nearest neighbors - see Fig.5 for an example of CRID detector, (e) iterate; 
start first with a coarse lattice, then reduce it, etc. 
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 We use the Gauss law in integral form. In absence of charges, the surface integral over the 
square in Fig. 5 is equal to zero: 
     

  

Φ =
 
E • d

 
S 

S
∫ =

1
ε0

Qi
i
∑ = 0    (1.22) 

The electric filed in the n-th iteration is calculated on each surface boundary, for example 
E
x
n
= (V

i − 1, j
n

− V
i, j
n
) / d , etc. - see Fig. 5. By a simple algebra one obtains a simple equation 

used in the computation: V i, j
n + 1

=
1

4
[V i − 1, j

n
+ V i + 1, j

n
+ V i, j − 1

n
+ V i, j + 1

n ] (1.23) 

       
Fig.5 - Grid used to calculate  Fig.6 - Barrel CRID single electron detector. 
  potential distribution. 
 
1.5. Numerical solution of the Laplace equation for geometries  
  with wires, pads and dielectric   
 We can follow the same procedure outlined in the previous problem [6]. However, we have 
to be more careful to account for the presence of charges within a given grid cubical of Fig.5. 
Again, we use the Gauss law in integral form: 
 

  

Φ =
 
E • d

 
S 

S
∫ =

1
εr ε0

Qi
i
∑ =

1
εr ε 0

(Qvolume + Qsurface + Qleakage + Qionization )  (1.24) 

The potential in the center of cubical of Fig.5 is now calculated taking into account the 
charges within the cubical: 
   V i, j

n + 1
=
1

4
[V i − 1, j

n
+ V i + 1, j

n
+ V i, j − 1

n
+ V i, j + 1

n
+
1

εr ε0
d2 Qi

i
∑ ] (1.25) 

Example of a practical application of this method can be found in Ref. 8. For an alternative 
method of solution see Ref. 9. 
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   Chapter 2 
 
2. Electrostatic stability of a large system of wires  
 Equation describing the wire stability can be written as follows: 

    T
d2 y

d x2
+ Felectrostatic + Fgravity = 0  (2.1) 

where T  is mechanical tension on the wire per unit length, x is the coordinate along wire 
direction, y(x) is the displacement perpendicular to wire, T d2 y dx2  is restoring force per 
unit length, Felectrostatic is electrostatic force per unit length and Fgravity

 
is gravitational force 

per unit length. 
2.1. Solution A: 
 Fgravity represents a constant force per unit length. This is not generally true for the 
electrostatic force Felectrostatic, which generally depends on a value of the displacement y(x) . 
We are going to solve this problem iteratively assuming that in each step the electrostatic 
force is constant force per unit length just like the gravitational force (in the solution B this 
will not be assumed). 
a) Gravitational force on a wire i: 

     
For the gravitational force alone, the solution of equation (2.1) is a parabola: 

    y(x) =
f x2

2 T
 (2.2) 

A wire sagitta at x = L/2 is: sg = y(x =
L

2
) =

F
gravity

L 2

8 T
=
F
TOT

L

8 T
, (2.3) 

where L is length of the wire, Fgravity  is force per unit length, FTOT  is a total force (Fgravity 
L) and T  is mechanical tension. In a large system of wires, the gravitational force on wire i is 
(i=1,...N): 

      
F TOT (

 
r i ) = L ri p Ri

2 g ,  (2.4) 
where ρi  is wire density, Ri  is wire radii, L is length of the wire,  g is gravitation constant. 
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Example of gravitational deflections: 
Material ρ [g/cm3] r [µm] L [cm]  s [µm]  
    W    19.3    10  6.063x10-5   240   72   60 
 Cu-Be    8.23    50  6.464x10-4   240   72  646 
   Al     2.7    50  2.121x10-4   240   72  212 
    C     1.8    50  1.414x10-4   240   72  141 
   s.s.      7.5    50  5.890x10-4   240   72  589 

b) Electrostatic force created by the wire system: see equation (1.15). 
METHOD TO DETERMINE THE WIRE STABILITY [10]: 
(a)Solve the 2-dimensional electrostatic problem for λ

i
 and determine the electrostatic and 

gravitational forces on each wire; (b) Include the 3-rd dimension by calculating the wire 
deflections 

  
 
d 

i
 using the equation (2.3); (c) Move each wire by 

  
 
d 

i
 in the 2-dimensional 

electrostatic problem and recalculate the electrostatic problem again and determine new λ
i
; 

(d) Iterate in this way ~15 times. If the design is stable in 3-4 iteration, it is safe to build.   
Does this simple minded approach work ? 
Example #1 - 8-wire prototype for the OPAL central drift chamber [10]: 
Anode wires  : T = 101 g, 25 µm dia. W(Re),  
Cathode wires : T = 620 g, 100 µm dia. Cu-Be 

 
Fig.1 - Geometry of 4.5 m long drift cell;   Fig.2 - Additional deflection as obtained  
six wires (diameters 300, 175, 300, 175, 100   in each iteration step of the iterative  
and 175 µ m) terminate the anode plane electrostatic calculation: (A) NiCoTi   
at each side of the cell. wire, 35 µ m dia., length 4 m, T =   
  0.9 N, (B) NiCoTi wire, 35 µm dia.,  
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  length 4 m, T = 1.2 N, (C) NiCoTi  
  wire, 30 µ m dia., length 4 m, T =  
  0.9 N, (D) W(Re) wire, 25 µm dia.,  
  length 4.5 m, T = 1.0 N. 
 Without the iterative electrostatic program, this prototype would have never worked. It is 
very difficult to guess stability of a 4.5 m long chamber like this. As a result of this study, the 
OPAL chamber was shortened from 4.5 m length to less than 4 m, and the NiCoTi wire was 
eliminated. 
Example #2 - early study for the Mark II vertex chamber at SLC [11]: 
Anode (T = 60 g, 20 µm dia. W), Cathode(T = 500 g, 150 µ m dia. Cu-Be): 
 

Study of the electrostatic stability of the 
Mark II vertex chamber at SLC
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Example #3 - early study for the BaBar drift chamber at PEP II [12]: 
Length: 2.5 m & 5 m 
Anode: (T = 50 g, 20 µ m dia. W), Cathode: (T = 25 & 50 g, 55 µ m dia. Al): 

 

Study of the electrostatic stability of the 
BaBar drift chamber at PEP II
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Notes: 
(a) Vertex chambers with small wire spacing have similar severe electrostatic instability  
problems as very long chambers; (b) Ideal drift cells are symmetric such as BaBar drift cell;  
(c) A typical drift chambers design, such as the jet chamber, stagger the sense wires by  
some offset d to solve the left-right ambiguity. This will uniquely define a direction the sense 
wires will move; (d) One always balances gravitational deflection among different wires in 
the drift structure; (e) One must stay bellow a certain critical tension for a given choice of 
wires. This must be tested for each wire choice; (f) The advantage of the numerical method 
to evaluate the electrostatic stability is that one can find sensitivity to errors in wire tension, 
wire position, etc. 
2.2. Solution B: 
 We will try to solve the equation (2.1) differently. We will assume that Felectrostatic is 
proportional to the wire displacement y(x): 
      Felectrostatic ~ k y(x)       (2.5) 

Combining equations (2.1), (2.3) and (2.5) we obtain: 

     T
d2 y

d x2
+ k y(x) +

8 Ts
g

L2
= 0         (2.6) 

which has a solution:  y(x) =
8s
g
T

L2 k
(
cos

k

T
(x −

L

2
)

cos
k

T

L

2

− 1)       (2.7) 

where sg is the gravitational sagitta of the wire, T is mechanical tension on the wire per unit 
length, L is length of the wire and k is proportionality constant (do not know yet). 

For x = L / 2 we get:  y(
L

2
) =

8s
g
T

L2 k
(

1

cos
k

T

L

2

− 1) =
2s
g

χ 2
(
1

cos χ
− 1)          (2.8) 

One can see that the wire displacement diverges when χ = k T L 2  ~ π / 2 , i.e. the chamber 
becomes unstable. What is the constant k ? It can be shown that: 

   
  
Felectrostatic =

V
2

2

dC

d y
=
V
2

2
{4 πε0

1

[a n(a / r) ]2
}y(x) = k y(x)       (2.9) 

where dC dy  is change in capacitance per unit length due to displacement in y, V is potential 
of the wire, r is wire radius, a is typical distance of the wire to the other electrodes. From 
equation (2.9) we now understand why vertex chambers with small wire spacing have 
electrostatic problems. As the wire spacing gets small the inter-electrode capacitance gets 
larger, and therefore we need larger voltages to get the same wire charge. The instability is 
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proportional to voltage square. The wires may also start vibrating in a presence of large 
radiation [13], and one has to consider the wire friction of gas in equation (2.1). 
 
   Chapter 3: 
3.1. Drift of electrons and ions in gases (macroscopic view) 
 A single electron moving in electric and magnetic fields,     

 
E  and     

 
B , and under the influence 

of a frictional force, can be described by a system of linear differential equations: 
   

  
m

d
 
v 

dt
= e
 
E + e [

 
v x
 
B ] − K

 
v  (3.1) 

where m - is the mass of the electron, e - is the electric charge of a particle,   
 
v  - is drift 

velocity vector,   K
 
v  - "Langevin" frictional force, K is a constant, m/K - has a dimension of 

time (will call it the characteristic time τ ≡  m/K). 
 We are interested in a steady state solution of equation (1),   d

 
v d t  = 0, which occurs for t 

>> τ . From the equation (3.1) we get : 

   
  

d
 
v 

d t
= 0 =

e

m

 
E +

e

m
[
 
v x
 
B ] −

K

m

 
v ,  

    
  

e

m

 
E =

K

m

 
v −

e

m
[
 
v x
 
B ], 

  

e

m

 
E =

1

τ

 
v −

e

m
[
 
v x
 
B ]  (3.2) 

Let's define the new variables (ω  is the cyclotron frequency): 

  
  

 
ω =

e

m

 
B ,

  

 
ε =

e

m

 
E ,  µ =

e

m
τ  (3.3) 

Equation (3.2) changes to: 
  

 
ε =

1

τ

 
v − [
 
v x
 
ω ]  (3.4) 

where 

  

 
v x
 
ω =

i j k
vx vy vz
ω

x
ω

y
ω

z

" 

# 

$ 
$ $ 

% 

& 

' 
' 

 (3.5) 

Expressing equations (3.4) and (3.5) explicitly: 

εx =
1

τ
vx − ωz vy + ωy vz , εy = ωz vx +

1

τ
vy − ωx vz , εz = −ωy vx + ωx vy +

1

τ
vz  (3.6) 

This can be rewritten in a matrix form:     M
 v =

 
ε  (3.7) 

where M =

1

τ
−ω

z
ω
y

ω z
1

τ
−ωx

−ω
y

ω
x

1

τ

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 (3.8) 

The solution is obtained by inverting matrix M: (3.10)  
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 v = M−1  ε      (3.9) 

  
   

M−1
=

τ

1 + ω
2
τ
2

1 + ω
x
2
τ
2 ω

z
τ +ω

x
ω
y
τ
2

−ω
y
τ + ω

x
ω
z
τ
2

−ωz τ + ω x ω y τ
2

1 + ω y
2
τ
2 ωx τ + ω y ω z τ

2

ω
y
τ + ω

x
ω
z
τ
2

−ω
x
τ + ω

y
ω
z
τ
2 1 + ω

z
2
τ
2

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

 

where ω
2
= ωx

2 + ωy
2 + ωz

2 = (
e

m
)2 B2  (3.11) 

is the square of the cyclotron frequency of the electron. 
 The final solution can be rewritten after some algebra in a form:  

                
  

 
v =

µ

1 + (ωτ)2 [
 
E +

ω τ

B
[
 
E ×
 
B ] + (ωτ)2

 
E ⋅
 
B 

B2
 
B ] (3.12) 

where the drift direction is governed by the dimensionless parameter ω τ . For ω τ  = 0,   
 
v   is 

parallel to   
 
E , and equation (3.12) yields:   

 
v = µ

 
E , where µ  is the electron mobility, which is 

proportional to the characteristic time between collisions . From equation (3.11) we obtain 
ω τ = e m B τ . 
For  ω τ  = 0    ==>   

 
v = µ

 
E , i.e.   

 
v  is aligned with   

 
E , 

 ω τ  large  ==>   
 
v  tends to be aligned along   

 
B , 

 ω τ  large &   
 
E .
 
B  = 0 ==>   

 
v  tends to be aligned along   

 
E x
 
B . 

 In practical chambers we have these conditions typically: µ  ~ 104 cm2 V-1 s-1 for 
electrons, µ  ~ 1 cm2 V-1 s-1 for ions, B ≤  1 T = 10-4 V s cm-2, ω τ =  B µ ≈ 10-4 for ions, 
ω τ = B µ ≈ 1 for electrons,τ ≈  2-5 psec for electrons, 1 τ ≈  (2-5) x 1011 Hz collision rate for 
electrons. The effect of typical magnetic fields on ion drift is negligible. 
Example #1 -   E  is perpendicular to   

 
B , i.e.   

 
E .
 
B =0, 

  
 
E = (Ex, 0, 0) , 

  
 
B = (0, 0, Bz ) : 

From equation (3.12) we obtain: 

  
vx =

µ

1 + (ω τ)2
Ex ≡

µ

1 + (ω τ)2
 
E , 

  
vy = −

µ

1 + (ω τ)2
ω τ

Bz
Ex Bz ≡ −

µ

1 + (ωτ)2 ω τ
 
E ,  

vz = 0   (3.13) 

Lorentz angle θxy :  tan θxy =
v
y

v
x

= −ω τ  (3.14) 

By measuring the Lorentz angle we determine ω τ . The drift velocity magnitude: 

 

  

v(E, B) = v x
2 + v y

2 =
µ

1+ (ω τ)2

 
E = µ

 
E cos θxy = 

 = v(E, B = 0) cos θxy = v(E cos θxy,B = 0)  (3.15) 
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 This is known as Tonk's theorem [14]. Experimental verification of the Tonk's theorem 
for methane c an be found in Ref. 15. 
Example #2 -  

 
E  is parallel to   

 
B , i.e.   

 
E x
 
B =0, 

  
 
E = (0, 0, Ez ), 

  
 
B = (0, 0, Bz )  

From equation (3.12) we obtain: 

  vx = 0 , vy = 0 , 
  
vz =

µ

1 + (ωτ)2 [Ez + (ωτ)2 Ez ⋅Bz
B2 Bz] ≡ µ

 
E  (3.16) 

Example #3 -    
 
E  is nearly parallel to     

 
B , i.e.

  
 
B ≈ Bz , 

  
 
E = (0, 0, Ez ), 

  

 
B = (0, By, Bz ) , By << Bz : 

First we evaluate: 
  

 
E .
 
B = Ex Bx + Ey By + Ez Bz = Ez Bz  

  

  

 
E x
 
B =

i j k
Ex Ey Ez
B

x
B

y
B

z

! 

" 

# 
# # 

$ 

% 

& 
& 

=

i j k
0 0 Ez
0 B

y
B

z

! 

" 

# 
# 

$ 

% 

& 
& 

= i Ez By  

From equation (3.12) we obtain: 

 vx =
µ

1 + (ω τ)2
ωτ

B
Ez By ≈

ω τ

1 + (ω τ)2

B
y

B
z

v(B = 0)  

 vy =
µ

1 + (ω τ)2
(ω τ)2

Ez ⋅ Bz
B2

By ≈
(ω τ)2

1 + (ω τ)2

B
y

B
z

v(B = 0)  (3.17) 

 vz =
µ

1 + (ωτ)2
[Ez + (ωτ)

2 Ez ⋅Bz
B2

Bz] ≈ µ Ez = v(B = 0) 

where v(B = 0) = µ Ez  is drift velocity for B = 0 . We can define two Lorentz angles: 

 tan θyz =
v
y

v
z

=
(ωτ)2

1 + (ωτ)2

B
y

B
z

, tan θxy =
v
y

v
x

= ωτ  (3.18) 

SLD CRID example: 

(a) Bz (r, z) = Bz
0
+
1

2
Br
0 r2 − 2 z2

r
0
z
0

, Bz
0  = 0.6 T, Br (r , z) = Br

0 r z

r
0
z
0

= κ z , r0 = 1.2 m, z0= 1.5 

m, Br
0  =  0.0214 T, (b) assume that Br  is parallel with y axis (Br ≈ By ), (c) electric field E ~ 

400 V/cm, (d) drift velocity of 4.3 cm/µ s, (e) ω τ  ~ 0.87 and θxy~ 41o for C2H6 gas [16], (f) 

TPC active length is between z1 = 0.1 m and z2 = 1.2 m. 
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Expected distortion in x-direction: 

  δx = vx

t1

t2

∫ d t ≈
ωτ

1 + (ω τ)2
v(B = 0)

B
z

Br

t1

t2

∫ d t =  

  =
ω τ

1 + (ω τ)2
1

B
z

Br

z1

z2

∫ dz =
ω τ

1 + (ω τ)2
κ [z 2

2 − z1
2] ≈  9.9 mm (3.19) 

where κ  is a constant:  κ =
1

2

B
r
0

B
z

r

r
0
z
0

. 

Similarly for y-direction: 

  δy = vy

t1

t2

∫ dt ≈
(ω τ)2

1 + (ωτ)2
v(B = 0)

B
z

Br

t1

t2

∫ d t =  

  =
(ω τ)2

1 + (ω τ)2
1

B
z

Br

z1

z2

∫ dz =
(ω τ)2

1 + (ω τ)2
κ [z 2

2 − z1
2] ≈  8.6 mm (3.20) 

 These calculations were verified by the measurement using the UV fiducial fibers [17]. 
 
3.2. The drift of electrons in gases (simple microscopic view) 
 The simple macroscopic theory, based on a concept of the friction force, cannot predict 
ω τ , which has to be obtained by measuring the Lorentz angle. Can we do better by 
introducing the following details of the electron-molecule collisions ? 
1) As electron moves in the gas it suffers random collisions with molecules of the gas. We 
assume that there is no correlation in the direction before and after the collision.  
2) Number of collisions n in drift distance x is related to the average drift velocity v as  
 follows:  n = (x v)(1 τ)  (3.21) 
 where τ  is an average time between collisions and 1 / τ  - is average rate of collisions. 
3) The average time between collisions τ  is related to the electron instantaneous velocity  
 Vinst, the collision cross-section σ  and the density of the gas N as follows: 
  1 / τ = N σ vinst  (3.22) 

3) We will introduce the differential probability P of having the next collision between  
 time t and t + dt:  P = 1 / τ e

− t τ
dt  (3.23) 

 We will show that this "new picture" will confirm results obtained using the  
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 macroscopic concept of the friction force. However, as we will see, this new picture is  
 still too simplistic.  
Example #1 - a uniform electric field E and no magnetic field: 
 An electron between collisions moves accordingly to the equation of motion: 

   m
d v

dt
= e E  (3.24) 

Its solution is the electron displacement as a function of time is x(t) =
1

2

e

m
E t2 . 

The average displacement < x > at average time between collisions τ  is obtained by 
averaging x(t) over time t, using the probability distribution of t, i.e. equation (3.23): 

  < x > =
1

2

e

m
E t2

0

∞

∫
1

τ
e
− t τ

dt =
e

m
E τ

2  (3.25) 

The average electron drift velocity is defined as: 

  < v >=
< x >

τ
=
e

m
E τ = µ E  (3.26) 

Example #2 -  
 
E  is perpendicular to   

 
B , i.e.   

 
E .
 
B =0, 

  
 
E = (Ex, 0, 0), 

  
 
B = (0, 0, Bz ) : 

An electron between collisions moves accordingly to the equation of motion: 

  
  
m

d  v 

dt
= e
 
E + e [

 
v ×
 
B ] (3.27) 

which can be rewritten as a system of differential equations: 

 m
d v
x
(t)

d t
= e Ex + e vy Bz , m

d v
y
(t)

d t
= −e vx Bz , m

d v
z
(t)

d t
= 0  (3.28) 

We introduce the cyclotron frequency ω = e m Bz  and obtain the solution for the initial 
conditions vx(0) = vy(0) = vz (0) = 0: 

 vx(t) = (
e

m
Ex

1

ω
) sin ω t , vy(t) = (

e

m
Ex

1

ω
) (cos ω t − 1) , vz (t ) = 0  (3.29) 

The drift velocity is then given by the following averages (µ = e m τ ): 

< vx(t) > =
e

m
Ex

1

ω
sin ω t

0

∞

∫
1

τ
e
− t τ

dt =
e

m

E
x
τ

1 + (ω τ)2
=

µ

1 + (ω τ)2
Ex   

< vy(t) > =
e

m
Ex

1

ω
(cos ω t −1)

0

∞

∫
1

τ
e
− t τ

dt = −
e

m

E
x
ω τ

2

1 + (ω τ)2
=

µ

1 + (ω τ)2
ωτ

B
z

Ex Bz  (3.30) 

< vz(t) > = 0  
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 We have obtained the same results as in equations (3.15) which was derived from the 
friction force model. The Lorentz angle θxy  is: 

  tan θxy =
v
y

v
x

= −ω τ(E,B) ≡ −
e

m
B τ = −µ B = −

v(E, B = 0) B

E
 (3.31) 

 However, in practice the equation (3.31) is only approximate because our modeling of 
electron collisions with the gas is too simple minded. The correct equation is : 

  tan θxy = ψ
v(E, B = 0) B

E
 (3.32) 

where ψ = ψ (E N,B N)  is the magnetic deflection factor. 
 Measurement of the magnetic deflection factor ψ  was done by T. Kunst, B. Goetz and B. 
Schmidt [15] - see Fig. 1. The fact that it is not really a constant casts a doubt that we are 
dealing with a real theory so far. 
 

      
Fig. 1 - Magnetic deflection factor ψ  for (a) CH4, (b) 90% Ar+10% CH4,  
  (c) 95% Ar + 5% CH4 gases. 
 
Example #3: -     E  is nearly parallel to     

 
B , i.e.

  
 
B ≈ Bz , 

  
 
E = (0, 0, Ez ), 

  

 
B = (0, By, Bz ) , By << Bz : 

From equation (3.27) we obtain a system of differential equations: 
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m
d v
x
(t)

d t
= e (vy Bz − vz By) , m

d v
y
(t)

d t
= −e vx Bz , m

d v
z
(t)

d t
= e Ez + e vx By  (3.33) 

The solution for the initial conditions vx(0) = vy(0) = vz (0) = 0 : 

  vx(t) =
B
y
E
z

B2
(cos ω t − 1) , vy(t) =

B
y
B
z
E
z

B3
(ω t − sin ω t)  (3.34) 

  vz (t ) =
E
z

B3
(Bz

2 ω t + By
2 sin ω t)  

The drift velocity is then given by the following averages: 

 < vx(t) > =
B
y
E
z

B2
(cos ω t −1)

0

∞

∫
1

τ
e
− t τ

dt = −
µ2

1 + (ω τ)2
By Ez  (3.35)  

 < vy(t) > =
B
y
B
z
E
z

B3
(ω t − sin ω t )

0

∞

∫
1

τ
e
− t τ

dt =
µ3

1 + (ω τ)2
By Bz Ez    

 < vz(t) > =
E
z

B3
(Bz

2 ω t + By
2 sin ω t)

0

∞

∫
1

τ
e
− t τ

dt =
1 + µ2 Bz

2

1 + (ω τ)2
µ Ez  

 We have obtained the same results as in equations (3.17). This supports our previous 
intuition that the characteristic time in the friction model is the same as the average time 
between collisions in the simple microscopic model. However, in all these examples, ω τ  
and µ  had to be obtained in the end from the experiment, and -not- from the theory !!  Before 
we mention the real theory, we have to introduce a concept of electron diffusion. 
3.3. Electron diffusion  
 Drifting electrons scatter on the gas molecules. Their motion can be described by their 
random motion, which is characterized by the mean energy ε  and gives rise to diffusion, and 
by their collective motion, which is characterized by the average drift velocity. The motion 
follows the continuity equation (the total electron current is given by the sum of the drift 
current and the diffusion current:   

 
J = n

 
v − D

 
∇ n ). Its solution has in the simplest case the 

isotropic distribution, i.e. the point-like cloud of electrons at time t = 0 will create a Gaussian 
density distribution at time t : 

  n = (
1

4π Dt
)3 exp(−

r 2

4D t
), (3.36) 

where D is the diffusion coefficient. From equation (3.37) follows that the diffusion width of 
an electron cloud σx , after starting point-like and traveled time interval t, is: 
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  σx = 2D t   (3.37) 

One can show that the diffusion coefficient is related to electron energy ε  as follows: 

  D =
2

3

ε

m
τ =

ε
k
m

τ  (3.38) 

where ε  is electron energy, εk  is so called "characteristic energy", m is mass of the 
electron and τ  is average time between collisions. Recalling the expression for electron 
mobility, we obtain expression for the characteristic electron energy: 

   ε k =
Dm

τ
=
Dm
µm

e

=
D e

µ
.   (3.39) 

 The diffusion width σx  of an electron cloud width, after starting point-like and traveled 

over a distance x: σx = 2D t =
2 D x

µ E
=

2 ε
k
x

e E
.  (3.40) 

 The smallest diffusion corresponds to a thermal energy εk =kT, (ε = 3 2 k T ~0.04 eV at 
24oC) resulting in the smallest possible diffusion width σx  of an electron cloud (so called 

"thermal limit"): σx = 2D t =
2 k T x

e E
.  (3.41) 

However the reality is unfortunately more complicated: 
1. Electric field alters the diffusion so that it is necessary to introduce two diffusion  
 coefficients DL  and DT , one for the longitudinal and one transverse direction in respect  
 to electric field. Fig. 2 shows an example in methane [18]. 

    
   Fig.2 - Diffusion coefficient in methane. 
 
2. Magnetic field alters the diffusion so that the transverse diffusion coefficient DT (B) in  

 respect to its direction gets smaller: 

    
D
T
(B)

D
T
(B = 0)

=
1

1 + (ω τ)2
, (3.42) 
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 while the longitudinal diffusion coefficient remains the same DL (B) = DL(0). 
3.4. Boltzmann equation method. 
 A full theory of electron transport in gases can get rather complicated. We will follow more 
simple path of Schultz and Gresser [19]. For more complete description see L. G. H. Huxley 
and R.W. Crompton [20]. For a theory which includes the ionization and attachment 
processes see K.F. Ness and R.E. Robson, [21]. 
 Drifting electrons scatter on the gas molecules. This motion follows the Boltzmann 
transport equation, which expresses the conservation of number of electrons. If f(v,r,t) is the 
distribution function of electrons at r, v of the phase space at time t, the simplest 1-
dimensional form of the Boltzmann equation is: 

    ∂ f

∂ t
+
∂ f

∂ r

∂ r

∂ t
+
∂ f

∂ v

∂ v

∂ t
−
∂ f

∂ t Coll.
= 0  (3.43) 

where ∂ f ∂ t  represents time evolution of f(v,r,t), (∂ f ∂ r)(∂ r ∂ t )  represents loss of electrons 
in interval dr due to diffusion, (∂ f ∂v) (∂v ∂ t)  represents loss of electrons in interval dv due 
to acceleration caused by field E and ∂ f ∂ t Coll. represents loss of electrons in interval dv due 

to collisions of electrons with molecules of a gas. 
 To solve the equation (3.47) we introduce the following simplifications: 
a) We express the distribution function f using electron energy ε = 1 2m v2 , and the mean  
 free path   (ε)  between two elastic collisions,  
b) we assume that the electric field E is parallel with x axis (no magnetic field for now), 
c) we assume a stationary case, i.e. no x or t dependence, 
d) we assume no ionization and no attachment processes, 
e) we expand the distribution function f in terms of the Legendre polynomial expansion,  
 and use in our case two terms only: 
     f = f 0(ε ) + f1(ε ) cos θ+.. .    (3.44) 

One gets two coupled equations : 

  
eE

∂ f0
∂v

+ m v
∂ f

∂x
= −

mv f1
 (ε )

, 
  

eE

2v

∂

∂ v
(v2 f1) +

1

2
m v2

∂ f1
∂x

=
m2

M

3

2 v

∂

∂v
(
v4 f0
(ε )

)   (3.45) 

where M is mass of the molecule. 
 We now assume ∂ f ∂x = 0 , i.e. uniform distribution along x direction. This yields these two 
equations: 

   
  
eE

∂ f0
∂v

= −
m vf1
(ε )

, 
  

eE

2v

∂

∂ v
(v2 f1) =

m2

M

3

2v

∂

∂v
(
v4 f0
(ε )

)   (3.46) 

One can now eliminate f1  and solve for f 0  : 
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2

3

(eE)2

m

∂

∂ ε
[ ε (ε )

∂(f 0 v)

∂ε
] +
2 m

M

∂

∂ε
[
ε vf 0
(ε )

] = 0    (3.47) 

Equation (3.47) can be easily solved (first, we assume   (ε)  = const.) : 

    
  
f 0(ε ) = C ε exp[−

3m

M
(

ε

eE (ε )
) 2 ]     (3.48) 

where a constant C is obtained from a normalization : f 0(ε)
0

εmax

∫ d ε = 1. A fraction of energy 

lost by electron scattering elastically from molecule of mass M can be approximated as: 
     Δ ε

ε
=
2m

M
(1 − cos θ) ,     (3.49) 

while the mean fraction of energy lost is Λ = 2 m M . However, the solution (3.48) must be 
changed if   (ε)  is not a constant and if the mean fraction of energy lost in the collision is not 
equal to Λ = 2 m M , but it is Λ = Λ (ε ). In this case equation (3.48) becomes : 

    
  
f 0(ε ) = C ε exp[ −

3Λ (ε, )ε ,

(e E (ε ,) )20

ε

∫ d ε, ]    (3.50) 

 Unfortunately, one has to introduce several complications: 
a) If the energy of electrons is similar as the thermal energy of the molecules (ε  = kT ~   
 0.025 eV), it is necessary to introduce an additional term in equation (3.47): 

 
  

2
3
(eE)2

m
∂
∂ε [ε (ε )

∂(f 0 v)
∂ ε ] +

2 m
M

∂
∂ε [

ε v f0
(ε ) ] +   

∂
∂ ε
[
2Λ (ε )
m

]
ε2
(ε ) kT

∂(f0 v)
∂ε

= 0  (3.51) 

 This changes solution (3.50) to: 

    
  
f 0(ε ) = C ε exp[ −

3Λ (ε, )ε ,

[(e E (ε ,) )2 + 3Λ (ε, )ε , kT]0

ε

∫ d ε, ]  (3.52) 

b) If we wish to add inelastic collisions, we must add to equation (3.51) additional term: 

 
     

[
2 m (ε + εk )

k (ε + εk )k
∑ f 0(ε + ε k) −

2 m ε

k(ε )
f 0(ε )] ,  (3.53) 

 where   εk  is the excitation energy of the k-th state and   k  is the mean free path between  
  two collisions which gives rise to the excitation. In practice, the inelastic collisions are   
 vibrational and rotational molecular excitations caused by electrons of sufficient energy.   
      We can approximate equation (3.53) by : 

     
  k
∑ εk

∂
∂ε [

vf 0(ε)
 k(ε)

]      (3.54) 

 and the solution (3.50) is still valid provided we use : 

     
  

Λ(ε) = 2 m
M

+
k
∑

εk
ε
 e(ε)
 k (ε)

    (3.55) 

 The last equation can be expressed in terms of cross sections : 
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     Λ (ε ) =
2 m
M

+
k
∑

εk
ε

σ k(ε )

σ e (ε )
    (3.56) 

 where   σ (ε) =1 N (ε)  is the cross section, N=N0 (p/760) (273/T) is the Loschmidt  
 number,   N0 is the Loschmidt number defined at 0oC (2.687 x 1025 molecules/m3), 
 p is pressure in Torr and T is absolute temperature in K. 
c) Finally, one includes magnetic field. This results in the following modification of the  
 solution (3.50) (  

 
E  is perpendicular to   

 
B ): 

   
  
f 0(ε ) = C ε exp[ −

3Λ (ε, )G(B) ε,

[(e E (ε ,) )2 + 3Λ (ε, )ε , kT G(B)]0

ε

∫ dε, ]  (3.57) 

 where 

    
  
G(B) = 1 +

e 2 Bz2 e (ε) 2
2m ε      (3.58) 

d) Gas mixtures are calculated as follows: 
     σ =

i
∑ δ i σ

i , σ Λ =
i
∑ δ i σ

i Λ i    (3.59) 

 Once we obtain the function f 0(ε), the electron transport coefficients are calculated as   
 follows (  

 
E  is perpendicular to   

 
B ): 

 
1. Drift velocity :  

  
vx = −

2
3
e E
m

ε e (ε )
G(B)

∂ (f0(ε ) v(ε ) )
∂ ε

0

εmax
∫ d ε , 

  
vy =

eE eB
3m

e2 (ε )v(ε )
G(B)

∂ (f0 (ε) v(ε ) )
∂ ε

0

εmax
∫ d ε    

   v = vx
2 + vy

2        (3.60) 

 

2. Lorentz angle :   θ = tan −1(
vy
vx
)      (3.61) 

3. The diffusion coefficient : 
  
DT =

1
3

e (ε )v(ε)
G(B)

f 0(ε )d ε
0

εmax
∫   (3.62) 

 From the Lorentz angle we determine the ω τ  term needed in many equation in the earlier 
part of the lecture. The theory works with a 5-10% accuracy. The following three examples 
were calculated by the author using a code written by P. Coyle following the Schultz and 
Gresser theory [22]: 
 
Example #1 (  f0 (ε) function in methane) : 
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Electron energy distribution in methane
(B=0 kG, 760 Torr, 298 degC)
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Example #2 (  f0 (ε) function in various gases) : 

   

  Electron energy distribution
 at 1 kV/cm in various gases

(B=0 kG, 760 Torr, 298 degC)
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Example #3 (Calculated Lorentz angles): 

   

Lorentz angle in CO2/C2H6 mix as a 
function of electric field gradient

(B=6 kG, 760 Torr, 298 degC)
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 We can now predict the Lorentz angle, and therefore ω τ . However, the presented theory is 
not sufficiently precise in some cases because of the following arguments: (a) the presented 
version of the theory in this lecture does not calculate the longitudinal diffusion coefficient 
DL, and (b) if we want 1% precision, the two-term approximation is not sufficient in gases 
with strong inelastic processes (hydrocarbons, CF4, etc.). B. Schmidt [18] points out that to 
explain the data in methane it is necessary to introduce (a) six terms, (b) an anisotropy in the 
elastic scattering and (c) introduce higher order of vibration cross-sections - see his results on 
Figs 3 and 4. However, Schmidt's  theory does not include the ionization and attachment 
processes. This particular problem was done, for example, by S. Biagi [23].  

  
 Fig.3 - Drift velocity in methane. Fig.4 - Diffusion coefficient in methane. 
 

     
    Fig.5 - Electron molecule cross-sections in methane. 
 
3.5. Monte Carlo method. 
 I will mention a recent attempt by H. Pruchova and B. Franek [24]. A computer program 
follows the electrons and ions in small steps (fraction of a psec) and evaluates electrostatic 
forces, position and velocities of each electron and ion, and probability of various physics 
processes using the electron-molecule scattering cross-sections: (a) elastic scattering 
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(electron does not lose energy), (b) inelastic scattering (electron loses energy), (c) ionization 
scattering (a new electron is produced), (d) attachment scattering (electron is absorbed by a 
molecule), etc. - see Figs. 5-9 (one should also mention that similar attempts were made 
earlier, for example, by J. Groh [25], and by M. Matobe et al.[26]). 
 

  
Fig.6 - Electron paths in xy-plane.  Fig.7 - Electron paths in xz-plane. 

   
Fig.8 - Prediction of the 1-st Townsend  Fig.9 - Gas gain.  
ionization coefficient using the Monte Carlo  
and the Boltzmann equation methods. 
 
Difficulties of the Monte Carlo method: 
1. Very demanding on the CPU time. 
2. It is difficult to obtain the "correct" cross-sections. Methane is about the best studied gas  
 of all. Some cross-sections in literature are altered to obtain the best match between  
 theory and data using the Boltzmann equation procedure. There is some risk that the  
 incorrectly "tuned" cross-sections would yield inconsistencies if used in the Monte  
 Carlo method. 
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3. Still some difficulties to predict the practical quantities such as drift velocity, diffusion,  
 etc., even in methane. Nevertheless, the results are still impressive. 
More work is needed in this area ! 
 
  Chapter 4: 
 
4.1. Gain - phenomenological parametrization 
 The multiplication of ionization is described by the 1-st Townsend ionization coefficient 
α , which is defined as the mean number of secondary electrons produced by a free electron 
per centimeter of its path. The increase of the number of electrons dN per path dr  is given 
by: 
  d N = N α d r  (4.1) 
 No simple general expression for α  exists; it has to be measured for every gas mixture. It 
can be shown experimentally that α  is proportional to gas density ρ , provided that we keep E 
/ρ  fixed: 
   α = f (E ρ) ρ  (4.2) 
 The amplification gain on the wire is given by the integration of equation (4.1) between 
the point  rc where the field is sufficient to start the avalanche and the anode radius ra : 

  G =
N
N0

= exp α(r) d r
rc

ra

∫ = exp α(E)
∂ r

∂E
dE

E(rc )

E(ra )

∫  (4.3) 

where N & No is final and initial number of electrons in the avalanche, ∂ E ∂ r  is the electric 
field gradient, E(ra) is the electric field on the surface of the anode wire and E(rc) is the 
electric field at critical radius beyond which the field is too low to support charge 
multiplication.Electric field near an anode wire whose radius is small compared to the inter-
electrode distances is determined from equation (1.9). Inserting equation (1.5) into (4.3): 

 G =
N
N0

= exp α(E)
λ

2 πε0 E
2 dE

E(rc )

E(ra )

∫   (4.4) 

In a homogeneous electric field, such in the parallel plate chamber with a gap L, the equation 
(4.2) gives a simple expression G = N/N0 = exp(α L) . 
 
4.2. Parametrization of α  
4.2.1. The Diethorn parametrization [27]:  
 He approximates α  as follows: 
  α(E) = β E  (4.5) 
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This approximation is valid for noble gases for electric field between 102-103 [V/cm Torr], a 
typical range of fields near the thin anode wires. Inserting equation (4.5) into (4.4): 

  

 n G = α(E)
λ

2π ε0 E
2 d E

E(rc )

E(ra )

∫ =
λ

2 π ε0

β

E
d E

E(rc )

E(ra )

∫ =

  

β λ
2 π ε0

 n
λ

2 π ε 0 ra E(rc )
 (4.6) 

Potential difference between r = ra and r = rc : 

  

  

φ (ra ) − φ(rc ) = E(r) dr
ra

rc

∫ =
λ

2π ε0

n
rc
ra

=
λ

2 π ε0

n
λ

2 π ε0 ra E (rc)
 (4.7) 

 Assuming that it takes energy e ΔV  in average to produce one more electron, the potential 
difference φ (ra ) − φ(rc )  gives rise to Z generations: 

    G = 2 Z, Z =
φ (ra ) − φ(rc )

ΔV
 (4.8) 

This results in:  
  

n G =
n 2

ΔV

λ

2 π ε0

n
λ

2 π ε0 ra E (rc )
 (4.9) 

Therefore    β = n 2 ΔV. Using equations (4.2), (4.4) and (4.9) we get the final Diethorn 
formula: 
   

  

n G =
n 2

ΔV

V

n(ra / ra )
n

V

n (r
c
/ ra ) ra E (rc,ρ0 ) (ρ ρ0)

 (4.10) 

 

   
Fig.1 - Diethorn plot ( p = ρ / ρ0 ); different wire diameters fall on the same curve for a   
  given gas - this allows scaling from one design to another.  
 
1) Experimentally we vary p = ρ ρ0 , a and   V n (rc / ra ) , and measure G.  
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2) A plot of 
  

1
V
n G n(rc / ra ) versus 

  
n [V n(rc / ra ) ra (ρ ρ0)]  must be linear  

 and yields two constants ΔV  and E (rc,ρ0)  - see Fig.1. 

 
Table#1 - Examples of measured Diethorn parameters for several gases: 

               Gas mixture    E(rc)   [kV/cm]       ΔV     [Volts] 
      90% Ar + 10% CH4      48 ±  3    23.6 ±  5.4 
      95% Ar + 5% CH4      45 ±  4    21.8 ±  4.4 
      92.1% Ar + 7.9% CH4      47.5    30.2 
      23.5% Ar + 76.5% CH4      196    36.2 
      9.7% Ar + 90.3% CH4      21.8    28.3 
Note:   ΔV  and E(rc) can be considered fundamental gas constants 
 
Application of the Diethorn formula: 
a) Dependence of gain on gas density: 
 This is especially important for chambers operating at atmospheric pressure (the gas 
density is proportional to it). From equation (4.10) we obtain: 
  

  

d G
G

= −
λ n2

ΔV2 π ε0

d ρ
ρ

 (4.11) 

The factor that multiplies d ρ ρ  ranges typically between 5 and 8. 
b) Dependence of gain on geometry, voltage and space charge: 
 All these effects change the local charge density of the wire λ . This in turn changes the 
wire gas gain as follows: 
  

  

d G
G

= (n G +
λ n2

ΔV 2 π ε0
)
d λ
λ

 (4.12) 

The factor that multiplies d λ λ  ranges typically between 10 and 20. 
4.2.2. The Zastawny parametrization [28]:  
 This parametrization is valid over larger range of   S, i.e. it is more general compared to 
Diethorn's parametrization. First, introduce a new variable S(r) ≡ E(r) ρ , where E is electric 
field intensity and ρ  is gas density. Values Sa and Sc correspond to r = ra (anode surface) and 
r = rc (beginning of amplification, i.e. α(r ) = 0  for r > rc). In the cylindrical geometry: 

   S(r) ≡
E(r)
ρ

=
1
ρ

Ea ra
r

=
Sa ra
r

 (4.13) 

Equation (4.3) can then be rewritten: 

   

  

n G = α(r ) dr
r c

ra

∫ = α
∂ r

∂S
d S

Sc

Sa

∫ = ρ ra Sa
α

ρ

1

S2
dS

Sc

Sa

∫  (4.14) 
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Based on equation (4.2), α ρ  is a function of S only. We introduce so called "reduced gas 
gain" Ψ : 

  

  

Ψ ≡
n G
ρ Ea ra

=
α

ρ

1

S2
d S

Sc

Sa

∫ = f (Sa )  (4.15) 

The reduced gas gain Ψ  is only a function of variable Sa - see Fig. 2. 
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Fig.2 - Reduced gas gain Ψ  = f (Sa) Fig.3 - The first Townsend  
   in CO2 gas. coefficient α ρ  = f (S). 
 This is a significant result ! All data are following one single curve for a given gas choice, 
independent of gas pressure, voltage or anode radius. This is used to predict the gas gain in a 
new drift chamber geometry: (a) we parametrize the "reduced gas gain" ψ  = f(Sa)  in a 
known geometry such as a tube wire chamber, (b) then we scale it to any other geometry, 
provided that we can calculate Sa in this geometry. This allows to know the gas gain when 
we simulate the drift chamber geometry in the electrostatic program. 
 Zastawny parametrized α  as follows (in fact this is an old Korff parametrization [29]): 
  α

ρ
= A exp (−

B

S
) (4.16) 

where for a given gas choice, A and B are constants only in certain E/p intervals (typically 2-
3 intervals). In this parametrization the "reduced gas gain" ψ  has the following simple 
form: 

  

  

Ψ ≡
n G
ρ Ea ra

=
α

ρ

1

S2
Sc

Sa

∫ d S= f (Sa ) = A exp (−
B

Sa

)  (4.17) 

Fig. 3 shows an example of author's calculations of α  using Zastawny's fits to his data. 
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CF4 gas start
absorbing electrons
when they reach
energy of about
5-6 eV
Other freons are
absorning even
thermal electrons

 
Fig.5 - The effective ionization coefficient α p  Fig.6 - The attachment cross- 
  or CF4 gas is [30].   sections in Freons. 
 

    

90% Ar + 10% CF4 at 1 atm

  
 Fig.7 - Monte Carlo simulation of the resolution in 4 mm straw tube. 
 
4.3. Gain in the presence of electron attachment 
 In this case one introduces the attachment coefficient η , and the gain equation (4.2) is 
modified as follows: 

   G =
N
N0

= exp (α (r ) − η(r ) ) d r
rc

a

∫   (4.18) 

where α ≡ α (r ) − η(r )  is the effective ionization coefficient. From Fig. 5 one can see that we 
need to add some gas to CF4, for example iC4H10, to eliminate its absorption of electrons for: 
10 kV/cm < E/p < 35 kV/cm. The explanation of this effect can be traced to the attachment 
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cross-section in fluorocarbons - see Fig. 6. Is this significant for the practical applications ? 
Yes, it can affect the "near wire resolution" in detectors such as tube wire chambers [31] - see 
Fig. 7. 
 
4.4. Statistical fluctuation of the gas gain  
 The total charge developed during a pulse is proportional to: 
  Q = n0 eM  (4.19) 
where no=E/W is the number of individual avalanches, E is the energy deposited by the 
incident radiation, W is the energy required to form one ion pair, M is the average 
multiplication factor and e is the electron charge. The average multiplication factor from all 
the avalanches which contribute to a given pulse is: 

  M =
1

n0
Ai

i = 1

n0

∑ ≡ A  (4.20) 

where eAi  is the charge contributed to the i-th avalanche. The pulse amplitude, which is 
proportional to Q, is subject to fluctuations because of fluctuations in n0  and M : 

  (
σQ
Q
) 2= (

σn0
n0

) 2+ (
σM
M
) 2  (4.21) 

where σM  can be rewritten as: 

  σM
2 = (

1
n0

)2 σ A 
2

i = 1

n0

∑ =
1
n0

σA 
2  (4.22) 

Combining equations (4.21) and (4.22): 

  (
σQ

Q
) 2= (

σn0

n0
) 2+

1
n0

(
σA 

A 
) 2  (4.23) 

1. Variation in the number of ion pairs: 

   (
σn0
n0

) 2=
F
n0

 (4.24) 

 where F is so called Fano factor (typically 0.05-0.20). 
2. Variation in single electron avalanches: 
 The distribution follows the Polya distribution (proposed by Byrne [32]): 
  P(A) = [

A(1+ θ)
A 

]θ exp[−
A(1 + θ)

A 
] (4.25) 

 which has a variance (σ
A 

A )2= 1 A + b , b ≡ (1 + θ)−1, b is typically 0.5 and the  

 parameter θ  has a value between 0 and 1 - see Fig.3. At small E/p the parameter θ   
 approaches zero, i.e. the distribution is the exponential (so called Furry  
 distribution, which has a variance (σ

A 
A )2= 1): 

  P(A) =
1
A 

exp(−
A
A 

)  (4.26) 
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Fig.3 - Polya distributions as a function  Fig.4 - Single electron pulse height spectra 
  of A / A  for various values of the  measured by Schlumbohm for various  
   parameter b ≡ (1 + θ)−1; (b = 1   values of χ : (a) χ =26, (b) χ =22.6,  
  corresponds to θ= 0).  (c) χ =10.5, (d) χ =5.3 and (e) χ =4.1. 
 Raether [33] suggested that the critical quantity to decide the shape of the Polya 
distribution is: 
  χ =

eE α
eVion

 (4.27) 

where α  is the 1-st Townsend coefficient, 1 α  is the mean free path, eE α is the energy 
gained between two subsequent collisions and eVion  is the ionization energy. For χ  > 25 the 
pulse height spectrum tends to exponential (θ~0), for χ  < 20 the pulse height spectrum 
exhibits a turnover (θ>0). Fig.3 shows the pulse height measurement in avalanches started by 
single electrons as measured by Schlumbohm [34], in methylal, in parallel-plate geometry - 
see Fig.4. 
  From the last chapter about the detector problems we will see that this is not the whole 
story. The parameter θ  can be negative if the detector has problem with quenching, i.e. if the 
an avalanche has a tendency to breed the secondary avalanches. 
 The amplification on the wire is non-linear at large gains - see Fig. 5. At a gain of about 
1.5 x 108 the limited streamer regime starts where the output pulse height does not depend 
any more whether the initial charge is only one electron or 220 electrons. One can also see 
the non-linearity of the output earlier. 
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Gas gain
 ~1.5 x 10**8

 
Fig.5 - Gain in a wire tube chamber as a function cathode voltage for  a) Fe55 source  
 (~220 el. deposited), and b) single electron source [36]. 
 
  The non-linearity of charge amplification on the wire is good because it limits the gas gain 
and prevents the development of a spark (see last chapter). This is not so in the parallel plate 
chamber which tends to be more linear in this respect. 
 
Examples of gas gain for typical anode surface gradients (Ea): 
1. The gas gain as a function of the electric field on the anode surface (Fe55 source): 

Gas Gas 
pressure 

Total wire 
 gain 

   Ea 
  
[kV/cm] 

Wire dia. 
[µm ] 

90% Ar+10% CH4 1 atm ~104 ~200  20 
90% Ar+10% CH4 1 atm ~105 ~240  20 
90% Ar+10% CH4 4 atm ~4x104 ~320  25 
90% Ar+8% CH4+2% 
C4H10 

4 atm ~4x104 ~360  20 

90% Ar+8% CH4+2% 
C4H10 

4 atm ~4x104 ~309  25 

90% Ar+10% C4H10 6.1 atm ~105 ~760  7.8 
50% Ar+50% C2H6 1 atm ~5x104 ~275  20 

2. The gas gain at 1 atm as a function of the electric field on the anode surface of a 20µm  
 anode wire (single electron source) [35]: 
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Gas Parameter θ  
 

Visible wire 
gain 

  Ea 
 [kV/cm] 

50% Ar+50% C2H6 0.252± 0.026 ~5x105 ~311  
95% CF4+5% DME 0.272± 0.044 ~9.2x105 ~377  
80% CF4+20% C4H10 0.624± 0.043 ~3.4x105 ~349  
90% CF4+10% CH4 0.222± 0.042 ~6.3x105 ~396  
50% He+50% C2H6 0.287± 0.019 ~2.9x105 ~302  
78% He+15% CO2+7% C4H10 -0.031± 0.019 ~5.8x105 ~283  
50% Ar+50% C2H6 0.252± 0.026 ~5x105 ~311  
96.4%He+3.6%DME -0.897± 0.050 1.9x104 ~188 
80.5%He+19.5%DME 0.321± 0.058 4.1x105 ~264 
100% DME 1.768± 0.079 2.6x104 ~188 

 
   Chapter 5: 
 
5.1. Creation of the electrical signal 
 Moving charges create electrical signals on nearby electrodes [2].  Avalanche electrons 
have to travel only few tens of microns, positive ions travel much larger distance toward the 
cathode. Energy ε  of the electrostatic field of the capacitor is: 
   ε = 1 2 Q0 V , (5.1) 
where V is potential of the capacitor and Qo is its charge. A small charge q that travels 
between two points 1 and 2 under the influence of the field E changes the electric energy ε  
of the capacitor by the amount: 

   
  

Δ ε = q
 
E . d
 
r 

1

2

∫ = q(V1 − V2) = q ΔV , (5.2) 

 This change in energy Δ ε  of the capacitor is the source of the anode signal. The signal 
shape depends on the nature of the electrical configuration - see Fig. 1. 

   
  Fig.1 - A simple equivalent circuit of a tube wire detector. 
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There are two limiting cases: 
a) The potential of the wire is re-established during the development of the pulse, which  
 requires that charges flow quickly enough into the detector, which acts as a current  
 source. In this case it is required that time constant R2.C1 is small compared to the  
 pulse rise-time. The signal is the current I(t) that flows through R2. Using equation  
 (5.1), the change in energy Δ ε = (1 2)Δ Q0(t) V  of C1 capacitor causes a current  

 flow through R2 resistor: 
  I (t) = d dt[ΔQ0(t)]= (2 V)d dt [Δ ε] (5.3) 

b) The potential of the wire is not re-established quickly because charges are not flowing  
 quickly enough into the detector. This results in a drop of wire potential of the detector,  
 which acts as a voltage source. In this case time constant R2.C1 is large compared with  
 the pulse rise-time. We have a voltage pulse on R2 resistor : 
   ΔV = 2 Q0 Δ ε  (5.4) 

 In practice,  we are typically closer to the case (a). I give two examples: 
1) CRID detector: 

     
2) OPAL drift chamber: 

     
 Let's consider an example of the cylindrical wire tube. I will show that the contribution of 
the charge motion of the electrons can be neglected [1]. To obtain a signal from the motion of 
a charge q over a distance dr, we consider a case (b) discussed above, and equations (5.4) and 
(1.9): 
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  d V =
2

Q0
d ε = 2

q E(r) dr

Q0
=

2q

2 π ε0 L

1

r
dr  (5.5) 

 Assuming that all ion pairs are created at a distance d from anode, we obtain a 
contribution from electron and ion motions separately by integrating equation (5.5): 

electrons:  

  

ΔV− =
2q

2π ε0 L

1

r
dr

ra

ra + d

∫ =
2q

2π ε0 L
n
ra + d
ra

 (5.6) 

ions:  

  

ΔV+ =
2q

2π ε0 L

1

r
dr

ra + d

rc

∫ =
2 q

2π ε0 L
n

rc
ra + d

 (5.7) 

Total induced signal on anode is then: 
  

  
ΔV = ΔV− + ΔV+ =

2q

2 π ε0 L
n
r c
ra

=
2q
C

 (5.8) 

where C is the total capacitance of this detector is: 
  

  

C =
Q0
V0

= 2 π ε0 L
1

nrc ra
 (5.9) 

From here it follows that to get as large a signal as possible, one wants to keep the detector 
capacitance C1 in Fig. 1 as low as possible. Because d is only few tens of microns, the signal 
due to electron motion is much smaller than the signal due to positive ions. Therefore, the 
electron signal is neglected in our considerations. The time dependence of the motion of 
positive ions is estimated as follows: 

  viondrift (t) =
d r(t)
d t

= µ+
E(r)
p

=
µ
+ CV0

2 π ε0 L p

1

r
 (5.10) 

where µ+  is the ion mobility and p is the gas pressure. By integrating equation (12), and 
assuming that µ+~conts., we obtain: 

  r(t ) = ra 1 +
t
t 0

, (5.11) 

where t 0  is the characteristic time of the chamber: 

  t 0 =
π ε0 L p ra

2

µ+ C V0
=

ra
2 µ+ E(ra )

 (5.12) 

The characteristic time, typically 0.1-2 ns, is expressed in terms of the wire radius, ion 
mobility and electric field on the surface of the wire. Using equations (5.2) and (1.5), we 
calculate the change in energy Δ ε  as a function time from the motion of charge q 
representing the positive ions starting at anode radius and ending at radius r(t):  
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Δ ε = q
 
E . d
 
r 

ra

r(t)

∫ = q
λ

2 π ε0

1

r
.d  r 

ra

r(t )

∫ =
q λ

2 π ε0
n r(t)

ra
=

q λ

4 π ε0
n(1 +

t
t 0

)  (5.13) 

 For normalization purposes, it is useful to calculate the total energy change (using 
equations (1.8) and (5.13)): 

  

  

Δ ε tot= q
 
E .d
 
r 

ra

rc

∫ =
q λ

2 π ε0
n

rc
ra

= q V0  (5.14) 

This allows us to re-write equation (5.13) as follows: 
  

  
Δ ε =

q λ

4π ε0
n(1+ t

t0
) = q V0 n(1 +

t
t 0
) [1 2 n

rc
ra
] = q V0 F(t)  (5.15) 

Going back to our earlier discussion related to Fig.1, and using equations (5.3) and (5.4): 
Case (a) - current pulse: 
  

  
I (t) =

d

d t
ΔQ(t) =

2

V

d

d t
Δε =

2

V

q λ

4π ε0

1

t + t 0
= [q n

rc
ra
]

1

t + t 0
 (5.16) 

Case (b) - voltage pulse: 
  

  

ΔV =
2

Q0
Δ ε =

2

Q0
q V0 n(1 +

t
t 0
)

1

2 n
rc
ra

=
2 q

C
n(1 +

t
t 0
)

1

2 n
rc
ra

=
2q

C
F(t)  (5.17) 

5.2. Pulse shape prediction 
5.2.1. - CRID photon detector with an amplifier [37] - see Figs. 3 and 4. 
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 Fig. 3  - (a) Measured chamber single  Fig. 4 - The effect of the shaping 
  electron pulses, (b) measured and  time on pulse height. 
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  calculated amplifier response to an  
  impulse charge and the chamber pulse. 
 In this case the avalanche is initiated by a single electron created by a photo-ionization of a 
photo-sensitive molecule such as TMAE or TEA. The pulse is the result of a convolution of 
the amplifier response to the impulse charge and the positive ion response: 
a) amplifier response: t e(− t / τ) , where τ  ~ 65 ns (shaping time), 

b) positive ion response:   
  
I (t) = (q n

r c
ra
)

1

t + t0
=

A

t + t 0
 

c) Additional constants needed for the problem (for CH4 gas): rc = 0.146cm, ra = 3.5x10-4  

 cm, µ + (CH4) ~2.26 cm2V-1sec-1, E(ra) = 810 kV/cm, to=0.1 ns (unusually small !!;  
 normal drift chambers have thicker wires,   t0  ~1-2 ns and E(ra) ~300-400 kV/cm). 
The convolution of two functions is the following integral: 

 Pulse(t) = A
0

t

∫
t, e(− t

, / τ)

t − t, + t 0
dt, = A exp( −

t + t 0
τ

)( t + t 0).  (5.18)  

  
  
.{n(1 + t

t 0
) + (

t0
τn=1

∞

∑ )
1

n ⋅n!
[(1 +

t
t0
)n − 1]} − τ [1 − exp(−

t
τ
) ] 

 The comparison between this simple theory and the measurement was done in the CRID 
detector operating with the CH4 gas, the early version of the CRID amplifier was coupled to 
the LeCroy waveform digitizer. It is interesting to determine the influence of the shaping 
time on the pulse height. If CRID detector would use 20 ns shaping time, the pulse height 
would have been 4-5 times smaller, resulting in the necessity to increase operating cathode 
voltage by ~150 Volts - see Fig. 4. Running with shorter shaping time would mean a 
necessity to run higher voltage of about 150 V on cathode (the final CRID gas is actually 
C2H6, which gives to~0.2ns for E(ra)=725 kV/cm and µ+(C2H6) ~ 1.4 cm2V-1sec-1). 
5.2.2. - Drift chamber pulses [38]. 
 In this case the avalanche is initiated by a number of electrons arriving in clusters at 
slightly different times and each subject to a different avalanche fluctuation, which will 
create an additional randomness compared to the photon detector response. To treat this 
problem correctly, one has to use the Monte Carlo method. The drift chamber pulse is a result 
of a numerical convolution of three basic responses: 
  Pulse(t) = Idrift (t) × Iavalanche (t) × Ielectronics (t) , (5.19) 

where 
1. Idrift(t) is generated by: 
 a) working with a correct electrostatic field, 
 b) creating the primary ionization, 
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 Fig. 5 - The drift in the jet chamber. Fig. 6 - The non-isochronic charge collection  
    in the jet chamber operating with 90%Ar+  
    10%C4H10 at 1 atm and 10 kG: (a) the   
    effect of diffusion and clustering on the  
    drift chamber pulse randomness (avalanche 
  fluctuations and electronics included), (b)   
  the effect of impact parameter (0 and 6  
  mm), (c) the effect of angle of the track  
  (B = 0 kG). 
 c) drifting each electron within each cluster independently, 
 c) using the correct drift velocity in each step, 
 d) including the effect of the diffusion, 
 e) including the effect of the magnetic field. 
2. Iavalanche(t) is generated by: 
 a) including the effect of the motion of the positive ions, 
 b) including the effect of the avalanche fluctuations. 
3. Ielectronics(t) is generated by: 
 a) using the measured or calculated response of the amplifier, 
 b) using the effect of filters, cables, noise, etc. 



 
39 

 Why all this trouble ? My hope at that time, i.e. ~15 years ago, was to discover some new 
timing strategy which would allow to create a extremely high resolution drift chamber. Let's 
apply this simulation model to the jet chamber - see Fig. 5. The electrons do not arrive to the 
anode wire at the same time. This is a major factor limiting the high resolution capability for 
short drifts - see Fig. 6: 
Question: Can we improve the non-isochronic behavior of the jet chamber by a choice of  
  the gas operating point ? 
Answer: Yes, but the magnetic field will spoil it - see Fig. 7: 
 

     
Fig. 7 - The effect of choice of operating point in the  Fig. 8 - The effect of the drift  
 drift velocity curve on the isochrony of the  geometry on the isochrony   
  jet chamber.   of the charge collection. 
Question: Can we improve the non-isochronic behavior by a choice of geometry ? 
Answer: Yes, but the magnetic field and angle of tracks will spoil it again - see Fig. 8. 
5.2.3. - Propagation of signals along the wires. 
 First, I will show a practical example of the ~4.5 m long 8-wire prototype built during the 
R&D stage for the OPAL central drift chamber development [10] - see Fig. 9 and 10. 
 For both terminations we clearly observe reflections. The chamber impedance is of the 
order ~300 Ω ; a 50 Ω  termination at the end is an obvious mismatch which will cause a 
reflection. The charge division needs a low impedance amplifier. Therefore we will have 
inherently the reflection in the problem, and therefore the non-linearity in the z-coordinate. 
 The theory in the early part of this chapter did not include one significant ingredient: the  
propagation of signals along the wires. Such propagation follows the Telegrapher equation 
for the system of wires: 

   
∂ Ii
∂ z

= − Cik
k
∑

∂ Vk
∂ t

, 
∂ Vi
∂ z

= −Ri Ii − Lik
k
∑

∂ Ik
∂ t

 (5.23) 
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where Cik, Lik are wire to wire capacitance and inductance per unit length. The solution of 
this problem allows to design a proper drift chamber termination by minimizing the signal 
reflections, at least in principle. Let's discuss two possible wire terminations of the 4 m long 
OPAL central drift chamber [39]. 

       
 Fig. 9 - Signals of a Fe55 source painted on Fig. 10 - Signals of a Fe55 source 
   a potential wire in the middle of the  painted on a potential wire 
  chamber.(a) Low impedance at both   50 cm from the wire end. 
  ends (~50 Ω ), (b) high impedance  (a) Low impedance at both ends, 
  at left end (~MΩ ). (b) high impedance at left end, 
   (c) high impedance at right end. 
 
a) Simple minded termination of the OPAL b) Termination of the final OPAL 
 full size prototype, which was "tuned" by chamber after the Bock's analysis [39]: 
 the 8-wire prototype [10] (see Figs. 9 & 10): 
 TERMINATION A: TERMINATION B: 
 

 
 
Model for the input pulse shape in the analysis (4 free parameters): 
 



 
41 

     
Fig. 11 shows the result of the P.Bock's calculation of the pulse shapes. 
   TERMINATION A TERMINATION B 

     
  Fig. 11 - Simulated pulse shapes in a 4 m long OPAL drift chamber. 
 
 However, this termination did not remove the basic reflection problem discussed earlier, 
which is inherent in the problem of charge division. All it really does is to remove the 2-nd 
order ripple effects.  
5.2.4. - currents induced on nearby electrodes. 
 Ramo's theorem allows us to predict the induced signal on any electrode [40]. It says: the 
instantaneous current Ii flowing into one particular electrode i due to a motion of charge q at 
position    r  with a velocity   

 
v (
 
r )  can be calculated using equation: 

     
  
Ii = −q

 
v (
 
r ) •
 
E (
 
r )

Vi
  (5.24) 

where   
 
E (
 
r )  is field created by rising the electrode i to potential Vi and grounding all other 

electrodes, in absence of charge. A consequence of this theorem is the well known fact that 
the signal induced on the wire, which has an avalanche, has a sign opposite to that of the 
signal on the neighboring wires, which have the cross-talk. 
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Example: 
 The radioactive Fe55 source painted on the potential wires of the 8-wire prototype allowed 
also to study the wire to wire cross-talk. The cross-talk between nearest neighbors amounts to 
~7%, it has the same time structure as the prompt signal and has the opposite polarity [10] - 
see Fig. 12.  

   
 
 Fig. 12 - Cross-talk from one wire to the next. (a) Middle position of Fe55 source,  
  (b) source positioned 50 cm from one wire end. 
 
 Coefficients of induction Cik can be used to estimate the cross-talk from a signal on 
neighboring wires as follows [41]. 
5.2.5. - charge division. 
 The propagation of signals along the wire is governed by the equation: 

  
  

∂2 V(z, t)

∂ z2
=
Lw Cw
2

∂2 V(z, t )

∂ t2
+
Rw Cw
2

∂V(z, t)
∂ t

 (5.24) 

where V(z,t) is voltage, Z  is position along the wire (z = 0 at center), t is time,     is length of 
the wire, Rw, Lw, Cw is wire resistance, inductance and capacitance, LwCw/   . The 
∂
2 V(z, t) ∂ t2  term represents wave propagation, 

  
RwCw 2 ∂V(z, t ) ∂ t  represents diffusive 

propagation. Assuming the boundary condition   V(−  2, t) = V(+  2, t ) = 0 , the equation (5.24) 
can be solved by the Fourier series method. The general solution has a form: 

 
  

V(z, t ) =

n = 1

∞

∑ An Tn(t) sin[
n π z


]  (5.25) 

Time equation then becomes 
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Lw Cw
2

∂2 Tn (t)

∂ t 2
+
RwCw
2

∂ Tn (t)
∂ t

+ (
n π


)2 Tn(t) = 0  (5.26) 

 To get some insight into the integration time needed to obtain the linear charge division, we 
simplify this problem by assuming [42]: (a) neglect the wave propagation by assuming that 
the Lw Cw is small, i.e. the equation (23) becomes the diffusion equation; (b) assume that the 
boundary condition assumes the grounded ends, i.e.   V(−  2, t) = V(+  2, t ) = 0  (z = 0 at center); 
(c) we inject a δ -function charge Q at position x along the wire; (d) we detect the charge 
using the integrating charge amplifier. 
 The current flowing into charge integrated amplifier is: 

  
  

I(z, t ) =
Q

Rw Cw

{ 2 n

n = 1

∞

∑ π exp[−
t n
2
π
2

Rw Cw

] sin[
n π z


]}  (5.25) 

The integrated charge q1(z,t) at one wire end after time t is: 

q1(z, t) = I(z, t)∫ dt =

  

= Q{
1
2
+
z

+
2
π

(−1)
n

n
n = 1

∞

∑ exp[−
t n
2
π
2

RwCw

] sin[n π(
1
2
+
z

) ]}  (5.25) 

 Clearly, the solution has transients represented by the sum. The longest lasting transient 
term (n = 1) decays with a time constant  Rw Cw / π2 . For linear relation between q1(z,t) and 
the position along the wire, the sum in equation (25) should be negligible. The time required 
for the position non-linearity to be less than 0.2 % is t ≥  Rw Cw / 2. 
Examples of two detectors using the charge division: 
a) Opal 8-wire prototype: Rw = 850 Ω , Cw = 40-50 pF,  => Rw Cw ~ 35ns 
b) CRID detector: Rw = 40 kΩ , Cw = 2-3 pF,  => Rw Cw ~ 100ns 
 We will now discuss the position sensitivity and resolution of the charge division: 
a) Without coupling capacitors between the wire and the amplifier (include   
 the contact resistance between the wire and PC board). 

   
 Let q1 and q2 be the charge reaching the preamps at each end of the wire of resistance 
Rw. Let Rcontact and ramp are the contact resistance and amplifier input impedance. If 
Q=q1+q2 is the charge injected, then: 

  

q1
q1 + q2

=

1
2
(Rw + 2 ramp + 2 Rcontact ) +

z Rw


Rw + 2 ramp + 2 Rcontact
=

  

1
2
+
z


Rw
Rw + 2 ramp + 2 Rcontact

 (5.26) 

b) With coupling capacitors between the wire and the amplifier. 
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Let's assume that the charge Q divides at t = 0 such that the initial charges deposited on the 
capacitors are: 
      

  

q1(t = 0)
q1 + q2

=
1
2
+
z


Rw
Rw + 2 ramp + 2 Rcontact

 (5.27) 

Usually we measure charge over a certain time period corresponding to gate T. There will be 
a relaxation of charge between the capacitors through the resistive wire. What is measured is 
a charge q1(T) and not q1(t=0). To estimate q1(T) consider the equivalent circuit below, 
where the charges q1(t=0) and q2(t=0) are placed on the capacitors at t = 0. 

    
Solving the differential equation, we find: 
  

  

q1(T)
q1 + q2

=
1
2
+
z

(

β Rw
Rw + 2 ramp + 2 Rcontact

)  (5.28) 

where 
  β = exp [−

T
(Rw + 2 ramp + 2 Rcontact ) Cend

 (5.29) 

If  β  is small, sensitivity is lost. It is therefore mandatory that Rw Cend >> T. We must also 
require that Rw >> ramp+Rcontact. In typical chamber designs β~1. 
 To get the position resolution as a function of Q and z, we use equation (5.28) and solve for 
z: 

   
  

z

=
Rw + 2 ramp + 2 Rcontact

2 β Rw

q1 − q2
q1 + q2

 (5.30) 

Therefore 
  
(
σz

) 2= (

∂
z


∂ q1
) 2 (σq1

)2+ (
∂
z


∂ q2
) 2 (σq2

)2+ (
∂
z


∂ β
)2 (σβ)

2  (5.31) 

After some rearranging we obtain the following expression: 

 
  

(
σz

) 2= (

σPED
2
) 2

[(
Rw + 2 ramp + 2 Rcontact

β Rw
) 2+ (

2 z

)2]

(q1 + q2 )
2 + (

σβ
β
)2 (

z

) 2    (5.32) 
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where σPED  is the pedestal arising from amplifier noise, cable pick-up noise, etc. We assume 
that σPED = σq1

+ σq2
. The resistance of the wire adds noise also, so called Johnson noise, 

which is a position independent noise. If we add it in quadrature, we get the final equation: 

 
  
(
σz

) ≅ (

σJ
q1 + q2

)2 + (
σamp 2

q1 + q2
)2 [ (

Rw + 2Rcontact + 2ramp
Rw

)2 + (
2z

)2]    (5.33) 

I will now discuss specifically the CRID detector. The Johnson noise is estimated using the 
following formula: 
  σJ = 2.718

k T τ
2(Rw + 2Rcontact + 2ramp )

 (5.34) 

where k is the Boltzmann constant; T is absolute temperature; τ  is the amplifier shaping time 
(65 ns). The CRID amplifier noise with RC-CR shaping and with the FET input can be 
calculated as follows [43]: 

  σamp ≅ 2.718
k T Req (C in + Cch )

2

2 τ
 (5.35) 

where Req is the equivalent noise resistance of the FET (~50Ω ), Cin is the amplifier input 
capacitance (~10 pF), Cch is the detector capacitance (~15 pF),     = 103.5± 0.5 mm,  
q1+q2 is the visible charge (1-2 x 105 el.), Rwire = 41.3± 2.64kΩ , Rcontact = 94.6± 116Ω , 
ramp = 680± 50 Ω . Equations (5.34) and (5.35) yield σJ  ~ 960 and σamp  ~ 530 electrons. 

We can now use the equation (5.33) to estimate the charge division resolution. Fig.13 
compares the calculation with the data [44]. 

     

R&D 
test
results

Test results
and calculations

Actual SLD
results (at
lower gas 
gain)

 
  Fig. 13 - Charge division resolution. 
 The final z-coordinate has to take into account the gains of the amplifiers resulting in the 
final expression: 
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z = C

g1 q1 − g2 q2
g1 q1 + g2 q2

Rw + 2 (ramp + Rcontact )

Rw


2

 (5.36) 

where q1, q2 is measured charges at both ends of the wire, g1, g2 are calibration factors 
reflecting the amplifier gain variations (obtained from the special amplifier calibration runs), 
Rw is carbon wire resistance, ramp is the amplifier impedance, Rconract is contact resistance 
between the carbon wire and the PC board trace,     is wire length, C is calibration factor 
reflecting errors in resistors, capacitors, etc. (obtained from the UV fiber calibration runs). 
 
   Chapter 6 
 
Limit of accuracy for the high resolution drift chambers - can they 
compete with the silicon ? 
 In this chapter I will discuss a limit of highest possible resolution in the most precise drift 
chambers. There are two methods to estimate the high precision drift chamber resolution: 
6.1. Simple estimate: 
 Generally, there are several major contributions to the resolution. 
 
  σ2(x) = σdiffusion

2 (x) + σ ionization
2 (x) + σtrack

2 + σelectronics
2   (6.1) 

 
where σelectronics is an offset caused by the electronics noise, σ track  is the finite size of 
ionization trail left by a track, σ ionization(x) are fluctuations in primary ionization statistics, 
σdiffusion near wire
0  is the constant term describing the diffusion near the wire in a presence of 

a very large field, σdiffusion(x) is the x-dependent term describing the diffusion in the middle 

of drift cell where the field is low. We neglect other effects, which are important for the TPC 
resolution, such as angle of a track in respect to wire, pad resolution, etc.; see Ref.3 for 
description of these effects. 
(a) σ track  - This term is typically neglected. The primary ionization is contained within less 
than 2 µ m of the original track direction. 
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 Table 1 - Physical width of the track in Argon gas 
     %  Atomic 

shell 
 Average energy     Electron range 

9.9x10-6 (E / keV) g cm-2 
   ~92      M-shell      ≤  30 eV         < 2   µm  
   ~8      L-shell      ≤  400 eV       ~ 20   µm  
  ~0.1      K-shell      ≤  4 keV       ~ 200   µm  

(b) σ ionization(x) - This term is important near the anode wire where the number of electrons 

available is small and subject to ionization fluctuations. 
(c) σdiffusion near wire

0  - This term has not been even considered in any analysis I know so far. 

It has been suggested by F. Villa [45], who pointed out that the electron energy  
increases as a function of electric field at least quadratically, i.e. one could have  
significant contribution near the anode wire where the electric field is typically 200-400  
kV/cm. I have decided to explore this question experimentally [35], and concluded that  
such term indeed could play a role in the highest resolution applications - see Fig.1. One  
can see that the σdiffusion near wire

0 (1electron )  term appears to be dominant. to explain the  

offset at σ(x = 0) . In the final application more than one electron contribute, i.e. we  
expect σdiffusion near wire

0 (N electron )  =  σdiffusion near wire
0 (1electron ) / N . For example in case 

of CF4 gas, we see in Fig.1, σdiffusion near wire
0 (1electron ) ~  170 µ m. In an application where 

we would have N~100 electrons, we expect σdiffusion near wire
0 (N electron )~ 170 100 = 17 µm . 

This is certainly not negligible, and I should add that 100 electrons is rather unusual; 
typically we end up with 10-20 electrons. The measurement of σdiffusion near wire

0 (1electron )  in 

cool gases such as DME or CO2 does not exist at present. 
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Fig. 1 - Diffusion near the wire in a presence of a very large field dominates σ(x = 0) .  
 
(d) σdiffusion(x) - As we discussed earlier, one electron time dispersion of an original point-

like charge distribution is: 

   σx(1 electron ) = 2 D t =
2D x

µ E
=

2 εk x

e E
=
1

p

2 εk x

e (
E

p
)

  (6.2) 

From here we obtain four practical dependencies: 
a) If ε k~ const. and x ~ const.: σx(1 electron ) ~

1

E
    (6.3) 

b) If in addition E/p ~ const.:  σx(1 electron ) ~
1

p
    (6.4) 

c) For cool gases (ε k~ kT ):  σx(1 electron ) = 2 D t =
2 kT x

e E
  (6.5) 

d) Because of the diffusion dependence on the drift distance x the resolution data are  
 usually fitted by: 
      σ2 = σ0

2 + δ x      (6.6) 
 The resolution data are usually presented in this form to verify that other effects, such as 
the electron attachment, do not affect this dependence.  
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 CO2 and DME gases are frequently used in high precision drift chambers, because they 
approach the cool gas limit - see Fig. 2.  

  
Fig. 2 - Single electron diffusion for 1 cm  Fig. 3 - Typical contributions 
  drift and 1 atm pressure as a function of  to the resolution as a function  
  electric field [46].     of drift distance. 
 
 We can see that the cool gases can reach σx(1 electron )~50-80µm at 1 atm and 1 cm drift, 

and the transverse and longitudinal diffusions are close to each other (we assume the same). 
As we discussed earlier, in hot gases σL (1 electron )  could be as low as half of σx(1 electron ). 
Typically, in hot gases σL (1 electron )~120-200µ m at 1 atm and 1 cm drift. It is the 

longitudinal diffusion which influences the arrival time distribution. 
 Individual contributions in typical high precision chambers can be qualitatively described 
in Fig.3. The relative size of terms in equation (1) depends on the choice of gas, pressure, 
electronics, method of charge collection and method of analysis. For example, the 
σ ionization(x) term can be greatly suppressed by increasing the gas pressure. 

   Table 1 - Cluster size distribution in percent 
k (cluster size) CH4 Ar He CO2 

1 e- 78.6 % 65.6 76.6 72.5 
2 12 15.0 12.5 14.0 
3 3.4 6.4 4.6 4.2 
4 1.6 3.5 2.0 2.2 
5 0.95 2.25 1.2 1.4 
6 0.6 1.55 0.75 1.0 
7 0.44 1.05 0.50 0.75 
8 0.34 0.81 0.36 0.55 
9 0.27 0.61 0.25 0.46 
10 0.21 0.49 0.19 0.38 
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11 0.17 0.39 0.14 0.34 
12 0.13 0.30 0.10 0.28 
13 0.10 0.25 0.08 0.24 
14 0.08 0.20 0.06 0.20 
15 0.06 0.16 0.048 0.16 
16 0.050 0.12 0.043 0.12 
17 0.042 0.095 0.038 0.09 
18 0.037 0.075 0.034 0.064 
> 20 (11.9/k2) (21.6/k2) (10.9/k2) (14.9/k2) 

Note: 20-30% of the time a cluster will have more than one electron. 
 
6.1.1. The first electron timing: 
 Cramer [47] derived a formula describing time accuracy based on arrival time of the M-th 
electron in a given sample of N electrons. It is valid for large N, and M << N: 

   
  

σdiffusion(M − th arriving electron ) =
σL(1 electron)

2 n N
1

i2i = M

N
∑ ,   (6.7) 

which becomes for M = 1: 

  
  
σdiffusion(1 − st arriving electron ) =

σL(1 electron)

2 n N
1

i2i =1

N
∑ ≈  

     
  
≈
σL (1 electron )

2 n N
π2

6
=
0.91 σL(1 electron)

n N
  (6.8) 

 However, as we discussed in the previous chapter, the electrostatic field of the drift cell 
causes non-isochronic charge collection. This creates a non-Gaussian tail in the electron 
arrival distribution, i.e. not all electrons can contribute to the 1-st electron timing because 
they arrive too late. 
 In addition, the electrons are produced in clusters, which cause additional variability in the 
ionization arrival. Table 1 shows the measurement of the cluster size distribution in percent 
for several gases [48]. Table 2 shows the ionization available per 1 cm of track length at 1 
atm of pressure: 
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 Table 2 - Primary and total ionization per cm at 1 atm (compilation of numbers taken 
from A.V. Zarubin [49], except the last three - taken from A. Pansky et al. [50]).   

Gas Primary 
ionization 
(clusters) 
[cm-1] 

Total 
ionization 
(electrons) 
[cm-1] 

Average energy 
needed to create 
one ion pair w 
[eV] 

dE/dx (min) 
 
[keV/cm] 

He 3.3 7.6 42.3 0.322 
N2 20.8 60.5 34.7 2.097 
O2 23.2 76.5 30.8 2.360 
Ne 10.9 39.9 36.4 1.452 
Ar 24.8 96.6 26.3 2.541 
Kr 33 197.5 24.05 4.750 
Xe 44.8 313.3 21.9 6.862 
CO2 33.6 100.0 32.8 3.280 
CH4 24.8 59.3 27.1 1.608 
C2H6 40.5 117.7 24.4 2.870 
iC4H10 83.6 232.8 23.2 5.402 
DME 62 120 (?) - - 
TEA 144 - - - 
TMAE 281 - - - 

Note: If the sample available for detection is only few mm long, we are dealing with  
  rather small number of electrons available at 1 atm. 
 
 By including a correction for non-isochronous charge collection, gas pressure, and by 
assuming that E/p is constant while changing the pressure p, we can modify the equation 
(6.8): 
  

  
σdiffusion(1 − st arriving electron ) =

0. 91
n (η(x) N p)

σL (1 electron )

p
    (6.9) 

where η(x) is a correction describing the fraction of electrons, which can contribute to the 
first electron timing, x is the drift distance, p is the gas pressure, N is the total number of 
electrons per sample. Fig. 4 shows an example of the choice of gas pressure to control the 
drift chamber tracking resolution [51]. 



 
52 

      
   Fig. 4 - Chamber resolution as a function of pressure. 
  
 It is not straightforward to guess the η(x) factor. One needs some knowledge of the charge 
collection, i.e. one needs a drift simulation program. In typical examples of high accuracy 
drift chambers the factor   0. 91 n (η(x) N p)  is close to 0.4-0.6 [38].  
 As an example, for the DME gas at 1 atm pressure, 1 cm sample size  and 1 cm drift 
(consider the diffusion contribution only): in this case one has N ~ 120 electrons / cm, 
σL (1 electron )~ 55µm / cm , η(x) ~ 0.2 (assume) and   0. 91 n (η(x) N p)  ~ 0.5; therefore 
one could achieve resolution of about ~30µm. 
6.1.2. Center of gravity timing: 
 Let's assume that we have electronics capable of measuring every arriving electron. If we 
assume that the electron cloud is Gaussian then: 
  σdiffusion(center of gravity timin g) =

1
η(x) N p

σL(1 electron)

p
,  (6.10)  

where η(x) is the correction describing the fraction of electrons which are used for centroid 
timing; it is influenced by variables such as the geometry, speed of digitizing clock, method 
of analyzing data, etc. One can see, that now it would make more sense to invest into "being 
clever", i.e. to design the isochronous charge collection geometry. 
 The same example for the DME gas at 1 atm pressure, 1 cm sample size  and 1 cm drift 
(consider the diffusion contribution only): in this case one has η(x) ~ 1.0 (assume an ideal 
case); therefore one could achieve resolution of about ~5µm !!! 
 The Flash ADC digitizers came on the market ~15 years ago. Great improvements in 
resolution of high precision drift chambers were expected at that time. However, the hopes 
for an "ultra-high ~5µ m accuracy" short drift wire chambers did not materialize because of 
(a) non-isochronous charge collection, (b) fluctuation in the ionization statistics and (c) η(x) 
factor is always less than one. 
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Fig.5 - Monte Carlo simulated resolution  Fig.6 - Aachen Univ. drift chamber test;  
 with a hypothetical infinitely fast electronics  (a) drift velocity near the anode wire, 
 capable of digitizing every arriving  (b) chamber resolution using the 
 electron in the jet chamber with 4 mm wire  leading edge timing and center 
 spacing, 90% Ar + 10% C4H10 at 1 atm,  of gravity FADC timing. 
 B = 10 kG and 7.5 mm drift distance. 
 Fig. 5 shows that the center of gravity timing is better than the 1-st electron timing only if 
we average over the electrons located in the near-isochronous central part of the sample. As 
we average over larger part of the sample the center of gravity is disturbed by the fluctuations 
in the ionization statistics coupled with the nonisochrony of the charge collection ( η(x) < 1). 
In practice, of course, we do not have infinitely fast electronics. Closest practical 
approximation is the combination of a slow gas and the time expansion chamber, which uses 
extremely slow drift velocity. Fig. 6 illustrates that the centroid timing is actually worse than 
the leading edge timing if we are very close to the anode wire where the charge collection is 
very non-isochronous [52]. 
 To average over the near isochronous limit means to use only the leading edge portion of 
the drift pulse, i.e. to use the first FADC bins of the pulse. 
 One should also remark that for the long drift distances (>10 mm) the FADC timing 
method gives finally better results than the leading edge timing method because the diffusion 
starts washing out the non-isochronous collections and the clustering effects. 
6.3. Monte Carlo estimate 
Example #1 - Mark II vertex chamber at SLC [53]. 
1. Assume the following drift chamber operating conditions: 
 92% CO2 + 8% iC4H10 gas at 4 atm pressure, tracks are either parallel to anode plane  
 or 10o inclined, anode surface gradient  Ea ~ 450 kV/cm at 2 atm and 590 kV/cm at 4  
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 atm on the surface of 20 µ m wire, the average drift field E ~ 2.1 kV/cm at 4 atm,  
 giving an average drift velocity of about 4µm/ns (slow gas) and magnetic field was  
 off for this particular study. 
2. Calculate the drift chamber pulses: 
 Creating first the weighted drift time distribution by: 
 a) Starting with a track segment assuming 3.4 clusters/mm of track (CO2 gas). The  
 probability distribution of electrons within each cluster is taken from argon data [53]. 
 b) Stepping each electron in electrostatic field using the drift velocity and diffusion  
  is determined at each point of the drift according to E/p at that point.  
 c) Assigning a weight x to each electron according to the Furry exponential  
 distribution A(x) ≈ x exp(−1. 5x), to simulate the avalanche fluctuations. 
3. The weighted drift time distribution is then convoluted with: 
 a) Response of the amplifier which is assumed to be a simple triangle with a 5 ns  
 rise time and a 15 ns fall time. 
 b) Include the response of positive ions. This response, as we discussed earlier, has the  
  form: 1 (1 + t p t 0 ) , where p is pressure, t is time and t 0  is the characteristic time.  
 To improve the multiple hit capability, the design of the electronics minimized the  
 pulse tail using so called zero-pole filter technique [55]. The zero-pole filters look  
 as follows: 

       
 the design of these filters goes as follows. First, one has to express the "1 / t" tail in  
 terms of three exponential curves: 
   1

1 +
t
p t 0

= A exp(−
t

α pt 0
) + Bexp(−

t
β p t0

) + Cexp(−
t

γ p t0
)  (6.11) 

 Notice that the first term is the "fast" term followed by two "slow" terms (A = 0.79,  
 α  = 1.6, B = 0.185, β  = 13.5, C = 0.024, γ  = 113.0, t 0  = 0.76 ns, p = 4 atm,  
 µ (CO2) = 1.09 cm2 V sec-1). One adjusts the components of the filter to cancel the  
 middle term in equation (6.11). The resulting response is: 
     V(t) = 0. 99exp(−

t
α pt 0

) + 0. 01 exp(−
t

γ p t0
)  (6.12) 

Fig. 7 shows the final drift pulse shape is calculated every 1 ns.  
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Fig.7 - Monte Carlo simulation of drift pulses in Mark II drift vertex chamber at SLC; 
  4 atm, 92% CO2+8%iC4H10 gas, vdrift = 4 µm/ns, 12 mm drift distance; 0o  
 angle in respect to wire plane. 
3. Timing strategy with pulses of Fig.7: 
a) The timing strategies with infinitely fast electronics which detects individual arrival  
 times of each electron. This method can determine the limit of how well we can do. 
b) The leading edge timing with the "realistic" pulses was obtained by fitting the first 5  
 points of the pulse waveform with the 3-rd order polynomial, we choose a threshold to  
 be 2-3% of the average pulse peak, and then find the crossing point with the fitted  
 curve. 
c) The FADC centroid timing with the "realistic" pulses was done by assuming the 100  
 MHz clock, which determined the corresponding values on the waveform (every 10  
 ns). With these points one determines a simple center of gravity. 
d) Other timing methods were tried: multiple threshold, the reference pulse timing for the  
 FADC algorithm, the parabola fit, etc. None of them made an improvement in the  
 above mentioned methods. 
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Table 1 - Simulated resolution in Mark II vertex chamber (4 atm in 92% CO2+ 8%  
 iC4H10 gas, 12 mm drift) [53]. 

Timing method Design (a) 
0 degrees 

Design (a) 
10 degrees 

Design (d) 
0 degrees 

Design (d) 
10 degrees 

First electron timing with 
infinitely fast electronics 

  20 ±  3 
   µm  

  34 ±  3 
     

  25 ±  2 
    

  32 ±  3 
     

Centroid timing with infinitely 
fast electronics 

   7 ±  1 
   

   14 ±  2 
   

   12 ±  1 
    

   13 ±  1 
    

Leading edge timing with 
realistic pulses (threshold ~2-
3% of the average ampl.) 

 
  20 ±  3 
 

 
   48 ±  4 

 
    29 ±  2 

 
  36 ±  3 

Centroid timing with the 
realistic pulses and 100 MHz 
digitizer  

 
  20 ±  1 

 
   27 ±  2 

 
    36 ±  3 

 
  43 ±  3 

  
Table 2 - Simulated resolution in Mark II vertex chamber (2 atm in 92%CO2+ 8%  
 iC4H10 gas, 12 mm drift) 
   

Timing method Design (a) 
 0 degrees 

Design (d) 
0 degrees 

First electron timing with infinitely fast electronics 41 ±  4 µm    46 ±  4  
Centroid timing with infinitely fast electronics   17 ±  2   21 ±  2 
Leading edge timing with realistic pulses (threshold  
~2-3% of the average ampl.) 

  41 ±  5 
 

  42 ±  5 

Centroid timing with the realistic pulses and 100 MHz 
digitizer (use a simple centroid timing) 

  41 ±  3   42 ±  5 
 

Experimental results from the vertex chamber of the Mark II experiment at SLC [56]: 
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Fig.8 - Measured tracking resolution Fig.9 - Measured tracking resolution 
   in Mark II vertex chamber in the   in Mark II vertex chamber 
   middle of drift cell at 2 atm. near the anode wire at 2 atm. 
 The resolution in the middle of the drift cell follows the well known diffusion law: 
σ(µm) = 15

2
+ 37

2
d (cm ) , i.e. 46 ±  4 µm for 12 mm drift distance and 2 atm pressure, 

which is close to the Monte Carlo prediction (41 ±  5 µm) [53] - see Figs. 8 and 9.  
 Studies with various timing "tricks" to improve the accuracy were considered studying the 
micro-jet chamber prototype for possible use at HRS [57]. However, in this particular case, 
where one deals with short drift distances, the first electron timing was the best result on 
could achieve. 
Radial drift chamber  
 All previously mentioned methods either used only a small portion of the ionization 
available or were sensitive to clustering effects. 
  D. Nygren suggested a technique to utilize all available ionization with equal weight and 
be insensitive to the clustering effect [58] - see Fig. 13. One should note that A. H. Walenta 
proposed similar concept called "induction" chamber [59].  

    
   Fig.13 - Principle of the radial drift chamber. 
 
 The drift is radial using the low diffusion DME gas. Each electron's original position is 
reconstructed by measuring both drift time and angle α  using two avalanche charge pick-up 
electrodes L&R - see Fig. 13. One expects η(x)~1 in equation (6.10), i.e.   
σdiffusion(center of gravity timin g)~55/ 120  ~ 5µm for DME gas.  

 D. Nygren's analysis of a practical chamber design operating with DME gas at 1 atm (total 
ionization in DME is N= 120/cm, σdiffusion ~ 55 µm cm  ), Ns=10 is the number of 
samples per cm, <Ne>= 12 is the average number of electrons per sample, σel. ~ 20µ m is the 
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electronics noise, σaval . ~ 88 µm is the r-φ  avalanche noise and radial distance of 3 cm with 

30 samples. This appears to be the best one can do with a gaseous detector. 

σr − φ=σel. ⊕  
σdiffusion

< Ne >
 ⊕  

σaval .

< Ne >
 = 20 ⊕  

55
12

 ⊕  
88
12

 ~ 36 µ m per sample 

 σz  = σel. ⊕  
σdiffusion

< Ne >
 = 20 ⊕  

55
12

 ~ 25 µ m per sample 

 
   Chapter 7 
7.1. Wire ageing 
 The avalanche creates a plasma condition which induces the polymerization process. To get 
a introduction to the problems involved, I recommend to read two reviews about this subject 
by J. Va'vra [60] and J. Kadyk [61]. 
 
Physicist's view of the avalanche: Chemist's view of the avalanche: 

 
 
7.1.1. Anode related problems. 
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 Fig.1 Whisker formation [61].  Fig. 2 Film / liquid droplet formation [62,63] 
For example, droplets were observed on anode wires in CH4 + TMAE after obtaining a 
charge dose ~5-10 mC/cm, and then exposing the chamber to air - see Fig. 2. 

 
Fig. 3 Dependence on the anode wire  Fig. 4 Dependence on the gas tubing   
 diameter and some specific molecule [64].  material [65]. 
 General comments about wire ageing: 
 1. It is a very complicated chemical process, which is not well understood  
  quantitatively, except in few isolated cases.  
 2. However, what is already very clear is that one should: 
   a) build the wire chambers as cleanly as possible, 
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   b) avoid soft glues or outgasing materials, 
    c) test all materials used in the construction under the most representative  
    condition - see Fig. 4.  
 3. The ageing rate depends on: 
   a) wire radius (smaller radius larger gain drop) - see Fig. 3, 
   b) wire alloy (oxidation of surfaces), 
   c) gas type -see Fig. 3, 
   d) gas additive (water, alcohol, etc.), 
   e) gas flow, 
   f) gas pressure, etc. 
 4. What to do about the wire ageing problem: 
   a) wire replacement, 
   b) wire washing in alcohol (TMAE ageing), 
   c) wire heating (TMAE ageing), 
  d) run the gas gain as low as possible (preventive), 
  e) limit the charge doses by making the detectors thin (preventive). 
 
7.2. Cathode related problems  
7.2.1. Malter effect [66,67] - see Fig. 5: 
Discharging time constant is RC ~ε r ε0 ρfilm , where  ε r~ 4, ε0 ~8.85 pF/m, ρfilm~ 1012 - 
1015 Ω•cm  => For ρfilm ~1015 Ω•cm  the time constant is RC~ 15 min. 

If the radiation source is present, there is going to be a charge build up on the surface of the 
insulator, and one can reach a very high gradient across the thin insulator film. This can 
cause the electron emission which can lead to a positive feedback mechanism: 
a)  The Malter effect shows up as a continuous current present even when the source is  
 removed. 
b) or only occasional sporadic bursts [68]. 
7.2.2. Photo-cathode damage - see Fig.6: 
The damage can be caused by [69]: a) sparking, b) environmental damage, c) electrolytic 
currents within the photo-cathode material, d) light exposure, e) gas gain. Example of a 
damage by an operation with gas gain [70] can be seen in Fig. 6. All photosensitive materials 
and their ageing by-products are good insulators. Therefore they could suffer from the Malter 
effect. 
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 Fig. 5 Malter effect origin. Fig. 6 Aging of CsI [70]. 
  
7.3. Quenching problems  
 Avalanches produce photons which have to be absorbed by the hydrocarbon molecules, 
which have many vibrational modes. 
 Example of extremely bad quenching is CF4 + TMAE gas. The avalanche excited CF4 
molecule emits photons at 170 nm, which are capable of photoionizing the TMAE molecule. 
This results in an extremely unstable operation where an avalanche breeds secondary 
avalanches [71] - see Fig. 7. 

    

A single
electron
pulse

Multiple
electron
pulses

 
     Fig. 7 Avalanche breeding. 
 One can also photo-ionize the nearby surfaces, which may have been coated by the 
polymerization products. 
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Theta > 0

Theta < 0

Theta ~ 0

Theta > 0

 
   Fig. 8 Avalanche breeding can be stopped by an addition of C4H10. 
 The avalanche breeding can be recognized by observing an excessive tail in the single 
electron pulse height distribution resulting in the negative θ  parameter in the Polya function. 
To fix the problem of avalanche breeding, one has to add a C4H10 molecule which absorbs 
the 170 nm photons [71]. - see Fig. 8. 

    

DELPHI RICH 
prototype

DELPI RICH

CRID at SLD

OMEGA RICH

 
   Fig. 9 An attempt to shield avalanche photons. 
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 To be able to detect the single electrons, the chambers used a relatively high gas gain (2-
3x105); people built "barricades" (see Fig. 9) around the anode wires to limit the photon 
feedback in a presence of large dE/dx track deposits [72]. A real fix is to run lower gas gain 
and make the detectors thin. 
 
7.4. High voltage problems  
a) Sparking condition [73]: 
  Nprimary ionization deposit * G > 108 

where Nprimary ionization deposit  is the total primary ionization deposit, G is the average 
gas gain. A consequence of this law is that the α -particles may cause sparking sooner than 
the minimum ionizing particles for the same gas gain. This explains why sometime a 
chamber works in the lab and not in a real background environment next to the beam line !! 
 
b) High voltage insulation using several insulating layers. 
  A bad HV design is a combination of G-10 sheet and Kapton printed circuit - see Fig. 10. 
There will be always some pin hole in Kapton causing a spark !! 

 
       Picture taken by R. Malchow, Col. St. Univ.  

         
Fig. 10 Example of bad HV design. Fig. 11 Voids in Delrin coasing a current leakage. 
          
c) Delrin pins in large drift BES chamber. 
 As a result of not following the DuPont Co. molding procedure, the feedthrough developed 
the high voltage problem after several months of running - see Fig. 11.  
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7.5. Sensitivity to various drifts : 
1. Gas mixture changes: Change Δ PH

PH
[%] 

90% Ar + 10% CH4 Δ Ar = 1% 11 
90% Ar + 10% CO2 Δ Ar = 1%  10 
50% Ar + 50% C3H8 Δ Ar = 1% 5 
2. Barometric pressure changes (EPI):   
95% Ar + 5% CH4 Δ P = 1% 7 
3. Leaks (MAC at PEP I):   
86% Ar + 14% CH4 add 0.6% of N2 10 
86% Ar + 14% CH4 add 0.15% of O2 10 
4. Voltage drifts (JADE):   
90% Ar + 10% CH4 Δ Vgain = 1% 20 
90% Ar + 10% CH4 Δ Vdrift = 5% 25 
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