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I. INTRODUCTION 

A light front treatment of the nuclear wave function is developed and applied, using 

the mean field approximation, to infinite nuclear matter. The nuclear mesons are shown to 

carry about a third of the nuclear plus momentum p +; but their momentum distribution 

. 
has support only at p + = 0, and the mesons do not contribute to nuclear deep inelastic 

scattering. This zero mode effect occurs because the meson fields are independent of space- 

time position. 

II. DISCUSSION 

The discovery that the deep inelastic scattering structure function of a bound nucleon 

-- 

differs from that of a free one (the EMC effect[l]) changed the way that physicists viewed 

the nucleus. With a principal effect that the plus momentum (energy plus third component 

of the momentum, p” + p3 E p+) carried by the valence quarks is less for a bound nucleon 

than for a free one, quark and nuclear physics could not be viewed as being independent. 

The interpretation of the experiments requires that the role of conventional effects, such 

as nuclear binding, be assessed and understood[2, 31. N UC ear 1 binding is supposed to be 
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relevant because the plus momentum of a bound nucleon is reduced by the binding energy, 

and so is that of its confined quarks. Conservation of momentum implies that if nucleons 

lose momentum, other constituents such as nuclear pions[4], must gain momentum. This 

partitioning of the total plus momentum amongst the various constituents is the momentum 

sum rule. Pions are quark anti-quark pairs so that a specific enhancement of the nuclear 

antiquark momentum distribution is a testable [5] consequence of this idea. A nuclear Drell 

Yan experiment [6], was performed, but no influence of nuclear pion enhancement was seen. 

This led Ref. [7] t o q ues t ion the idea of the pion as a dominant carrier of the nuclear force. 

III. NUCLEAR CALCULATION 

Here a closer look at the relevant nuclear theory is taken, and the momentum sum rule 

is studied. This talk is based on Ref.[8]. 

The structure function depends on the Bjorken variable XB~ which in the parton model is 

the ratio of the quark plus momentum to that of the target. Thus XBj = p+/k+, where Ic+ is 

the plus momentum of a nucleon bound in the nucleus, so a more direct relationship between 

the necessary nuclear theory and experiment occurs by using a theory in which k+ is one of 

the canonical variables. Since k+ is conjugate to a spatial variable x- E t - Z, it is natural 

to quantize the dynamical variables at the equal light cone time variable of x+ E t + Z. To 

use such a formalism is to use light front quantization, which requires a new derivation of 

the nuclear wave function, because previous work used the equal time formalism. 

Such a derivation is provided here, using a simple model in which the nuclear constituents 

are nucleons V/I (or $‘), scalar mesons 4[10] and vector mesons VP. The Lagrangian ,C is _ 

given by 

where the bare masses of the nucleon, scalar and vector mesons are given by M, m,, m,, and 
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Vpv = dpVV - dVVp. This Lagrangian may be thought of as a low energy effective theory 

for nuclei under normal conditions. 

This hadronic model, when evaluated in mean field approximation, gives[ll] at least a 

qualitatively good description of many (but not all) nuclear properties and reactions. The 

aim here is to use a simple Lagrangian to study the effects that one might obtain by using 

a light front formulation. It is useful to simplify this first calculation by studying infinite 

nuclear matter. 

The light front quantization procedure necessary to treat nucleon interactions with scalar 

and vector mesons was derived by Soper[l3] and also by Yan and collaborators[l4, 151. 

Glazek and Shakin[lG] used a Lagrangian containing nucleons and scalar mesons to study 

infinite nuclear matter. Here both vector and scalar mesons are included, and the nuclear 

plus momentum distribution is obtained. 

Next examine the field equations. The nucleons satisfy 
_- 

. 

y - (ia - g,V)$+ = (m + gs4)$‘. (2) 

The number of independent degrees of freedom for light front field theories is fewer than 

in the usual theory. One defines projection operators A* = y”y*/2 and the independent 

Fermion degree of freedom is +i = A+$‘. The relation between $1 and $$ is very compli- 

cated unless one may set the plus component of the vector field to zero. This is a matter of a 

choice of gauge for QED and &CD, but the non-zero mass of the vector meson prevents such 

a choice here. Instead, one simplifies the equation for $I_ by[15] transforming the Fermion 

field according to +’ = e-igwh(z)lC, with @A = V+ which yields 

where 

(3) 
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The field equations for the mesons are 

We now introduce the mean field approximation[ll]. Th e coupling constants are consid- 

ered strong and the Fermion density large. Then the meson fields can be approximated as 

classical- the sources of the meson fields are replaced by their expectation values. In this 

case, the nucleon mode functions will be plane waves and the nuclear matter ground state 

can be assumed to be a normal Fermi gas, of Fermi momentum kF, and of large volume R in 

- its rest frame. We consider the case that there is an equal number of protons and neutrons. . 

Then the meson fields are constants given by 

(6) 

where fB = 2k;/3n 2. This result that VP is a constant, along with Eqs. (4) and (6), tells 

us that the only non-vanishing component of v is v- = V”. The expectation values refer 

to the nuclear matter ground state. 

With this, the light front Schroedinger equation for the modes of the field operator N e”“‘” 

and can be obtained from Eq. (3) a@] 

@a- _ g,q++ = %+ w + gd2$+ 
k+ (7) 

The light front eigenenergy (ia- - k-) is the sum of a kinetic energy term in which the 

mass is shifted by the presence of the scalar field, and an constant energy arising from 

the vector field. Thus the nucleons have a mass A4 + g& and move in plane wave states. 

The nucleon field operator is constructed using the solutions of Eq. (7) as the plane wave 

basis states. This means that the nuclear matter ground state, defined by operators that 

create and destroy baryons in eigenstates of Eq. (7), is the correct wave function and that 

-- 
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Equations (6) and (7) represent the solution of the approximate field equations, and the 

diagonalization of the Hamiltonian. 

The computation of the energy and plus momentum distribution proceeds from taking 

the appropriate expectation values of PV: 

Pp = ; / d2xldx-(T+p). (8) 

We are concerned with the light front energy P- and momentum P+ . Within the mean 

field approximation one finds 

T+- = mzq52 + 2$:(id- - gvv-)‘$‘+ 

Tff = rn:Vi + fh,!~:id+?,b+. (9) . 

Taking the nuclear matter expectation value of T+- and T++ and performing the spatial 

integral of Eq. (8) leads to the result 

P- 
- = m:42 + (2;j3 Fd2kLdk R s 

+““I + (M + ss4)2 k+ 

P+ 
- = mtv,” + (2;j3 F d2kIdk+k+. R J 

(10) 

(11) 

The subscript F denotes that ] i ]< kF with k3 defined by the relation 

(M + gs+)2 + i2 + k3. (12) 

The expression for the energy of the system E = i(P’ + P-)[16], is the same as in the 

usual treatment [ 111. Th is can be seen by summing equations (10) and (11) and changing 

integration variables using $ = dk3 

J@f+ssw+F * 
This equality of energies is a nice check 

w on the present result because a manifestly covariant solution of the present problem, with 

the usual energy, has been obtained[l7]. M oreover, setting g to zero reproduces the field 

equation for 4, as is also usual. Rotational invariance, here the relation P+ = P-, follows 

as the result of minimizing the energy per particle at fixed volume with respect to kF, or 

minimizing the energy with respect to the volume[l6]. The parameters g,“M2/mz = 195.9 

and g,“M”/mz = 267.1 have been chosen [18] so as to give the binding energy per particle 

-- 
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of nuclear matter as 15.75 MeV with i&=1.42 Fm-‘. In this case, solving the equation for 

q5 gives M + g,+ = 0.56 1M. 

IV. NUCLEAR PLUS MOMENTUM DISTRIBUTIONS 

The use of Eq. (11) and these parameters leads immediately to the result that only 

65Yo of the nuclear plus momentum is carried by the nucleons; the remainder is carried 

by the mesons. This is a much smaller fraction than is found in typical nuclear binding 

models[2, 31. Th e nucleonic momentum distribution which is the input to calculations of 

the nuclear structure function of primary interest here. This function can be computed 

from the integrand of Eq.(ll). The probability that a nucleon has plus momentum Ic+ is 

determined from the condition that the plus momentum carried by nucleons, P$, is given by 

P,$/A = j-d/t+ k+f(k+), h w ere A = ~BQ. It is convenient to use the dimensionless variable 

y = $ with ii8 = M - 15.75 MeV. Then Eq.(ll) and simple algebra leads to the equation 

. 

f(y) = ;gyy+ - yyyy - y-) 
k2 

$ - (3 - y)” , 
F 1 (13) 

where y * E EFflcF and EF = 
M $; + (M +gs+)2. S imilarly the baryon number distribu- 

tion f~(y) (number of baryons per y, normalized to unity) can be determined from the 

expectation value of T,LJ+$J. The result is 

“MY) = gB(Y+ - YMY - Y-j 

[(I + &)(!$ - ($ - Y)“) - $i$ - ($ - y)‘)] , (14 

which is different than f(y). 

The nuclear deep inelastic structure function, F~A can be obtained from the light front 

distribution function f(y) and the nucleon structure function FIN using the relation[3] 

Fza(s)= 
A I ~Yf(Y)hwY)7 

where x is the Bjorken variable computed using the nuclear mass divided by A (fi): J: = 

Q2/21Mv. This formula is the expression of the convolution model in which one means to 

-- 
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assess, via f(y), only the influence of nuclear binding. Consider the present effect of having 

the average value of y equal to 0.65. Frankfurt and Strikman[3] use Eq. (15) to argue that an 

average of 0.95 is sufficient to explain the 15% depletion effect observed for the Fe nucleus. 

One may also compare the 0.65 fraction with the result 0.91 computed[l9] for nuclear matter, 

including the effects of correlations, using equal time quantization. The present result then 

represents a very strong binding effect, even though this infinite nuclear matter result can 

not be compared directly with the experiments using Fe targets. One might think that the 

mesons, which cause this binding, would also have huge effects on deep inelastic scattering. 

It is necessary to determine the momentum distributions of the mesons. The mesons 

_ contribute 0.35 of the total nuclear plus momentum, but we need to know how this is . 

distributed over different individual values. The paramount feature is that 4 and VP are the 

same constants for any and all values of the spatial coordinates X-, z~. This means that the 

related momentum distribution can only be proportional to a delta function setting both 
__ 

the plus and I components of the momentum to zero. This result is attributed to the mean 

field approximation, in which the meson fields are treated as classical quantitates. Thus 

the finite plus momentum can be thought of as coming from an infinite number of quanta, 

each carrying an infinitesimal amount of plus momentum. A plus momentum of 0 can only 

be accessed experimentally at “CBj = 0, which requires an-infinite amount of energy. Thus, 

in the mean field approximation, the scalar and vector mesons can not contribute to deep 

inelastic scattering. The usual term for a field that is constant over space is a zero mode, 

and the present Lagrangian provides a simple example. For finite nuclei, the mesons would 

carry a very small momentum of scale given by the inverse of the nuclear radius, under the 

mean field approximation. If fluctuations were to be included, the relevant momentum scale 

would be of the order of the inverse of the average distance between nucleons (about 2 Fm). 
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V. SUMMARY AND ASSESSMENT 

The Lagrangian of Eq. (1) and its evaluation in mean field approximation for nuclear 

matter have been used to provi.de a simple but semi-realistic example. It would be premature 

to cumpare the present results with data. The specific numerical results of the present work 

are & less relevant than the emergent central feature that the mesons responsible for nuclear 

binding need not be accessible in deep inelastic scattering. Another interesting feature is 

thatf(Y) and fB(Y) are not the same functions. 

Adore generally, we view the present model as being one of a class of models in which the 

meart field plays an important role. For such models nuclei would have constituents that 

contibute to the momentum sum rule but do not contribute to deep inelastic scattering. 

Thus the predictive and interpretive power of the momentum sum rule is vitiated. 
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