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CP asymmetries in .B decays into final CP eigenstates are in many cases theoretically 

clean. In particular, they do not depend on the values of hadronic parameters. The sign 

of the asymmetries, however, does depend on the sign of the BB parameter. Furthermore, 

the information from &K that all angles of the unitarity triangles lie in the range (0, 7rTT) 

-depends on the sign of the BK parameter. Consequently, in the (unlikely) case that the 

vacuum insertion approximation is such a poor approximation that either BB or BK is 

negative, the sign of CP asymmetries in neutral B decays will be opposite to the standard 

predictions. Various subtleties concerning the role of K - K mixing in the case of final 

states with a single KS or KL, such as the B + @KS decay, are clarified. 

. 
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1. Introduction and Formalism 

CP asymmetries in B decays into final CP eigenstates [l-3] will provide stringent tests 

of the Kobayashi-Maskawa mechanism of CP violation. For decay processes that depend 

on a single CKM phase, such as the B + $Ks mode, the Standard Model prediction is 

theoretically very clean (for reviews, see e.g. [4-61). In particular, while the magnitude 

of neutral meson mixing amplitudes, namely ArnB and AmK, suffers from large hadronic 

uncertainties in the matrix elements (parameterized, respectively, by BBfi and BK), the 

CP asymmetries are independent of the value of these parameters. It is a little known fact, 

however, that the sign of the asymmetries does depend on the sign of BB and, in an indirect 

way [7], also on the sign of BK . In this work we explain how this dependence arises and 

describe the consequences in (the unlikely) case that the vacuum insertion approximation 

is surprisingly poor so that it gives the wrong sign of the matrix elements. 

Before we start a detailed and technical analysis of the sign dependence of the other- 

wise clean CP asymmetries, we give the general argument for the existence of this depen- 

dence. In the decays of neutral B mesons to CP eigenstates, the CP violating asymmetry 

arises solely from an interference between an amplitude which involves B - B mixing, 

and one which does not. The relative phase of these two interfering amplitudes includes . 
. 

the sign of the hadronic matrix element for B - B mixing. Since this matrix element is 

determined by the CP conserving strong interactions, its sign is the same in the decay of 

a Bzhys(t) and in that of a Bzh,,(t). A reversal of this sign would obviously reverse the - 

sign of the contribution of the interference term to both the decay rate for Bihys(t) and 

the decay rate for Bzhys (t). Thus, a reversal of the sign of the hadronic matrix element 

would cause a reversal of the CP violating asymmetry between these two decay rates. 

As there are many subtle points in this discussion, we repeat here the analysis of CP 

- violation in B and K decays with particular attention to signs. We focus on the neutral 

B meson system, but the analysis in this section applies equally well to the neutral K 

system. Our phase convention is defined by 

CPIB') = ti@'), CPIB') = w;[B’), ([&@I = 1). (1.1) 

Physical observables do not depend on the phase factor wg. We define q and p to be the 
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components of the neutral B interaction eigenstates in the mass eigenstates, 

I&,2) = P/B’) f qlB’>. (1.2) 

We-further define 

Ml2 - ;rl2 z (B”lX;;=21Bo), 

1 where M and I? are hermitian matrices, so that 

(l-3) 

M;2 = M21, ITi2 = l?21. (14 

The mass and width difference between the physical states are given by 

Solving the eigenvalue equations gives 

. . 

. - 
W-4” - +r)2 =(+h212 - lr1212), 

AmAP =4Re( M121’i2), 
(1.6) 

. Q 2M;, - ir;, 
P -=-Am-i+” 

(1.7) . 

The quantity (q/p) plays an important role in the calculation of CP asymmetries in neutral 

B decays and will introduce, as we shall see, some dependence on hadronic physics. 

2. The Vacuum Insertion Approximation 

The effective Hamiltonian that is relevant to Ml2 is of the form 

xAb=2 
eff cc e+2i4B [&y”(l - 7s)b12 + e-2i4B [&y”(l - ys)d12 (24 

where 24~3 -is a CP violating (weak) phase. (We use the Standard Model V - A ampli- 

tude, but the results can be generalized to any Dirac structure.) For example, within the 

Standard Model 

4B = a%(&bVt*d)- (2.2) 
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(We implicitly assume here that long distance contributions to B-B mixing are negligible.) 

The Ml2 matrix element is often calculated in the vacuum insertion approximation 

(VIA): 

M;‘* = (B”lOAb=lJO)(OJOAb=lI~o), (2.3) _ 

where 

Under CP transformations, 

thus we learn that 

(2.4) 

(Ol@b=1IB”) = -wge2i”B (()lOAb=lIBo)a (24 

_ Prom the hermiticity of OhbE we know that (B0/C3Ab=110) = (OIC3Ab=11Bo)*. This fact, 

.- in combination with (2.3) and (2.6), gives 

. - 
I@‘* = -w&e2i4B M;I* 

12 I 1% P-7) 

* . The ratio between the -true value of Ml2 and its value in the VIA is conventionally param- 

eterized by a factor Bg: 

Ml2 = -w;je2i+BBBIM~1AI. W) - 

- 

As the strong interactions conserve CP, the Bg parameter is real. Yet its sign could a-priori 

be positive or negative. 

- 

3. The CP Asymmetries in B + D+D- and B + $Ks 

TO see how the various phases and signs affect calculations of CP violation, we consider 

-CP asymmetries in neutral B decays into final CP eigenstates: 
_- 

w$,,,(t) + fcp) - W,Oh,,(t) + fcp) 

afCP = r(B;hys(t) + fcp) + r(B;hys(t) + fcp) * 
(3.1) 

We now introduce the various ingredients that enter the calculation of such asymmetries. 

. . 
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For the neutral B system, we define 

AmB > 0 (* I&) = I&), IB2) z I&r)), (34 

(L(H) stand for light (heavy)). Taking into account that Am, >> [APB\, eqs. (1.6) and 

(1.7) simplify into 

Am = 2lMnl, Ar = 2Re(Md’i2)/lM121, P-3) 

.!l -- - - -$$ (3.4 
P 

Note that q/p (and therefore also afcp) is independent of Al?. In particular, the relative 

sign between Am and Al? does not play a role here. Putting (2.8) in (3.4) we finally get 

Q - =wge -2%ign( BB). 
P 

(3.5) 

Additional phase dependence of CP asymmetries comes from decay amplitudes. We 

define At and Af according to 
. - 

Af = (f l%lB”), J$ = (f (KilB”). (3.6) : 

. 

The decay Hamiltonian is of the form 

% m e+i4f[fhp(l - r5)d][bp(1 - p,)q] + emi4f[qyc”(1 - ~~)b][&~(l - y5)q], (3.7) 

where +/ is the appropriate weak phase. (For simplicity we use a V - A decay amplitude, 

but the results hold for any Dirac structure.) From (2.5) we learn that under a CP 

transformation the two terms in (3.7) are interchanged except for the e+idf and eeidf 

_ phase factors. Then 

Af = wfwie -WfAf, (3.8) 

- 

where CP\f) = wf If). F or a final CP eigenstate, f = fcp, the phase factor wf is replaced 

bY rlfCP = fl, the CP eigenvalue of the final state. Then 

AfCP - 
AfCP 

7]fwke-2i4f. (3.9) 
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An important role in CP violation is played by a complex quantity Xf , defined by 

~,=!!A’. 
PAf 

(3.10) 

For B decays into final CP eigenstates, we find from (3.5) and (3.9): 

XfCP = rlfcPe 
-2i(4B+#f )sign(BB), (3.11) 

which is independent of phase conventions. The asymmetry afcp of eq. (3.1) takes a 

particularly simple form when the decay amplitude is dominated by a single weak phase 

afcp = -ImXfcp sin(AmB t). (3.12) 

From eq. (3.11) we find then that 

ImXf,, = -rlfcpsign(BB)sin[2(~B +$f)]. (3.13) 

. - 
To take an example, we now calculate the CP asymmetry in B + D+D-. Within 

the Standard Model and neglecting penguin diagrams, the decay phase defined in (3.7) is 

given by 

. 
$D+D- = a%(GdVc*a). (3.14) . 

(Unlike (2.2), which is sensitive to new physics, for tree level processes such as b + ccd, 

the Standard Model tree level diagram is likely to dominate even in the presence of new - 

physics. Therefore (3.14) is likely to hold almost model independently.) Using (2.2) and 

(3.14), and taking into account that ~D+D- = +l, we find for X defined in (3.11): 

&l+D- = sign(&) ($$) (S) l (3.15) - 

ImXD+D- = - Sin(2@Sign(Bg), (3.16) 

where 
_ 

(3.17) 

Eq. (3.16) is often displayed in the literature without its dependence on Bg. The reason 

is that it is widely believed that the vacuum insertion approximation gives a reasonable 
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approximation to the true values of the relevant matrix elements. (Lattice calculations 

strongly support this notion [8].) In particular, it is believed that it gives the correct 

sign of the matrix elements. One should not forget, however, that the dependence on the 

hadronic physics does exist. 

The situation is somewhat more complicated in decays with a single KS (or KL) in 

the final state. There is some confusion in the literature concerning such decays which we 

- would like to clarify. The three main points concerning this mode are the following: 

a. In B + +Ks, the kaon will be experimentally identified by its decay to two pions 

within roughly one KS lifetime. 

b. The smallness of&K implies that the contribution from KL -+ TX within roughly one 

KS lifetime is negligible. 

c. The smallness of&K also implies that KS is almost purely a CP-even state. 

This situation allows a straightforward derivation of the asymmetry. In particular, 

: -it implies that the relative phase between the direct K” + 7r7r amplitude and the K” + 

K” + XT amplitude is very small and practically does not affect the CP asymmetry. Using 
. - 

the notation II)(%)K to describe the final state, the amplitude ratio is given by 

(3.18) * 

where rl$p+ = -1. The relevant phase is found simply from the decay chain B” + 

$K” + $(&r)K. Within the Standard Model, but practically model-independently, it is 

given by 

Using (3.18) and (3.19), we get the Standard Model value for A+(,,),: 

hw~)K = -si@(BB) ($$) ($) (Ez). (3.20) 

Taking into account that unitarity of the three-generation CKM matrix implies that, to 

a very high accuracy, (2::) = (Eg)~ the Standard Model prediction for the CP 

asymmetry in B.+ $(27r)K iS 

Im+l)K = Sin( fLP)Sign( BB) . (3.21) 
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: . 

Notice that, to get (3.21), it is not essential whether the typical kaon mixing time is shorter 

or longer than the decay time. The only important information about K - rir mixing is 

that, to an excellent approximation, its amplitude is aligned with that of the K + 7~ 

decay amplitude. 

_ 

Another point of interest is the fact that one can learn about new physics in K - K 

mixing from a comparison of UD+D- and U+K~ [9]. (W e assume here that the tree contri- 

bution is dominant among the Standard Model contributions to B + D+D-.) This may 

seem puzzling in view of our discussion above, where we argued that (3.20) is independent 

of the physics that is responsible for K - I?r mixing. Indeed, allowing new physics in B - B 

mixing and in K - K mixing but not in the relevant decay processes, b + cEd, b + ES 

and s + uiid, we have 

and 

AUKS = - (~),4+ (S) 

Then, if experiments find 

aD+D- # -a$Ksj (3.24) _ 

. this will necessarily require a violation of the Standard Model relation 

(3.22) 

(3.23) 

(3.25) 

1 - However, (3.25) holds if either of the following two conditions is valid: 

a. The three generation CKM matrix is unitary; 

b. K - r?r mixing is dominated by the Standard Model box diagrams with intermediate 

charm and up quarks. 

Therefore, (3.24) will signal that (a) the quark sector is larger than just the three 

standard generations, and (b) there is a new physics contribution to K - I?r mixing. 

_- 
4. The Role of K - I? Mixing 

In contrast to B - B mixing, long distance contributions are potentially significant in 

K - I?- mixing. As we do not know how to calculate these contributions reliably, we will 
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just parameterize them by 

fi ~ B [M12(LD) + W2(SD)] 
K K 

J412(SD) ’ 
(4.1) 

where LD (SD) stand for long (short) distance. Here, BK is the K-system short distance 

mixing parameter, analogous to BB (see (2.8)): 

Miz(SD) = -w;(e 2”KB~]ME1A(SD)], (4.2) 

where UK is defined through 

CPIK’) = WKlK’), cPIE”) = w;tlK’), (I‘dKI = 1). (4.3) 

The points that we would like to emphasize, concerning these parameters, are the following: 

(i) As we saw in the last section, neither sign(BK) nor sign(BK) affect the sign of the CP 

asymmetry in B + $Ks, ‘which depends only on the fact that KS is (approximately) 

CP even. 

(ii) Sign(BK) does affect the sign of ArnK E m(KL) - m(Ks), and from the positivity, 
. - 

experimentally, of AmK, we know that sign( BK)=+I. 

(iii) Sign(BK), h h w ic is not known from experiment and need not agree with sign(fiK), 

. does play an indirect, but essential, role in predicting the signs of CP asymmetries in 

neutral B decays. For, a reversal of sign(BK) would reverse the signs of such quantities 

as sin 2p. 
- 

We now explain points (ii) and (iii) in some detail. First, we show that the experimen- 

tal fact that the heavier kaon mass eigenstate is, to an excellent approximation, CP odd 

(or, equivalently, does not decay to final two pions), namely that (ignoring CP violation) 

fixes the sign of BK to be positive. Here, QK and PK are defined by 

,’ _- 

k,d = pK\K’) f qK@‘), (4.5) 

where L(S) stand for long (short), and we have chosen AI’K < 0. It is experimentally 

known that the long-lived kaon is heavier [lo], namely ArnK > 0. Neglecting the CP 

-. 
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violating effects, which are of 0(10v3), and going through the same analysis as in the B 

system, we find 

0 
!! = wKe -2i4K sign(BK). (4.6) 
p K 

For the amplitude ratio, we have 

where qrrr = +l. We get 

Within the Standard Model, (Mr2)K is described by box diagrams with intermediate 

charm and up quarks, leading to 

(4.9) 

. - The s + uiid decay is dominated by the W-mediated tree diagram (this holds model 

independently), leading to 

. (4.10) . 

With three quark generations, arg(V,,V$ = arg(VU,Vcd)[mod X] to within a few milliradi- 

ans. (Were this not the case, we would not know 4~ since the long-distance part involves 

- VU, Vid while the dominant box diagram in the short-distance part depends on V,,V,*.) 

Then, 

XK+nn = sign(fiK) _ sign(BK) = i-1. (4.11) 

- 

Next, we would like to ask whether we can tell the sign of sin2/3 from the existing 

measurements of CP violation in K decays ? Note that all angles of the unitarity triangle 

are either in the range (0, TIT) or in the range {r, 2~). Then, if we know sign(sin 4), where $J 

is any.of-t-he three angles of the unitarity triangle, then we know sign(sinp). Furthermore, 

as IVub/Vcbl 2 0.10 (it suffices here that IVUb/VcbI < sin& = 0.22, namely that p is either 

in the range {0,7r/2} or {3~/2,27r]), we learn that sign(sin p)=sign(sin 2/3). The question 

is then whether the measurement of EK tells us unambiguously sign(sin 4). 

. 
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To find the answer, we have to analyze precisely those 0(10s3) effects that we ne- 

glected in (4.4) and write instead 

XK+=a = 1 - 2&K. (4.12) 

(This expression holds to zeroth order in Az,/Ao, where AI is the decay amplitude into two 

-pions in isospin I state. To first order in Aa/Ao, it is Xo = (q/p)K(.&/&) which appears 

on the left hand side of (4.12). However, this distinction is irrelevant to our discussion 

here.) Naively, using 

(4.13) 

we would conclude that we get a clean determination of one small phase. However, as 

&K is of o(10-3), we need to include other effects of this order that we neglected in 

.~M$, particularly the small phase difference between Ml2 and ri2 and the contributions 

proportional to l&V; and (V&Vt2)‘. After a lengthy but well-known and straightforward . - 

calculation [6], the resulting constraint is 

. sign(BK) sin7 > 0, (4.14) - 

where 

Y E arg (4.15) 

Note that it is indeed BK which appears in (4.14) and not the BK parameter defined 

in (4.1). (The long distance contributions to Miz are in phase with r12 and therefore 

-do not contribute.) Consequently, we cannot say that the sign of BK is experimentally 

determined. Only if the LD contribution is smaller than the SD one, or if it is large but has 

the same sign as the SD one, then sign(BK)=sign(BK). However, if we are not willing to 

state that-]Mi:(LD)] < ]Mi&(SD)], then the Standard Model result that siny > 0 depends 

on the validity of the VIA at least to the extent that BK > 0 [7]. (Lattice calculations 

[11,8], the l/N approach [12-131, QCD sum rules [14-151 , and various other methods [16-201 

support BK > 0.) 
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5. Conclusions 

To summarize our main points: 

1. The Standard Model predictions for the values of CP asymmetries in B” decays 

into final CP eigenstates are independent of the values of hadronic parameters. However, 

the sign of all asymmetries depend on the sign of Bg, that is the ratio between the 

short distance contributions to B - B mixing and their value in the vacuum insertion 

approximation. 

2. In decays into final states with a single neutral kaon, where the kaon is identified 

by its decay to two pions, there is no dependence on the phase of K - I?r mixing. Per- 

haps a better way of making this statement is to say that the relevant phase is known 

experimentally. 

3. Still, the Standard Model predictions for the sign of the asymmetries depends on 

information from EK which does depend on the sign of BK (the analog of Bg for the K 

system). 

4. The sign of BK is not known experimentally. The experimental fact that the 

heavier neutral kaon is, to an excellent approximation, CP odd, fixes the sign of another 

parameter, fiK, which (unlike BK) depends also on the long distance contributions to 

K - z mixing. If long distance contributions are larger than the short distance ones, the 

sign of BK could, in principle, differ from the sign of BK. 

- 
We emphasize that,’ while we gave the two explicit examples of B + D+D- and 

B + @KS, the same analysis holds for any B decays into final CP eigenstates that are 

dominated by a single weak phase. 

Very likely, the vacuum insertion approximation is a reasonable approximation for the 

matrix elements of the Ab = 2 and As = 2 four-quark operators. However, one has to 

- bear in mind that the Standard Model predictions are not entirely independent of this 

approximation: 

(i) If.Bb- < 0 and BK > 0, all the asymmetries will have an opposite sign to the standard 

prediction; 

(ii) If BK < 0 (which requires that the long distance contributions to Am, are larger in 

magnitude and opposite in sign to the short distance ones) and Bg > 0 then, again, 

11 - 
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all the asymmetries will have an opposite sign to the standard prediction; 

(iii) If BB < 0 and BK < 0, all the asymmetries will have the predicted sign because the 

two sign errors cancel. 

. 

If, as expected, experiments find ImXD+D- < 0 and Im&Ks > 0, it Will give an ex- 

perimental support (though not a completely rigorous evidence) that the vacuum insertion 

approximation is a reasonable method to estimate the matrix elements of the relevant four 

quark operators. 
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