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Abstract

- “ -‘ One can use a feedback system to suppress the fmt ion instability. How-
ever, the feedback noise (and also other sources of noise in the machine)
c-ontinously excites the transient oscillations in the electron beam that are
m“plified through the electron interaction with the ions. We calculate the
equilibrium level of these oscillations under the influence of the feedback and
show how they grow exponentially from the head to the tail of the bunch
train in a linear theory. Nonlinear saturation effects are assume negligible.
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Effect of Feedback and Noise on Fast Ion Instability

Abstract

One can use a feedback system to suppress the fast ion instability. How-

ever, the feedback

continuously excites

noise (and also other sources of noise in the machine)

the transient oscillations in the electron beam that are

amplified through the electron interaction with the ions. We calculate the

equilibrium level of these oscillations under the influence of the feedback and

. .-show how they grow exponentially from the

train in a linear theory. Nonlinear saturation

head to the tail of the bunch

effects are assume negligible.
—
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1 Introduction

A fast beam-ion instability which is caused by the interaction of an electron

bunch train with the residual gas ions [1, 2] can be of potential danger in

future high-current, low-emittance accelerators. The instability mechanism

assumes that the ions are not trapped from turn-t~turn, and is the same in

both linacs and storage rings. The ions generated by the head of the bunch

train oscillate in the transverse direction and resonantly interact with the

- betatron oscillations of the subsequent bunches, causing the growth of the



initial perturbation of the beam. First experimental observation of the fast

ion instability on the Advanced Light Source at the LBL hm been recently

reported in [3].

The original model of the

no damping in the system.

instability developed

The analysis applies

in Refs. [1, 2] assumes

when the beam or the

beam train is injected with a displacement which hm a snap-shot pattern

- ~—i(wp+wI)s/c This initial displacement excites the bunch tail oscillation

- .-through ions. In the absence of saturation

oscillations grows = exp(z m) where

WDis the betatron

~ is the coefficient

2wp
so=—

~wx ‘

effects, the amplitude of the

(1)

frequency, WI is the frequency of the ion oscillations, and

responsible for the beam-ion interaction,

(2)

where y denotes the relativistic factor for the beam, r. is the clmsical electron

radius, O=,vis the horizontal and

is the number of ions per meter

characteristic instability growth

of the bunch train.

--

vertical rms-beam size respectively, and ~~~

generated by the beam per unit time. The

time is ~~~t~bility= so/c12, with 1 the length

—



When there

the behavior of

is an external damping – radiation damping, for example –

this instability is quite different. What happens then is the

entire growth, including the beam head and tail, would be damped by the

external damping. This is true even if the damping rate r~ 1 is much weaker

than the instability growth rate, i.e. even if 711<< ~i~~~abi]i~~.+

To see this, consider the c~e of a beam train. The first bunch does not

see any ions and executes a free betatron oscillation. The ions it produces

- -excite the second bunch. However, with an external damping, even a very

weak one,. the oscillation of the first bunch slowly decays in t = rd. After the

first bunch oscillation damps out, the second bunch is no longer driven, and

it starts to damp. It will take another rd to damp after the first bunch has

been damped; Thus its oscillation decays in t = 2r~. With the first and the

secgnd bunches stop oscillating, the third bunch, regardless of the fact that

it hm been driven to a large amplitude during this time, begins to damp.

Eventually, it is damped out, etc. With an external damping, therefore, the

fast ion instability is only a transient effect. A small injection error would

very quickly grow to a large oscillation, especially towards the tail of the

—

—

tThis statement is not to be confused with our conclusion later, Eq.(20)

--



beam train. However, with time, the oscillation of the entire train decays

and, if not excited again, will stay quiet.

We see here one special property of the fast ion instability. To damp out

a conventional instability, one would need an external damping rate larger

than the instability growth rate. But this is not true here. The fmt ion

instability is in this sense not a true instability; it is intrinsically a transient

effect which is particularly sluggish.

. ... . ..

2 Feedback System

One might envision therefore that the best

instability is to ignore it, and let radiation

fortunately, the beam is constantly excited

way to deal with the fast ion

damping take care of it. Un-

by various noise effects in an

accelerator: power supply ripples, collective instabilities, etc.

A feedback system of course also damps the fmt ion instability. However,

feedback systems also carry noise, which constantly excite the f~t ion insta-

bility, and this feedback noise may dominate over all other noise sources. So

we now have a situation where the feedback system provides simultaneously

- the excitation and the damping. The beam responds to it very similarly to

—



a single electron responding to quantum excitation and radiation damping.

The net result is that each bunch in a beam train will reach a certain rms

oscillation amplitude which is determined by an equilibrium between the

feedback damping and the feedback noise. Existing theories [1, 2] mostly

describe the transient behavior. What we are interested in (for example,

to compare with some experimental observations) however, is the statistical

equilibrium when a feedback is turned on. In the following, we analyze this

. ..equilibriti. We treat a linear theory of this problem, while Ref. [4] discusses

the subject including nonlinear effects.
—

Let the feedback damping time be r~, and its noise be characterized by a
—.

random force f (s, z) acting on the beam. The equation for the amplitude of

the electron oscillations can be obtained using the approach of Wfs. [1, 2]

aj: l-l
– –/z~.’.’~(s)+f( s)()).).~S fldy = 2s~ O

(3)

Without the second term on the left hand side and with f = O we have the

c~e studied in Refs. [1, 2]. The new terms take into account the damp-

ing caused by the feedback system with the damping time rd and the noise

modeled by the force j(s, z).



The solution of Eq. (3) is

I

9 s’—.

j(s, z) = ds’f(s’, z)e ‘“d
—m

(4)

—
JJ

‘ dz’ g ~:,,o(~?)ds’f(s’, z’)e “d —
o —m

where 10 is the modified Bessel function of the zeroth order. The first term

in Eq. (4) is the direct response of the beam to the noise kicks. The second

term is the response due to coupling to the ions.

. ..---- Existing analysis [1, 2] is for the case ~(s, z) u 6(s), yielding

j(s, z) a e ‘slcTdIo (J=) , (5)

-,

which is the known result.

In case we have a constant source of random noise acting on the beam and

~(sl z) is a random function, a more adequate description of the beam motion

would be in terms of the average square of the amplitude of oscillations. To

calculate (j2 (s, z) ) we assume that the force f is a d-correlated random noise

(f(s) Z)f(s’, z’)) = F6(S - S’)6(Z - z’) (6)

which is appropriate for a wide-band feedback system. The parameter F can

be related to the average square of amplitude of the betatron oscillations

--



under the influence of the noise without ions. In this c~e the amplitude ~ is

given by the first term in Eq. (4)

J

s ./—s
j(s, 2) = ds’f(s’, z)e crd ,

—m

and using Eq. (6) we have

(fi(s, Z)j(s, 2’))= ;F6(Z – z’).

(7)

(8)

So fm. we have resumed a long continuous beam. In case the beam consists
. ... ..-

of a train of discrete bunches, the quantity

11

J
~ ~ dz(j(s, Z)j(s, z’)) = ;F

should be equated with the following sum

+ ,:(uatik) = y,

—

(9)

(lo)

where N~ is the number of bunches in the beam, 1 is the length of the bunch

train, and we have assumed that, in the absence of ions, the amplitudes of

different bunches are uncorrelated, (~~~k) = (~~)da,k. This gives an expression

for F,

(11)



Now, returning to the case with the ions, we will assume that the second

term in Eq. (4) dominates, and neglect the first term. Using Eq. (6), we

have

Note that, being the statistical average, this (~2(z)) is independent ofs. Note

also that one obtains correlation bet ween ~(zl ) and j(z2 ) for two different

bunches as

. ..----
(ti(z1)ti(~2)) = (ti2(ZI)), if Z2 >21 (13)

Let us now consider the bunches in the asymptotic regime with —

-.
(14)

Using the asymptotic representation 10(z) N (er/ =), Eq. (12) becomes

“ (~’(z)) = :~zdz’~mds
e–29/c7d

(
~e~

)

2

0 (: (22 – 2’2)) 1’2 ‘z’

“ &ldz’l”dsz’2~e-2s’;+:y’15)
Introducing new variables q = ~~ and q’ = z’ ~Z we have



(16)

Due to the factor e~2j2, the dependence of (~2(z)) on ~ for ~ >> 1 is very

strong.

We next consider the limit opposite to Eq. (14), i.e., when ~ <<1. Using

Eq. (12), we obtain

(17)

. ... . ..

Equations (16) and (17) are our main results. One may relate the average

square results Eqs. (16) and (17) to the average square of the first bunch by

using Eq. (1 1).

—

Figure 1 shows the behavior of the normalized mean square amplitude

(18)

versus ~. The two curves correspond to the fi >> 1 and ~ << 1 behaviors

according to Eqs. (16) and (17) respectively. The solid portions of the curves

represent their respective region of applicability.

In order to avoid an enhancement of beam emittance due to fast ion

instability, one should avoid the exponential regime when ~ >> 1. If one



eta bar

Figure 1: Normalized asymptotic mean square amplitude g w a function of
. ... ..-

adopts that m the operating condition, then one is led to require

(19)

or equivalently

~lrlstability > Td (20)

/ 2. Indeed, when Eq.(19) [or (2o)] is satisfied, it followswhere ~~s~bility = SO Cl

that the last bunch in the bunch train (with z = 1) h=

(ti2(1))1 ()12cTd 2— —
(~:) w 24Nb so

and the effective emittance growth is negligible.

<<1 (21)

On the other hand, due to

—

-.



the extremely rapid dependence of (~(z)) on z when ~ >> 1, the tolerable

vd”ue of ~ is not far from T = 1.

We would like to thank Sam Heifets for illuminating discussions.
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