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Abstract

The gluon-exchange contribution to J= -nucleon scattering is shown to yield

a sizeable scattering length of about -0.25 fm, which is consistent with the sparse

available data. Hadronic corrections to gluon exchange which are generated by

�� and DD intermediate states of the J= are shown to be negligible. We also

propose a new method to study J= -nucleon elastic scattering in the reaction

�+d! J= p p.
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One of the novel features that quantum chromodynamics brings to strong inter-

action physics is the concept of a gluonic van der Waals potential, the interaction

arising from the exchange of two or more gluons between color-singlet hadrons. The

color van der Waals potential is expected to be the dominant potential in the case

of the scattering of hadrons without common quarks, such as in the interaction of

heavy quarkonium states with hadrons or nuclei at low energies. As in quantum

electrodynamics, the QCD van der Waals is attractive, and in principle it could lead

to molecular-like bound states of charmonium with nuclei[1, 2]. Unlike QED, the

QCD van der Waals potential has �nite range, rather than the power-law fall-o�

characteristic of the exchange of massless neutral gauge �elds.[3]

It is clearly very interesting to study the theoretical foundations and the empir-

ical consequences of the van der Waals potential. In an illuminating paper, Luke,

Manohar, Savage[4] have shown that the essential features of the low energy inter-

action between heavy quarkonium and nucleons or nuclei can be determined directly

from the operator product expansion. In their analysis the coupling of multiple glu-

ons to a small-size quarkonium bound state is given by the quarkonium color electric

polarizability. The coupling of the gluons to the large-size nucleon or nucleus depends

on one term proportional to the momentum fraction carried by gluons and a second

term normalized to the nucleon or nuclear mass. The dominant low energy interac-

tion at small relative velocity corresponds to scalar exchange. The gluon exchange

potential can then lead to resonances or even bound states in quarkonium-hadron

or quarkonium-nuclear interactions. Such novel states could be seen for example as

kinematical peaks in the decay of the B meson in the p�J= �nal state.[5]

The main purpose of this letter is to demonstrate explicitly that the QCD van

der Waals potential as characterized by its scattering length is indeed much more

important than the meson-exchange forces in J= -nucleon interactions which arise

from the coupling of charmonium to hadronic intermediate states. We also point out

that the QCD van der Waals interaction can be conveniently studied experimentally

in the highly-constrained reaction �d! J= pp.

Indirect information on the interactions of the cc system with nucleons can also be

obtained from studies of charm production at threshold or, via unitarity, the behavior

of pp elastic scattering in the charm threshold region. Indeed the strong increase of the

polarization asymmetry ANN observed in Ref. [6] in large CM angle proton-proton
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scattering at
p
s ' 5 GeV has been attributed to the strong interactions between

charm anti-charm con�gurations arising in the intermediate state interacting with

nucleons at low relative velocity[7]. It would clearly be very useful to verify these

physical features from direct measurements of the J= -nucleon interaction.

We begin by deriving the scattering length for the QCD van der Waals potential,

starting with the Luke, Manohar, Savage LMS two-gluon exchange calculation of the

forward invariant amplitude in �rst Born approximation:

Mfwd = 4M M
2 cE

�3
Q

"
3

4
V2(�Q) +

2�

�Q�s(�Q)

#
: (1)

Here M is the nucleon mass and V2 is the gluon momentum fraction in the nucleon.

(We take V2 = 0:5 [8] at the low momentum transfer scale relevant here.) LMS

assumed the heavy quark limit, in which the size of the heavy quarkonium system,

rB � 1=mQ is much smaller than the inverse of the QCD scale ��1QCD, and in which

the QQ system can be can be approximated as a Coulomb bound state. Peskin [9]

found
cE

�3
Q

=
14�

27
r3B (2)

where rB is the Bohr radius of the 1s state. The LMS analysis is a rigorous prediction

of QCD, and it is completely model independent in the limitmQ !1. Although the

validity of the Coulomb approximation for the J= may not be completely reliable,

this result should provide a good estimate for cE. The LMS computation shows

unambiguously that the potential is attractive.

The parameters appearing in Eq. (1) must be speci�ed to obtain numerical results.

The Bohr radius of the J= has been determined in the model-independent analysis of

Quigg and Rosner [10] as r�1B = 750 MeV. The value of the strong coupling constant

at low momentum transfer scales Q � r�1B can be determined in the �V scheme from

various exclusive processes [11]. A convenient parameterization which freezes the

coupling at low scales is

2�

�Q�V (Q)
=

1

2
`n

 
Q2 + 4 m2

g

�2
V

!
; (3)

with m2
g = 0:2 GeV2 and �V = 0:16 GeV. We now use the relation fB =

�Mfwd

8�(M+M )

[12] to obtain the �rst Born forward scattering amplitude with the traditional nor-

malization used in potential theory. At threshold fB = aB, the Born approximate
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scattering length. The numerical evaluation of Eq. (1) using the above parameters

gives aB = �0:19 fm.

We can go beyond the Born approximation to obtain the full scattering length

a by assuming a speci�c form for the potential V (r) in the Schroindinger equation.

The relation between the aB and V (r) is:

aB = 2�
Z
1

0
dr r2 V (r); (4)

where � is the reduced mass of the J= -nucleon system. Since the QCD van der Waals

potential is of �nite range, we shall assume a Gaussian shape: V (r) = �V0e�r2=R2

with

R=0.8 fm chosen to account for the �nite sizes of the nucleon, the J= and the range

of their interaction. Equation (4) implies then that the potential depth is V0 = 23

MeV, which is quite large. Solving the Schroindinger equation then gives a = �0:24
fm, corresponding to a total cross section � N = 4�a2 of about 7 mb at threshold.

This is somewhat higher than the values � N=3.5� 0.8 mb� 0.5 mb determined from

nuclear J= photoproduction at 20 GeV [13]. However the low energy J= -nucleon

interaction corresponds to scalar exchange, implying a cross section which decreases

as the energy is increased from threshold. Thus the low-energy value of 7 mb is not

inconsistent with the higher energy determination. This number does not depend

much on the shape of the potential, for a �xed value of aB, as long as the range is

held �xed.

One possible signal for a strong cc interaction with nucleons is the abrupt rise of the

polarization asymmetry ANN observed in large CM angle proton-proton elastic scat-

tering at
p
s ' 5 GeV near the charm threshold. De Teramond and collaborators[14]

have argued that reproducing the strength of the polarization asymmetry
p
s in the

vicinity of the threshold for cc production (about 10 GeV) requires an e�ective scatter-

ing length of about the same size as our result. We note that the estimate of Ref. [14]

includes the interactions of an ensemble of quarkonium states whose interactions with

nucleons could be di�erent than that of the J= .

Does multiple-gluon exchange really dominate over all other strong interaction

e�ects in J= -nucleon scattering? It is natural to consider the e�ects involving the

exchange of pions between the J= and the nucleon. Isospin conservation prevents

the exchange of a single pion, but the two-pion exchanges generated by contact in-

teractions which take a J= into a J= �� state are allowed. In the LMS formalism,

4



(a)

(b)
6-97

8325A1

J/ΨJ/Ψ

ρ

π

J/ΨJ/Ψ

N N

Figure 1: Inuence of �� intermediate states on M . (a) free J= (b) typical graph

for J= in the presence of a nucleon

such terms owe their existence to non-vanishing masses of the light quarks. Their size

is of order ( m�

4�f�
)2 � 1% of the terms in Eq. (1)[4].

But there could be other types of hadronic interactions. To investigate the pos-

sibilities we look at the hadronic width of the J= . The J= decay to �� has a

remarkably large 1.28 % branching fraction of the 87 KeV width [12], an e�ect which

has been attributed to the intrinsic charm Fock states of the � and � mesons [15].

Thus the J= could interact with a nucleon via virtual �� interactions, as in Fig. 1b.

In order to estimate the strength of such meson-exchange contributions, we postulate

a hadronic Lagrangian of the form

L�� = g ��
� � �; (5)

the simplest interaction term consistent with isospin and space-time symmetries. The

coupling g is readily determined from the width to the �� channel:

��� =
g2

8�
(3 +

p21
M2

�

)
p1

M2
 

; (6)

where p1 is the relative momentum of the �� system, p1 = 0:47M . Then g = �M 

with � = 1:7 � 10�3.

Given a value of g we may compute the scattering amplitude due to the graphs

of Fig. 1. We use relativistic time-ordered perturbation theory to obtain the J= -
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nucleon interaction where the time ordering corresponds to the intermediate state ��

plus the nucleon. Our procedure will be to �rst consider the free-space amplitude of

Fig. 1a which contributes to the mass of the J= and then see how this mass shift is

modi�ed by the presence of the nucleon. Let V
(0)
 be the shift in the mass of the J= 

due to the �� channel:

V
(0)
 = h jV��

1

E �H0 + i�
V��j i

=
���

2�

M 

p1
Re

Z
1

0

q2dq

E�E�

1

(E � E� � E� + i�)
(7)

where E =M for the on-shell J= . Here H0 accounts for the sum of the relativistic

kinetic energies E� =
q
q2 +M2

� , E� =
q
q2 +M2

� of the � and �, and V�� is the

interaction Hamiltonian derived from L��. Note that ImV (0)
 = ����

2
. The mass shift

is modi�ed in the presence of a nucleon:

V = h ;N jV��
1

E �H0 � VN + i�
V��j ;Ni (8)

where VN is the strong interaction potential arising between the � and the � and the

nucleon.

The J= -nucleon interaction V ( ;N) that we seek is given by the di�erence

V ( ;N) = Re
�
V � V

(0)
 

�
as in the Furry picture. The evaluation of Eqs. (7) and

(8) is complicated; however, for our purposes we can make an estimate by taking VN

to be a constant. Thus to �rst order in VN we �nd

V ( ;N) � VN

M �M� �M�

���

2�

M 

p1
: (9)

The small value of ��� (= 1.1 KeV) causes V ( ;N) to be of the order of 10�5 MeV,

which is entirely negligible.

Another type of term is shown in Fig. 2, which is driven by the coupling of the

J= to a pair of D mesons. The J= is stable with respect to this decay, but it

could lead to an interaction with nucleons through the virtual intermediate states.

A signi�cant interaction could be possible even at low energies since the anti-light

quark could be absorbed and the charmed quark added to the nucleon to make an

intermediate �c. We again use a hadronic e�ective Lagrangian

LDD = i gc 
�
�
D@� �D�D@� �D

�
: (10)

6



(a)

(b)
6-97

8325A2

J/ΨJ/Ψ

D

D

J/ΨJ/Ψ

D

N N

Figure 2: Inuence of DD intermediate states on M . (a) free J= (b)J= in the

presence of a nucleon, sample graph. The intermediate baryon carries charm.

We cannot obtain gc from the width of the J= , so we shall extrapolate from the

decay of the � using an interaction

LKK = i gs�
�
�
K@� �K�K@� �K

�
: (11)

which also involves a vector meson decaying into two pseudoscalar particles. We take

gs from the decays �! K0K
0
and �! K+K�: A simple evaluation gives g2s

4�
= 1:71.

Obtaining the relation between gc and gs is the next task. The key feature is the

small-sized nature of the J= . We recall that the small size of the region involved in

cc annihilation was the crucial ingredient in the Appelquist-Politzer[16] explanation

of the very small hadronic width of the J= . This is because the amplitudes for

gluons emitted by a charmed and nearby anti-charmed quark tend to cancel. Taking

the emission of the light-quark pair to be governed by two gluon- exchange, as in

the LMS example, leads to a transition amplitude given by the matrix element of

the operator r representing the distance between the heavy quarks. The power arises

from the small size of the initial system. A related example, [17, 18] is the ratio of

the decay amplitudes for �0 and  0 to decay to their ground states and two pions

which is governed by the ratio of the mean square radii[17]. In that case, both the

initial (�0,  0) and �nal (�,  ) states involve small systems, so that one obtains two

powers of r. We also note that the ratio of the same decays of the  0 and the �0 is very
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small[12]. Another related example occurs when considering the coupling constant

for pions to interact with the point-like con�guration of the nucleon[18]. In that case,

the coupling also varies as the area of the point-like con�guration. Thus we expect

that

gc � gs
R 

R�

(12)

Using the root-mean-square radii R = 0:11 fm [10] and R� = 0:4 fm[19] leads to

g2c
4�
� 0:13: (13)

We shall evaluate the contribution to the J= -nucleon interaction coming from

Fig. 2 by examining how the shift in M2
 of Fig. 2a, �M2

 (M
2
D); changes in the

presence of a nucleon, modelling the e�ect of the nucleon with the replacementMD !
MD + V (D;N): The D-nucleon interaction V (D;N) is treated as a constant. The

resulting contribution to the  -N potential V ( ;N is then given by

V ( ;N) =
@�M2

 

@M2
D

MD

M 

V (D;N); (14)

with

�M2
 (M

2
D) = i g2c

Z
d4k

(2�)4
(�(�) � (2k � P ))2

(k2 �M2
D + i�) ((k � P )2 �M2

D + i�)
; (15)

where P is the four momentum of the J= , and �(�) its polarization vector. We

average over the J= polarization � and combine the energy denominators to obtain:

�M2
 (M

2
D) = i g2c

Z 1

0
dx

Z
d4k

(2�)4
k2

(k2 ��(x))2
; (16)

where �(x) � M2
D �M2

 x(1 � x) + i� > 0: This term can be renormalized via the

dimensional regularization procedure, corresponding to the removal of an in�nite term

independent of M2
D which does not contribute to V ( ;N) of Eq. (14). In particular,

we replace the factor of k2 appearing in the numerator of Eq. (16) by �(x). Then

@�M2
 

@M2
D

= 2 i g2c

Z 1

0
dx

Z
d4k

(2�)4
�(x)

(k2 ��(x))3
=

1

4�

g2c
4�
; (17)

and

V ( ;N) =
1

4�

g2c
4�

MD

M 

V (D;N) = 0:006 V (D;N): (18)

We may obtain an upper limit for V (D;N) by assuming that the D-nucleon and �-

nucleon interactions are similar. The �-N interaction corresponds [20] to a strength of
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approximately 1 MeV near threshold and about 20 MeV for pions of 100 MeV. Thus,

the estimated value of V ( ;N) is less than about 0.1 MeV and negligible compared

to the 23 MeV from multiple gluon exchange.

The net conclusion is that the QCD van der Waals potential for J= -nucleon inter-

actions from gluon exchange is strongly dominant over meson-exchange interactions.

(b)

(a)

6-97
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Figure 3: (a) The production process �+n ! J= p. (b) The production process

�+d! J= p1 p2.

It is clearly interesting and important to measure J= N scattering. The tradi-

tional and most straightforward method is to analyze the nuclear dependence of J= 

photoproduction.[21] However, the �� interaction o�ers the opportunity to measure

the J= N interaction in a totally exclusive situation. Consider the process ��p!  n

which proceeds by � exchange as shown in Fig. 3. The cross section for this process

is easily evaluated. In the limit s� M2
 

d��N! N

dt
=

1

2

g2�N

4�
�2

F 2(t)

(t�M2
� )

2
; (19)

where the �-nucleon coupling constant
g2
�N

4�
= 1, and F (t) is the �-nucleon form

factor. We �nd
d��N! N

dt
(t = 0) = 1.6 nb GeV�2. This may be compared with the
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photoproduction cross section of 10 nb GeV�2 observed in p !  p [21], and thus

it is not too small to be observed. The total cross section for this J= production

process is approximately 1 nb. In principle, one can also use this reaction to search

for J= �N resonances or even J= �N bound states.

More generally one can study multiple-scattering corrections to the process �N !
 N in a nuclear target and thus measure how the J= scatters on a nucleon. For

example, consider the deuteron target process �+d ! J= + p1 + p2 as shown in

Fig. 3b. The process �+ + neutron ! J= plus proton of momentum p1 is followed

by a J= + proton scattering. If the momentum p2 of the second proton is greater

than about 300 MeV/c, such an event can only be produced by a scattering [22],

because the deuteron wave function does not have appreciable support for such high

momenta. The signature of J= production is a monoenergetic peak in the missing

mass obtained by measuring the two �nal state nucleons, one of momentum close

to that of the beam and the other of greater than 300 MeV/c. Such �xed target

measurements would enable the �rst measurement of J= -nucleon elastic scattering

at near threshold energies.

The results presented here demonstrate that the exchange of two gluons in the

scalar channel dominates elastic J= �N scattering. The most logical hadronic mech-

anisms which might be competitive are interactions involving �� or DD intermediate

states. The contributions to the quarkonium-nucleon potential are found to be very

small compared to the predicted color van der Waals strength.

We �nd that the cross section for exclusive J= production in pion-nucleon colli-

sions �+d! J= +p1+p2 is not negligible, enabling a very clean measurement of the

magnitude and momentum dependence of J= -N elastic scattering at low energies.

Such measurements could test the �rst-principle theoretical predictions for the QCD

van der Waals interaction.

Acknowledgments

This work is partially supported by the USDOE. G. A. Miller thanks the SLAC

theory group, the National Institute for Theoretical Physics and the Adelaide center

for their hospitality. We also thank M. Savage for a useful discussion.

10



References

[1] S. J. Brodsky, I. Schmidt and G. F. de Teramond, Phys. Rev. Lett. 64, 1011

1990.

[2] D. A. Wasson, Phys. Rev. Lett. 67, 2237 1991.

[3] For a recent review of the QED van der Waals potential see J. Sucher, e-Print

Archive: hep-ph/96123

[4] M. Luke, A. V. Manohar and M. J. Savage, Phys. Lett.B288, 355 (1992).

[5] S. J. Brodsky, F. S. Navarra, SLAC-PUB-7445, to appear in Phys. Lett. B, e-

Print Archive: hep-ph/9704348

[6] E. A. Crosbie, et al.Phys. Rev.D23, 600 (1981).

[7] S. J. Brodsky, G. F. de Teramond Phys.Rev.Lett.60, 1924 (1988).

[8] See, for example, R. D. Field,Applications of Perturbative QCD, Addison-Wesley

Publishing Company, 1989.

[9] M. E. Peskin, Nucl. Phys. B156, 365 (1979).

[10] C. Quigg and J. L. Rosner, Phys. Rev. D23 1981 2625.

[11] S. J. Brodsky, C.-R. Ji, A. Peng and D. G. Robertson, hep-ph/9705221

[12] Nucl. Phys. B156 1979 R. M. Barnett et al., Phys. Rev. D54, 1 (1996)

[13] R. L. Anderson et al., Phys. Rev. Lett. 38, 263 (1977).

[14] G. F. de T�eramond, private communication and G. F. de T�eramond, R. Espinoza,

and M Ortega-R�odriguez, 1997 preprint.

[15] S. J. Brodsky, M. Karliner SLAC-PUB-7463, Apr 1997. To appear in Phys. Rev.

Lett. e-Print Archive: hep-ph/9704379

[16] T. Appelquist and H. D. Politzer, Phys. Rev. Lett. 34, 43 (1975); Phys. Rev..

D12, 1404 (1975).

11



[17] M. Chanowitz, Proc. Summer School in Part. Phys. SLAC-245, p. 241 (1981) ed.

A. Mosher

[18] L. Frankfurt and M. Strikman, Nucl .Phys. B250, 143 (1985)

[19] J. Hufner and P. Povh, Phys. Rev. Lett. 58, 1612 (1987).

[20] T. Ericson and W. Weise, Pions and Nuclei, Clarendon Press, Oxford, 1988.

[21] U. Camerini et al., Phys. Rev. Lett. 35, 483 (1975).

[22] L. L. Frankfurt, W. R. Greenberg, G. A. Miller, M. M. Sargsyan and M. I.

Strikman, Z. Phys. A352, 97 (1995); Phys. Lett. B369, 201 (1996).

12


