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Abstract. We present an overview of techniques developed in recent years for

the e�cient calculation of one-loop multiparton amplitudes, in particular those

relying on unitarity and collinear factorization.

INTRODUCTION

Much of the experimental e�ort in high-energy physics today is directed at
searching for new physics beyond the standard model. Successful searches will
require a detailed understanding of known physics. At high-energy colliders,

particularly hadron-hadron colliders, this requirement implies above all the
need for a detailed understanding of perturbative QCD. A detailed theoreti-
cal picture of dijet production, for example, is necessary if we are to use it in
constraining the gluon distribution. The search for new physics in the single-
jet inclusive distribution likewise requires detailed theoretical calculations (in

addition to better measurements of the parton distributions than have been
available heretofore). Other measurements which rely on our detailed under-
standing of perturbative QCD include the W mass, W+jet ratios, and top
production in semi-leptonic and purely hadronic channels.
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In the context of jet physics at high-energy colliders, next-to-leading order

calculations represent the �rst step in providing such a detailed picture. Un-
like the case of more inclusive measurements, such as the total hadronic cross
section in e+e� annihilation, the perturbative expansion for jet observables
contains both \ultraviolet" and \infrared" logarithms. The former arise from

the truncation of the perturbation series at a �xed order. They manifest them-
selves in the (unphysical) renormalization-scale dependence of theoretical pre-
dictions. This dependence is numerically strong at leading order, because the
coupling is still relatively large, and runs relatively quickly. Next-to-leading or-
der e�ects compensate this sensitivity, and in practice reduce signi�cantly the

undesired renormalization-scale dependence. The second type of logarithms
arise because of the presence of di�erent scales, a hard scale characterizing the
scattering, and softer scales characterizing the size of a jet. They modify the
perturbative expansion from one solely in �s to one in �s ln

2 yIR and �s ln yIR
as well, where yIR is the ratio of the di�erent scales. Only at next-to-leading
order can we justify quantitatively the harmless nature of these logarithms,
and thereby the applicability of perturbation theory.

ORGANIZING A CALCULATION

At leading order, producing numerical predictions for an n-jet process in
lepton-hadron collisions requires knowledge of the parton distribution func-

tions of the proton; of �s; and of the tree-level matrix element for the
` + x ! ` + n parton process. (The n-jet count excludes the remnant.)
We can get this matrix element easily from that for `` ! (n + 1) partons.
At next-to-leading order, the calculation of the same process also requires the
tree-level matrix element for `` ! (n + 2) partons, and the one-loop matrix

element for ``! (n+1) partons. (It furthermore requires a general formalism
such as that of refs. [1{4] for cancelling the infrared singularities analytically
while allowing a numerical calculation of fully-di�erential observables.)

It is the calculation of the one-loop matrix elements that requires the bulk

of the theoretical e�ort in producing predictions for a new process. In the
traditional Feynman-diagram approach, even amplitudes with four external
partons [5] require hard, lengthy calculations; and the situation only gets
worse as the number of external legs grows. The di�culties arise from the

enormous number of diagrams, the large amount of vertex algebra in each
diagram, and the complexity of loop integrals with many powers of the loop
momentum in the numerator. A brute-force approach might easily lead to
expressions thousands of times larger than an appropriate representation of a

result.

The vastly more e�cient methods developed in recent years start by tak-
ing advantage of earlier developments in both tree-level calculations [6] and
string-based methods for loop calculations [7]. These include (a) color de-



composition [8], (b) the spinor helicity method [9], (c) use of supersymmetric

decompositions, (d) decomposition into `primitive' amplitudes, and the use of
permutation identities [11] that express subleading-color amplitudes as a sum
of permutations over `primitive' amplitudes. Primitive amplitudes correspond
to color-ordered amplitudes with a de�nite orientation of internal fermion

lines. These fundamental building blocks may be computed e�ciently us-
ing the twin tools of unitarity-based sewing and factorization, developed in
refs. [10] and reviewed at length in ref. [12]. These techniques have been
used extensively in a series of calculations, including the one-loop matrix el-
ements [11] for 0 ! qqggg, the all-multiplicity maximally-helicity violating

amplitudes in N = 4 and N = 1 supersymmetric theories [10], and the one-
loop matrix elements for `�̀! qqq0q0 [13] and `�̀! qqgg [14].

CALCULATION OF PRIMITIVE AMPLITUDES

A one-loop amplitude, in general, contains absorptive pieces. The corre-
sponding dispersive terms can be determined via dispersion relations from

their cuts, which are just given by products of tree amplitudes. (The ap-
proach can be extended beyond one loop; for �rst steps in this direction see
another contribution to this session [15].) In practice, one does not need
to use dispersion relations explicitly, but only implicitly, to determine the

integral functions that appear in any given amplitude, along with their coef-
�cients. The restricted number of integral functions that can appear implies
that some cut-free pieces are also determined by this approach of sewing tree
amplitudes. Indeed, in supersymmetric theories, the entire amplitude is given
by this technique.

The key point in the unitarity-based method is that we sew tree amplitudes,
not tree diagrams. A calculation thus takes advantage of all the cancellations

and reductions in numbers of terms that have already occurred in the process
of computing the tree amplitudes.

A calculation using the unitarity-based method proceeds as follows. We

want to compute the coe�cients ci of each of the box, triangle or bubble
integrals that might appear in the amplitude. (The set of possible integrals
can be determined by a `gedanken' reduction using Passarino-Veltman [16] and
van Neerven-Vermaseren [17], or equivalent [18] techniques.) We consider in

turn cuts in all possible channels. For a given channel, we form the cut in that
channel, summing over all intermediate states; this gives rise to a phase-space
integral of the form

Z
dDLIPS(�`1; `2)A

tree
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where `1;2 are the four-dimensional on-shell momenta crossing the cut, and
where the Atree

L;R are the color-ordered tree subamplitudes on the two sides



of the cut. Using the Cutkosky rules, we can rewrite this expression as the

absorptive or imaginary part of a loop amplitude,"Z
dD`1
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In this expression, we may use the on-shell conditions `2
1
= 0 = `2

2
freely

in all factors except the inserted propagators. Using a power-counting the-
orem [10,12] in those cases where it applies (or simply up to a polynomial
ambiguity to be �xed as described below, in cases where it does not apply), we

can recover the real parts by dropping the subscript \cut". We then perform
the usual reductions on the resulting loop integral, and extract the coe�cient
of any integral function containing a cut in the given channel. (Functions
which don't contain a cut in the given channel should be dropped.) Finally,

we reassemble the �nal answer by considering all channels.
The box integrals have cuts in more than one channel. Considering both

channels provides us with a cross check | the coe�cients as computed in both
channels must agree | or alternatively we could reduce the amount of work

we must do by considering only one channel. The latter choice is particularly
appropriate when computing amplitudes in an N = 4 supersymmetric gauge
theory; in this theory, all amplitudes can be written in terms of scalar boxes.
(We assume the use of a supersymmetrically-consistent version of dimensional
regularization, such as dimensional reduction, throughout.)

In non-supersymmetric theories, there are remaining cut-free or polynomial
terms which are not determined by sewing tree amplitudes in D = 4. It is
possible to determine them if we use the cuts at O(�) rather than just to
O(�0). The reason is that amplitudes in a massless gauge theory have an

over-all power of (�s)��, where s is one of the momentum invariants of the
external legs. The polynomial terms therefore do contain cuts atO(�), and can
be deduced by sewing tree amplitudes, where the momenta crossing the cuts
are taken to be on-shell in (4 � 2�) dimensions rather than four dimensions.

For scalars (and fermions [19]), this is equivalent to computing massive rather
than massless amplitudes, followed by an appropriately weighted integration
over the \mass" (really the (�2�)-dimensional component of the momentum).
However, for practical purposes, it is better to use collinear factorization

to determine the polynomial terms. This technique relies on the universal

factorization of one-loop amplitudes in the collinear limit [20,10], which for
leading-color amplitudes reads,

A
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where the splitting amplitudes C are universal functions depending only on
the collinear momenta and their helicities �, and on the momentum fraction



z (kP = ka + kb, ka = zkP ). In general, the terms deduced by sewing trees

will not yield the correct limit; one must add polynomial pieces. One caveat
in applying this technique is that we have no proof that this determines the
missing polynomial pieces uniquely. (It is likely true for more than �ve external
legs; for �ve external legs, there is an ambiguity arising from the existence of

a term which contains no cuts but is collinear-�nite.) The results obtained
using this technique thus need to be checked (for example, numerically) against
results from another method.
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