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We give a summary about the various contributions which have to be calculated 

in order to obtain the next-to-leading logarithmic result for the branching ratio 

BR(B --t X,7). Combining all these ingredients, which were obtained by dif- 
ferent groups, a complete next-to-leading-logarithmic prediction of the inclusive 

decay rate was recently presented in the literature. The theoretical uncertainty 

in the partonic decay rate is now at the 10% level, i.e., less than half of the error 

in the previous leading-logarithmic result. We also mention the impact of non- 

perturbative corrections which scale like 1/ rnz and discuss in some more detail the 

recently discovered corrections which scale like ljmf. It turns out that the l/m;- 

and the l/m: terms lead to corrections to the branching ratio BR(B + X,y) well 

below the 10% level. 

1 Introduction 

The B + X,y decay has found increasing attention over the last ten years. It 
provides an alternative approach in the search for physics beyond the standard 
model (SM). This decay, like other rare B meson decays, does not arise at 
the tree-level in the SM but is induced by one-loop W-exchange diagrams, so 
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nonstandard contributions (charged scalar exchanges, SUSY one-loop diagrams 
etc.) are not suppressed by an extra factor a/47r relative to the standard model 
amplitude. This high sensitivity for nonstandard contributions implies the 
possibility for an indirect observation of new physics, a strategy complementary 
to the direct production of new particles. The B + X,-y decay plays already a 
very important role in restricting the parameter space of extensions of the SM 
like the minimal supersymmetric standard model (MSSM) ‘3’. However, even 
within the SM, the B + X,y decay is important for constraining the Cabibbo- 
Kobayashi-Maskawa matrix elements involving the topquark, in particular 
IVt,l. For both reasons, precise experimental and theoretical work on this 
decay mode is required. 

On the theoretical side, the accuracy in the dominating perturbative con- 
tribution was recently improved to next-to-leading precision 3~4~5@~7~8: The 
renormalization scale dependence of the previous leading-log result at the 
f25%-level was substantially reduced to ~t6% and the central value was shifted 
out-side the la bound of the CLEO measurement. Furthermore, the analysis 
of nonperturbtive contributions to the B + X,y decay mode was also recently 
improved: The inclusive B + X,-y mode is theoretically much cleaner than 
the corresponding exclusive channels because no specific model is needed to 
describe the final hadronic state. According to Heavy Quark Effective The- 
ory the class of non-perturbative effects which scales like l/m: is expected 
to be well below 10% g. This numerical statement holds also for the recently 
discovered non-perturbative contributions 10*11~12J3~14 which scale like l/m:. 
Thus the inclusive B + X,y mode is well approximated by the partonic decay 
rate I’(b + X,-y) h h w ic can be analyzed in renormalization group improved 
perturbation theory. 

Before reporting on these theoretical improvements in detail, we summa- 
rize the experimental status: The observation of the exclusive B + K* y mode 
by CLE015 in 1993 was the first evidence for a penguin decay ever. An updated 
value l6 for the branching ratio is BR(B -+ K*y) = (4.2 f 0.8 f 0.6) x 10m5. 
In 1994 the CLEO collaboration measured the inclusive B + X,y branching 
ratio to be (2.32 f 0.57 f 0.35) x 10e4 where the first error is statistical and 
the second is systematic . 17* There are two separate CLEO analyses. The first 
one measures the inclusive photon spectrum from B-decay near the end point. 
The second technique constructs the inclusive rate by summing up the possi- 
ble exclusive final states. The branching ratio stated above is the average of 
the two measurements, taking into account the correlation between the two 
techniques. 

There is also data from the LEP experiments: While DELPHI l8 in 1996 
and L3 lg in 1993 have published the upper bounds BR(b + sy) < 5.4 x 10e4 
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and BR(b + sy) < 1.2 x 10m3, respectively, the preliminary measurement 
BR(b + sy) = (3.38 f 0.74 f 0.85) x 10m4 by the ALEPH group was reported 
in the talk by F. Parodi” at the 1997 Moriond meeting. A similar number 
was also quoted by T. Skwarnicki’l in the heavy flavor meeting held in Santa 
Barbara in July 1997. 

More precise measurements are expected from the upgraded CLEO detec- 
tor, as well as from the B-factories presently under construction at SLAC and 
KEK. In view of the expected high luminosity of the B-factories, experimental 
accuracy of below 10% appears to be in reach. 

The rest of the paper is organized as follows: Section 2 is devoted to the 
partonic (=perturbative) contribution to BR(B + X,y). We explain in some 
detail the various calculational steps leading to the next-to-leading logarithmic 
result. In section 3 we briefly discuss the impact of the recently discovered non- 
perturbative corrections which scale like l/m:. 

2 Next-to-leading logarithmic corrections for B + X,y 

It is well-known that the QCD corrections enhance the partonic decay rate 
I’(b + sy) by more than a factor of two. These QCD effects can be attributed 
to logarithms of the form o:(mb) logm(mb/M), where M = mt or M = mw 
and m 5 n (with n = 0, 1,2, . ..). In order to get a reasonable result at all, one 
has to sum at least the leading-log (LL) series (m = n). Working to next-to- 
leading-log (NLL) p recision means that one is also resumming all the terms of 
the form cr,(mb) (c$(mb) ln”(mb/M)). 

An appropriate framework to achieve the necessary resummations is an 
effective low-energy theory, obtained by integrating out the heavy particles 
which in the SM are the top quark and the W-boson. The effective Hamiltonian 
relevant for b + sy and b + sg in the SM and many of its extensions reads 

K&b -+ sy) = , 

where O;(U) are the relevant operators, Ci(,u) are the corresponding Wilson 
coefficients, which contain the complete top and W- mass dependence, and 
Xt = I/tbVtz with I$ being the CKM matrix elementsC. Neglecting operators 
with dimension > 6 which are suppressed by higher powers of l/mwjt and 
using the equations of motion for the operators, one arrives at the following 
basis of dimension 6 operators ” 

01 = (Qd%a) (LxYpCLp) I 

‘The CKM dependence globally factorizes, because we work in the approximation A, = 0. 



07 = (e/16n2) S, bPy (mb(p)R+ %hL)L) ba Fpv, 

08 = (gJ16n2) %, UP” A 
(mb(p)R + ms(f‘)L) &3/2) b G,, . (2) 

Because the Wilson coefficients of the penguin induced four-fermion operators 
03, . . . . 0s are very small, we do not list them here. In this framework the next- 
to-leading logarithmic terms o,(mb) (o:(mb) log”(mb/mWlt)) in the b + sy 
amplitude have two sources: 
1 l The NLL Wilson coefficients Ci(p) at the scale p M mb contain leading 
and next-to-leading logarithmic terms in resummed form. 
2 l The O((Y,) corrections to the matrix elements of the operators Oi yield 
next-to-leading order terms when multiplied by the (leading logarithmic part 
of the) Wilson coefficients. 
We stress that only the sum of these two sources is independent of the renormab- 
ization scheme. Let us discuss in some more detail the contributions mentioned 
in 1 and 2: 

ad 1 l From the p-independence of the effective Hamiltonian, one can 
derive a renormalization group equation (RGE) for the Wilson coefficients 
G(p): 

d 
P--c%+) = Yji Cj(P) 

dp 
7 (3) 

where the (8 x 8) matrix y is the anomalous dimension matrix of the operators 
Oi. To solve this first order differential equation one explicitly needs initial 
conditions C~(,UO) at some scale ,~a as well as the anomalous dimension matrix 
Yij . 
la: The initial conditions are obtained by matching the.effective theory to the 
full standard model theory at the scale ~0 = PW, where PW denotes a scale 
of order mw or mt. At this scale, the matrix elements of the operators in 
the effective theory lead to the same logarithms as the full theory calculation. 
Consequently, the Wilson coefficients C~(,UW) only pick up small QCD correc- 
tions, which can be calculated in fixed-order perturbation theory. In the LL 
(NLL) program, the matching has to be worked out to order CY~ (cY,‘) precision. 
lb: Solving the RGE (3) and using the Ci(pw) of Step la as initial condi- 
tions, one performs the evolution of these Wilson coefficients from p = ,UW 
down to ,LL = pb, where pb is of the order of mb. As the matrix elements of 
the operators evaluated at the low scale j& are free of large logarithms, the 
latter are contained in resummed form in the Wilson coefficients. For a LL 
(NLL) calculation, this RGE step has to be performed using the anomalous 
dimension matrix yij up to order CY~ (crz). 
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Figure 1: a) Typical diagram (full theory) contributing in the NLL matching calculation. 
b) Typical diagram contributing to the matrix element of the operator 02. c) Typical 

contribution to the O(cy:) anomalous dimension matrix. 

ad 2 l The matrix elements of the operators (srlOi(p)lb> at the scale p = /& 
have to be calculated to order a: ((Y:) in the LL (NLL) calculation. 

Until recently, only the leading logarithmic (LL) perturbative QCD were 
known systematically 23. The error in this approximation was dominated by a 
large renormalization scale dependence at the 4~25% level. The measurement 
of the CLEO collaboration l7 overlaps with the estimates based on leading log- 
arithmic calculations (or with some next-toleading effects partially included) 
and the experimental and theoretical errors are comparable3~24~25~26. However, 
in view of the expected increase in the experimental precision in the near fu- 
ture, it became clear that a systematic inclusion of the NLL corrections was 
necessary. This ambitious NLL enterprise was recently completed. All three 
steps (la,lb,2) involve rather difficult calculations. The most difficult part 
in Step la is the twoloop (or order a,) matching of the dipole operators Or 
and 0s. It involves two-loop diagrams both in the full and in the effective 
theory (see Fig. la). This matching calculation was done by Adel and Yao 
4 some time ago. As this is a crucial step in the NLL program, Greub and 
Hurth ’ recently confirmed their findings in a detailed re-calculation, using 
a somewhat different method. In order to match dimension 6 operators Or 

and Os, it is sufficient to extract the terms of order mb $ (M = mw, mt) 
from the standard model matrix elements for b + sy and b + sg. Terms 



supressed by additional powers of mb/M correspond to higher dimensional op 
erators in the effective theory. In 8 the finite parts of the two-loop diagrams 
in the SM were calculated by means of the well-known Heavy Mass Expansion 
(HME) which naturally leads to a systematic expansion of Feynman diagrams 
in inverse powers of M. We mention here that the evolution of the Wilson 
coefficients between p = mt and p = m, to LL precision implied an addi- 
tional contribution of +lO% to the leading-log prediction for the decay rate 
27. Most of this contribution is automatically included in the NLL matching 
at the mw-scale 4,8, because the first term of the LL-sum of 27 is reproduced 
and higher order terms (a,log(E))“(n > 1) are rather small. In addition, 
the NLL matching result includes the first term of the NLL-sum. 

Step 2 basically consists of Bremsstrahlung corrections and virtual cor- 
rections. While the Bremsstrahlung corrections (together with some virtual 
corrections needed to cancel infrared singularities) were worked out some time 
ago by Ali and Greub 3 and have been confirmed and extended by Pott 5, a 
complete analysis of the virtual corrections (up to the contributions of the 
four-fermion operators with very small coefficients) was presented by Greub, 
Hurth and Wyler 6. This calculation also involves two- loop diagrams where 
the full charm quark mass dependence has to be taken into account. A typical 
diagram is shown in Fig. lb. By using Mellin-Barnes techniques in the Feyn- 
man parameter integrals, the result of these two-loop diagrams was obtained 
in the form 

-.co + c cnm 
n=D,l,Z )... ;m=0,1,2,3 ( > 

3 n logm $ ) 

where the quantities CO and c,, are independent of m,. Note, that a finite 
result is obtained in the limit m, + 0, as there is no naked logarithm of 
mz/rni. This observation is of some importance in the b + dy process, where 
the u-quark propagation in the loop is not CKM suppressed. It is, however, 
even more important that the inclusion of the O(a,) matrix elements leads to 
a drastic reduction of the renormalization scale uncertainty from about f25% 
to about &S%. Analytically, the reason is, that the term cry, lOg(fi/mb) which 
dominates the ,u-dependence of the LL result, is cancelled by a corresponding 
term appearing in the O(oy3) matrix element. Finally, the anomalous dimension 
matrix (at O(oz)), Step lb, has been worked out by Chetyrkin, Misiak and 
Miinz7. The calculation of the elements yi7 and y&3 (i = 1, . . . . 6) in the O(crz) 
anomalous dimension matrix involves a huge number of three loopdiagrams 
from which the pole parts (in the d - 4 expansion) have to be extracted. For 
a typical diagram see Fig. lc. The extraction of the pole parts were simplified 
by a clever decomposition of the scalar propagator. Moreover, the number 
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of necessary evanescent operators were reduced by a new choice of a basis of 
dimension 6 operators. Using the matching result (Step la), these authors 
obtained the next-to-leading correction to the Wilson coefficient cr(pb) which 
is the only relevant one for the b + X,y decay rate. Numerically, the LL 
and the NLL values for cr(j&) are rather similar; the NLL corrections to the 
Wilson coefficient c&b) lead to a change of the b + X,y decay rate which 
does not exceed f6% 7: The new contributions can be split into a part which 
is due to the order Q, corrections to the matching (Step la) and into a part 
stemming from the improved anomalous dimension matrix (Step lb). While 
individually these two parts are not so small (in the NDR scheme, which was 
used in 7), they almost cancel when combined as illustrated in 7. This shows 
that all the three different pieces, la,lb,2, are numerically equally important. 

Combining the NLL calculations of all the three steps (la+b,2), the first 
complete theoretical prediction to NLL pecision for the b + X, + y branching 
ratio was presented in7: BR(B + X,y) = (3.28f0.33) x 10e4. The error is due 
to the &6% renormalization scale uncertainty and due to the f8% combined 
uncertainty in the input parameters. 

3 l/m: and l/m: corrections 

Neglecting perturbative QCD corrections and assuming that B + X,y is due 
to the operator 07 only, the calculation of the differential decay rate basically 
amounts to work out the imaginary part of the forward scattering amplitude 

T(q) = i 
s 

d4x (BITO,f(x) 07(O)IB) exp(iqz) . (5) 

Using the operator product expansion for TO:(z) Or(O) and Heavy Quark 
Effective Theory methods, the decay width I’(B -+ X,y) reads ’ (modulo 
higher terms in the l/mb expansion) 

where X1 and X2 are the kinetic energy- and the chromomagnetic energy pa- 
rameters. Using X1 = -0.5 GeV’ and X2 = 0.12 GeV’, one gets SE5 21 -4%. 
As also the semileptonic decay width gets l/m: corrections which are negative 
(see e.g. 28), th ese non-perturbative corrections tend to cancel in the branch- 
ing ratio BR(B + X,y) and only about 1% remains. This contribution was 

7 

-- 



( > a 0 b 

Figure 2: a)Feynman diagram from which the operator 6 arises. b) Relevant cut-diagram 

for the (02,07)-interference. 

already included in the theoretical NLL prediction presented in section 2 of 
this article. 

Recently, Voloshin lo considered the non-perturbative effects when includ- 
ing also the operator 02. This effect is generated from the diagram in Fig. 
2a (and from the one not shown where the gluon and the photon are inter- 
changed); g is a soft gluon interacting with the charm quarks in the loop. Up 
to a characteristic Lorentz structure, this loop is given by the integral 

1 

s s 

1-X 

dX 
“Y 

0 0 dy m,2 - /$X(1- z) - 2zyk,k, . 

As the gluon is soft, i.e., ki, k,k, M hQcD mb/2 < rnz, the integral can be 

expanded in k,. The (formally) leading operator, denoted by 6, is 

Working out then the cut diagram shown in Fig. 2b, one obtains the non- 

perturbative contribution !Z’~A%)~ to the decay width, which is due to the 
(02,Or) interference. Normalizing this contribution by the LL partonic width, 
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one obtains 
+w 
B+X.-y 
rLL b-+sy 

(9) 

Including this correction with the sign found in 14, the NLL prediction for the 
branching ratio becomes BR(B + X,y) = (3.38 f 0.33) x 10e4. 

As the expansion parameter is mbhQCD/mz M 0.6 (rather than A”QcD/mz), 
it is not a priori clear whether formally higher order terms in the m, expan- 
sion are numerically suppressed. More detailed investigations12*13*14 show that 
higher order terms are indeed suppressed, because the corresponding expansion 
coefficients are small. 

We mention that the analogous l/m: effect has been found independently 
in the exclusive mode B + K’y in ref. l1 Numerically, the effect there is also . 
at the few percent level. 

4 Summary 

Collecting all NLL contributions and the small nonperturbative correction 
which scales with rni, the final analysis done by Chetyrkin, Misiak and Miinz 
yields BR(B + X,y) = (3.38 f 0.33) x 10m4 when also the +3% shift due to 
the non-perturbative effects from the l/m: corrections is included. The theo- 
retical error in the NLL prediction is reduced by a factor of 2 when compared 
with the LL result. This theoretical value for the branching ratio is in agree- 
ment with the CLEO measurement (at the 2a-level) and also with the recent 
(preliminary) measurement by ALEPH. Clearly, the inclusive B + X, + y 
mode will provide an interesting test of the SM and its extensions as soon as 
more precise experimental data become available. 

Note added: When finishing this article, we received the new work by 
Buras, Kwiatkowski and Pott 2g. While these authors fully confirm the match- 
ing conditions by418, their analysis is slighly different, leading to the branching 
ratio BR(B + X,y) = (3.48 f 0.31) x 10e4. The shift in the central value 
is due to systematically discarding next-next-leading order terms, while in the 
earlier analysis 6p7 some terms of this order were included. Also their estimate 
for the remaining renomalization scale dependence is somewhat different: The 
p-uncertainties in the decay width for the radiative decay and the semileptonic 
decay were treated independently and added in quadrature. In the old analysis 
617 the scale p was varied simultaneously in both decays. As the semileptonic 
decay width is an increasing function of ,u while the radiative decay width is 
decreasing, a larger p-uncertainty was obtained which as a more conservative 
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estimate we finally prefer. The results are fully compatible after all. 
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