
I 
: 

SLAG-PUB-7604 

July 1997 

Exclusive Photon-Photon Processes * 

S. J. Brodsky 

Stanford Linear Accelerator Center, 

Stanford University, Stanford, California 94309 

Invited Talk given at the 

International Conference on the Structure and the Interactions 

of the Photon (Photon97) including the 

11th International Workshop on Photon-Photon Collisions 

Egmond ann Zee, The Netherlands 

May 10-15, 1997 

*Work supported-by the Department of Energy, contract DE-AC03-76SF00515. 



Abstract 

Exclusive yy -+ hadron pairs are among the most fundamental processes in &CD, 

providing a detailed examination of Compton scattering in the crossed channel. In 

the high momentum transfer domain (s, t, large, 19,~ for t/s fixed), these processes 

can be computed from first principles in &CD, yielding important information on 

the nature of the QCD coupling a, and the form of hadron distribution amplitudes. 

Similarly, the transition form factors y*y, y*y + 7-r’, q”, q’, qc. . . provide rigorous tests 

of QCD and definitive determinations of the meson distribution amplitudes ~H(z, Q). 

We show that the assumption of a frozen coupling at low momentum transfers can 

explain the observed scaling of two-photon exclusive processes. 

1 Introduction 

Exclusive two-photon processes provide highly valuable probes of coherent effects 

in quantum. chromodynamics. For example, in the case of exclusive final states at 

high momentum transfer and fixed 19,~ such as yy + pp or meson pairs, photon- 

* _ photon collisions provide a timelike microscope for testing fundamental scaling laws 

of PQCD and for measuring distribution amplitudes, the fundamental wavefunctions 

of hadrons. [I] At very high energies s >> -t , diffractive processes such as yy + 

neutral vector (or pseudoscalar) meson pairs with real or virtual photons can test the 

QCD Pomeron (or the C = -1 exchange Odderon) in a detailed way utilizing the 

simplest possible initial state. [2] In the case of low momentum transfer processes, 

the comparison of the two-photon decay width for a given C = + resonance with 

its inferred two-gluon width provides an indirect discovery tool for gluonium. As 

discussed at this conference by H. Paar, [3] CLEO has reported a very small upper 

limit for the coupling I’(yy -+ fj(1220) due to the absence of a signal for K,K, 

decays, whereas a large gg + fj(1220) coupling is inferred from Mark III and BES 

observations of J/I) + rf($ decays. Using Chanowitz’s “stickiness” criteria, [4] this 

points to a gluonium interpretation of the fj. 

Traditionally, yy data has come from the annihilation of Weisacker-Williams ef- 

fective photons emitted in e’e’ collisions. Data for yy + hadrons from ep -+ e’p’R” 

2 



I 
. 

events at HERA has also now become available. The HERA diffractive events will 

allow studies of photon and pomeron interference effects in hadron-induced ampli- 

tudes. As emphasized by Klein, [5] nuclear-coherent yy --+ hadrons reactions can be 

observed in heavy-ion collisions at RHIC or the LHC, e.g. ZiZz -+ Z1Z27r’n-. Even- 

tually yy collisions will be studied at TeV energies with back-scattered laser beams, 

allowing critical probes of Standard Model and supersymmetric processes with po- 

larized photons in exclusive channels such as Higgs production yy + W+W-, and 

yy + W+W-W’W-. [6] 

2 Hard Exclusive Two-Photon Reactions 

Exclusive two-photon processes such as yy + hadron pairs and the transition form 

factor y*y -+ neutral mesons play a unique role in testing quantum chromodynamics 

because of the simplicity of the initial state. [l] At large momentum transfer the direct 

point-like coupling of the photon dominates at leading twist, leading to highly specific 

predictions which depend on the shape and normalization of the hadron distribution 

amplitudes $H(z~, Q) th e b asic valence bound state wavefunctions. The most recent 

exclusive two-photon process data from CLEO [7] provides stringent tests of these 

fundamental QCD predictions. , _ 
Exclusive processes are particularly challenging to compute in QCD because of 

their sensitivity to the unknown non-perturbative bound state dynamics of the hadrons. 

However, in some important cases, the leading power-law behavior of an exclusive am- 

plitude at large momentum transfer can be computed rigorously via a factorization 

theorem which separates the soft and hard dynamics. The key ingredient is the fac- 

torization of the hadronic amplitude at leading twist. As in the case of inclusive 

reactions, factorization theorems for exclusive processes [l, 8, 91 allow the analytic 

separation of the perturbatively-calculable short-distance contributions from the long- 

distance non-perturbative dynamics associated with hadronic binding. For example, 

the amplitude yy -+ ~TT+K- factorizes in the form 

(1) 

where 4&, 0) is in the pion distribution amplitude and contains all of the soft, non- 

perturbative dynamics of the pion qq wavefunction integrated in relative transverse 
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momentum up to the separation scale kt < 02, and TH is the quark/gluon hard 

scattering amplitude for yy -+ (44) (44) w ere the outgoing quarks are taken collinear h 

with their respective pion parent. To lowest order in a,, the hard scattering ampli- 

tude is linear in Q,. The most convenient definition of the coupling is the effective 

charge oV(Q2), defined from the potential for the scattering of two infinitely heavy 

test charges, in analogy to the definition of the QED running coupling. Another 

possible choice is the effective charge CXR(S), defined from the QCD correction to the 

annihilation cross section: R,+e-+hadrons( s) G Ra( 1 + CXR( s)/n). One can relate CLV 

and CXR to CX~ to NNLO using commensurate scale relations [lo]. 

The contributions from non-valence Fock states and the correction from neglecting 

the transverse momentum in the subprocess amplitude from the non-perturbative 

region are higher twist, i. e., power-law suppressed. The transverse momenta in the 

perturbative domain lead to the evolution of the distribution amplitude and to next- 

to-leading-order (NLO) corrections in CL~. The contribution from the endpoint regions 

of integration, x - 1 and y N 1, are power-law and Sudakov suppressed and thus can 

only contribute corrections at higher order in l/Q. [l] 

The distribution amplitude 4(x, 0) is boost and gauge invariant and evolves in 

Ino through an evolution equation [l]. It can be computed from the integral over 

transverse momenta of the renormalized hadron valence wavefunction in the light-cone 

gauge at fixed light-cone time [I]: 

(2) 

A physical amplitude must be independent of the separation scale 0. The natural 

variable in which to make this separation is the light-cone energy, or equivalently 

the invariant mass M2 = k12/x(1 - x), of the off-shell partonic system [ll, 11. Any 

residual dependence on the choice of & for the distribution amplitude will be com- 

pensated by a corresponding dependence of the NLO correction in TH. In general, 

the NLO prediction for exclusive amplitude depends strongly on the form of the pion 

distribution amplitude as well as the choice of renormalization scale p and scheme. 

The QCD coupling is typically evaluated at quite low scales in exclusive processes 

since the momentum transfers has to be divided among several constituents. In 

the BLM procedure, the scale of the coupling is evaluated by absorbing all vacuum 
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polarization corrections with the scale of the coupling or by taking the experimental 

value integrating over the gluon virtuality. Thus, in the case of the (timelike) pion 

form factor the relevant scale is of order Q*2 N ee3Mz,- 2 $ M%+,- assuming the 

asymptotic form of the pion distribution amplitude @Yrnpt = & fX x( 1 - x). At such 

low scales, it is likely that the coupling is frozen or relatively slow varying. 

In the BLM procedure, the renormalization scales are chosen such that all vac- 

uum polarization effects from the QCD ,S function are re-summed into the running 

couplings. The coefficients of the perturbative series are thus identical to the pertur- 

bative coefficients of the corresponding conformally invariant theory with p = 0. The 

BLM method has the important advantage of “pre-summing” the large and strongly 

divergent terms in the PQCD series which grow as n!(~,,&)~, i.e., the infrared renor- 

malons associated with coupling constant renormalization [12, 131. Furthermore, the 

renormalization scales Q* in the BLM method are physical in the sense that they 

reflect the mean virtuality of the gluon propagators [13, 14, 15, 167. In fact, in the 

QV(Q) scheme, where the QCD coupling is defined from the heavy quark potential, 

the renormalization scale is by definition the momentum transfer caused by the gluon. 

Because the renormalization scale is small in the exclusive yy processes discussed here, 

we will argue that the effective coupling is nearly constant, thus accounting for the 

nominal scaling behavior of the data [17, 181. 

The heavy-quark potential V(Q2) can be identified via the two-particle-irreducible 

scattering amplitude of test charges, i.e., the scattering of an infinitely heavy quark 

and antiquark at momentum transfer t = -Q2. The relation 

47Gw(Q2) 
V(Q2) = - Q2 Y (3) 

with CF = (Ns - 1)/2Nc = 4/3, then defines the effective charge &v(Q). This 

coupling provides a physically-based alternative to the usual MS scheme. As in the 

corresponding case of Abelian QED, the scale Q of the coupling oV(Q) is identi- 

fied with the exchanged momentum. The scale-fixed relation between QV and the 

conventional MS coupling is 

av(Q) = ctm(em5i6Q) (1 - 2$7 + e-m) , 

above or below any quark mass threshold. The factor ep5i6 N 0.4346 is the ratio of 

commensurate scales between the two schemes to this order. It arises because of the 
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conventions used in defining the modified minimal subtraction scheme. The scale in 

the MS scheme is thus a factor N 0.4 smaller than the physical scale. The coefficient 

2C~/3 in the NLO term is a feature of the non-Abelian couplings of QCD; the same 

coefficient would occur even if the theory were conformally invariant with ,&, = 0. 

Recent lattice calculations have provided strong constraints on the normalization and 

shape of aV(Q2). [19] The J/$ and Y’ spectra have been used to determine the 

normalization: 

~~~~(8.2 GeV) = 0.196(3), (5) 

where the effective number of light flavors is nf = 3. The corresponding modified 

minimal subtraction coupling evolved to the 2 mass using Eq. (4) is given by 

c&(k&) = 0.115(2). 
MS (6) 

This value is consistent with the world average of 0.117(5), but is significantly more 

precise. These results are valid up to NLO. 

Ji, Pang, Robertson, and I [20] have recently analyzed the pion transition form 

factor FY*y + x0 obtained from ey + e’7r”, the timelike pion form obtained from 

e+e- -+ ~TT+~TT, and the yy + 7rITs7rTT- processes, all at NLO in c1’v. The assumption 

of a nearly constant coupling in the hard scattering amplitude at low scales provides 
. _ an explanation for the phenomenological success of dimensional counting rules for 

exclusive processes; i.e., the power-law fall-off follows the nominal scaling of the hard 

scattering amplitude Mhad - TH - CpT14-” where n is in the total number of incident 

and final fields entering TH. The transition form factor has now been measured up 

to Q2 < 8 GeV2 in the tagged two-photon collisions ey + e’lr’ by the CLEO and 

CELLO collaborations. In this case the amplitude has the factorized form 

FYM(Q~) = 5 Jd’ ddbr(x, Q2)T,H,,(x, Q2>, 

where the hard scattering amplitude for yy* + qq is 

(7) 

(8) 

The leading QCD corrections have been computed by Braaten [al]; however, the NLO 

corrections are necessary to fix the BLM scale at LO. Thus it is not yet possible to 

rigorously determine the BLM scale for this quantity. We shall here assume that 
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this scale is the same as that occurring in the prediction for F,. For the asymptotic 

distribution amplitude we thus predict 

Q2F,,(Q2) = 2f, 

As we shall see, given the phenomenological form of o!v we employ (discussed below), 

this result is not terribly sensitive to the precise value of the scale. 

An important prediction resulting from the factorized form of these results is that 

the normalization of the ratio 

= ctm(e- 14”Q) ( 1 - 0.56s 

= av(e -3’2Q) ( 1 + 1.43% ~ ; 

is formally independent of the form of the pion distribution amplitude. The CL= cor- 

rection follows from combined references [al, 22, 231. The next-to-leading correction 

given here assumes the asymptotic distribution amplitude. 

We emphasize that when we relate R, to QV we relate observable to observable 

and thus there is no scheme ambiguity. Furthermore, effective charges such as QV 

are defined from physical observables and thus must be finite even at low momenta. 

A number of proposals have been suggested for the form of the QCD coupling in 

the low-momentum regime. For example, Petronzio and Parisi [24] have argued that 

the coupling must freeze at low momentum transfer in order that perturbative QCD 

loop integrations be well defined. Mattingly and Stevenson [25] have incorporated 

such behavior into their parameterizations of o!R at low scales. Gribov [26] has pre- 

sented novel dynamical arguments related to the nature of confinement for a fixed 

coupling at low scales. Zerwas [27] has noted the heavy quark potential must sat- 

urate -to a Yukawa form since the light-quark production processes will screen the 

linear confining potential at large distances. Cornwall [28] and others [29, 301 have 

argued that the gluon propagator will acquire an effective gluon mass nag from non- 

perturbative dynamics, which again will regulate the form of the effective couplings 
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at low momentum. We shall adopt the simple parameterization 

QV(Q) = poln (ztnl;) ’ (14 

which effectively freezes the QV effective charge to a finite value for Q2 5 4mi. 

We can use the non-relativistic heavy quark lattice results [19, 311 to fix the 

parameters. A fit to the lattice data of the above parameterization gives Av = 

0.16 GeV if we use the well-known momentum-dependent nf [32]. Furthermore, 

the value mf = 0.19 GeV2 gives consistency with the frozen value of (UR advocated 

by Mattingly and Stevenson [25]. Their parameterization implies the approximate 

constraint QR(Q)/x 21 0.27 for Q = fi < 0.3 GeV, which leads to oV(0.5 GeV) N 

0.37 using the NLO commensurate scale relation between QV and o!R. The resulting 

form for av is shown in Fig. 1. The corresponding predictions for o!R and 0~s using 

the CSRs at NLO are also shown. Note that for low Q2 the couplings, although 

frozen, are large. Thus the NLO and higher-order terms in the CSRs are large, and 

inverting them perturbatively to NLO does not give accurate results at low scales. 

In addition, higher-twist contributions to cxv and an, which are not reflected in the 

CSR relating them, may be expected to be important for low Q2 [33]. 

It is clear that exclusive processes such as the photon to pion transition form 

factors can provide a valuable window for determining the magnitude and the shape 

of the effective charges at quite low momentum transfers. In particular, we can 

check consistency with the QV prediction from lattice gauge theory. A complimentary 

method for determining QV at low momentum is to use the angular anisotropy of 

e+e- -+ QQ at the heavy quark thresholds [34]. It should be emphasized that the 

parameterization (14) is just an approximate form. The actual behavior of a!v(Q2) 

at low Q2 is one of the key uncertainties in QCD phenomenology. 

As we have emphasized, exclusive processes are sensitive to the magnitude and 

shape of the QCD couplings at quite low momentum transfer: Q$- 21 eP3Q2 N Q2/20 

and Q$ 21 Q2/50 [35]. The fact that the data for exclusive processes such as form 

factors, two photon processes such as yy + 7rr+r-, and photoproduction at fixed 

8c.m. are consistent with the nominal scaling of the leading-twist QCD predictions 

(dimensional counting) at momentum transfers Q up to the order of a few GeV can 

be immediately understood if the effective charges QV and o!R are slowly varying 
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Figure 1: The coupling function oV(Q2) as given in Eq. (14). Also shown are the 

corresponding predictions for om and o!R following from the NLO commensurate 

scale relations. 

. at low momentum. The- scaling of the exclusive amplitude then follows that of the 

subprocess amplitude TH with effectively fixed coupling. Note also that the Sudakov 

effect of the end point region is the exponential of a double log series if the coupling 

is frozen, and thus is strong. 

In Fig. 2, we compare the recent CLEO data [7] for the photon to pion transition 

form factor with the prediction 

Q2F,,(Q2) = 2fT 1 _ ; av(e;3’2Q) . (15) 

The flat scaling of the Q2F,,(Q2) data from Q2 = 2 to Q2 = 8 GeV2 provides an 

important confirmation of the applicability of leading twist QCD to this process. The 

magnitude of Q2 Frn (Q”) is remarkably consistent with the predicted form, assuming 

the asymptotic distribution amplitude and including the LO QCD radiative correction 

with ov(eP3i2Q)/7r N 0.12. Radyushkin [36], Ong [37] and Kroll [38] have also noted 

that the scaling and normalization of the photon-to-pion transition form factor tends 
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Figure 2: The y + 7r” transition form factor. The solid line is the full predic- 

tion including the QCD correction [Eq. (15)]; the dotted line is the LO prediction 

Q2F,r(Q2) = Xr. 

to favor the asymptotic form for the pion distribution amplitude and rules out broader 

distributions such as the two-humped form suggested by QCD sum rules [39]. One 

cannot obtain a unique solution for the non-perturbative wavefunction from the Fry 

data alone. However, we have the constraint that 

)[ 

,-?Qv(Q*) =Of3 
. 3 T 1 (16) 

(assuming the renormalization scale we have chosen in Eq. (9) is approximately 

correct). Thus one could allow for some broadening of the distribution amplitude 

with a corresponding increase in the value of QV at low scales. 

We have also analyzed the yy + 7r + -, K+K- data. These data exhibit true 7r 

leading-twist scaling (Fig. 3), so that one would expect this process to be a good test 

of theory. One can show that to LO 

s (yy i 7r+7r-) wxs) I2 
%.(ry -+ p+p-) = 1 - cos4 e,.,. (17) 
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in the CMS, where dt = (s/2)d(cosO,,,,) and h ere F!(s) is the time-like pion form 

factor. The ratio of the time-like to space-like pion form factor for the asymptotic 

distribution amplitude is given by 

(18) 

If we simply continue Eq. (14) to negative values of Q2 then for 1 < Q2 < 10 

GeV2, and hence 0.05 < Q*2 < 0.5 GeV2, the ratio of couplings in Eq. (18) is 

of order 1.5. Of course this assumes the analytic application of Eq. (14). Thus 

if we assume the asymptotic form for the distribution amplitude, then we predict 

Fttimelike)(-Q2) N (0.3 GeV2)/Q2 and hence a 

g (yy + 7r+r-) .36 1 

g (yy p+p-) = --+ 7 1 - cos4 8,.,. (19) 

The resulting prediction for the combined cross section a(yy + T+K, K+K-)t is 

shown in Fig. 3, along with CLEO data [7]. Considering the possible contribution of 

the resonance f2( 1270), the agreement is reasonable. 

We also note that the normalization of CZ’V could be larger at low momentum 

than our estimate. This would also imply a broadening of the pion distribution 

amplitude compared to its asymptotic form since one needs to raise the expectation 

value of l/(1 - ) x in order to maintain consistency with the magnitude of the Fyn(Q2) 

data. A full analysis will then also require consideration of the breaking of scaling 

from the evolution of the distribution amplitude. In any case, we find no compelling 

argument for significant higher-twist contributions in the few GeV regime from the 

hard scattering amplitude or the endpoint regions, since such corrections violate the 

observed scaling behavior of the data. 

The analysis we have presented here suggests a systematic program for estimat- 

ing exclusive amplitudes in QCD (including exclusive B-decays) which involve hard 

scattering. The central input is av(0), or 

1 Q: 
Qv = Yj J Qo 0 

dQ’2aV(Q’2), Qfj 5 1 GeV2, 

+The contribution from kaons is obtained at this order simply by resealing the prediction for 

pions by a factor (fi/fx)4 21 2.2.. 
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Figure 3: Two-photon annihilation cross section a(yy -+ ~TT+T-, K+K-) as a function 

of CMS energy, for I cos 8*1 < 0.6. 

which largely controls the magnitude of the underlying quark-gluon subprocesses 

for hard processes in the few-GeV region. In this work, the mean coupling value for 

Qi N 0.5 GeV2 is QV 21 0.38. The main focus will then be to determine the shapes and 

normalization of the process-independent meson and baryon distribution amplitudes. 

3 Conclusions 

The leading-twist scaling of the observed cross sections for exclusive two-photon pro- 

cesses and other fixed 8,, reactions can be understood if the effective coupling QV(Q*) 

is approximately constant in the domain of Q* relevant to the underlying hard scatter- 

ing amplitudes. In addition, the Sudakov suppression of the long-distance contribu- 

tions is strengthened if the coupling is frozen because of the exponentiation of a double 

log series. We have also found that the commensurate scale relation connecting the 

heavy quark potential, as determined from lattice gauge theory, to the photon-to-pion 

transition form factor is in excellent agreement with ye -+ roe data assuming that 
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the pion distribution amplitude is close to its asymptotic form &f,x( 1 -x). We also 

reproduce the scaling and approximate normalization of the yy -+ 7r+7r-, K+K- data 

at large momentum transfer. However, the normalization of the space-like pion form 

factor Fr(Q2) obtained from electroproduction experiments is somewhat higher than 

that predicted by the corresponding commensurate scale relation. This discrepancy 

may be due to systematic errors introduced by the extrapolation of the y*p -+ 7rTTsn 

electroproduction data to the pion pole. 
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