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1 Introduction

The concept of the \number of constituents" of a relativistic bound state, such as

a hadron in quantum chromodynamics, is not only frame-dependent, but its value

can uctuate to an arbitrary number of quanta. Thus when a laser beam crosses a

proton at �xed \light-cone" time � = t + z=c = x0 + xz, an interacting photon can

encounter a state with any given number of quarks, anti-quarks, and gluons in ight

(as long as nq � nq = 3). The probability amplitude for each such n-particle state

of on-mass shell quarks and gluons in a hadron is given by a light-cone Fock state

wavefunction  n=H(xi; ~k?i; �i), where the constituents have longitudinal light-cone

momentum fractions

xi =
k+i
p+

=
k0 + kzi
p0 + pz

;
nX
i=1

xi = 1 ; (1)

relative transverse momentum

~k?i ;
nX
i=1

~k?i = ~0? ; (2)

and helicities �i: The ensemble f n=Hg of such light-cone Fock wavefunctions is a key

concept for hadronic physics, providing a conceptual basis for representing physical

hadrons (and also nuclei) in terms of their fundamental quark and gluon degrees of

freedom [1].

The light-cone Fock expansion is de�ned in the following way: one �rst constructs

the light-cone time evolution operator P� = P 0�P z and the invariant mass operator

HLC = P�P+ � P 2

?
in light-cone gauge A+ = 0 from the QCD Lagrangian. The

total longitudinal momentum P+ = P 0 + P z and transverse momenta ~P? are con-

served, i.e. are independent of the interactions. The matrix elements of HLC on the

complete orthonormal basis fjn >g of the free theory H0

LC = HLC(g = 0) can then

be constructed. The matrix elements hn jHLC jmi connect Fock states di�ering by

0, 1, or 2 quark or gluon quanta, and they include the instantaneous quark and glu-

on contributions imposed by eliminating dependent degrees of freedom in light-cone

gauge.

In practice it is essential to introduce an ultraviolet regulator in order to limit the

total range of hn jHLC jmi, such as the \global" cuto� in the invariant mass of the

2



free Fock states:

M2

n =
nX
i=1

k2
?
+m2

x
< �2

global
: (3)

One can also introduce a \local" cuto� to limit the change in invariant mass jM2

n �

M2

mj < �2

local
which provides spectator-independent regularization of the sub-divergences

associated with mass and coupling renormalization.

The natural renormalization scheme for the coupling is �V (Q), the e�ective charge

de�ned from the scattering of two in�nitely-heavy quark test charges. The renormal-

ization scale can then be determined from the virtuality of the exchanged momentum,

as in the BLM and commensurate scale methods [2, 3, 4].

In the discretized light-cone method (DLCQ) [5, 6] the matrix elements
D
n jH�)

LC jm
E
,

are made discrete in momentum space by imposing periodic or anti-periodic bound-

ary conditions in x� = x0�xz and ~x?. Upon diagonalization of HLC , the eigenvalues

provide the invariant mass of the bound states and eigenstates of the continuum. The

projection of the hadronic eigensolutions on the free Fock basis de�ne the light-cone

wavefunctions. For example, for the proton,

j pi =
X
n

hn j pi jni

=  
(�)

3q=p(x;
~k?i; �i) j uudi (4)

+ 
(�)

3qg=p(xi;
~k?i; �i) j uudgi+ � � �

The light-cone formalism has the remarkable feature that the  
(�)

n=H(xi;
~k?i;�c) are

invariant under longitudinal boosts; i.e., they are independent of the total momentum

P+, ~P? of the hadron. Given the  
(�)

n=H; we can construct any electromagnetic or elec-

troweak form factor from the diagonal overlap of the LC wavefunctions[7]. Similarly,

the matrix elements of the currents that de�ne quark and gluon structure functions

can be computed from the integrated squares of the LC wavefunctions [8].

In general, any hadronic amplitude such as quarkonium decay, heavy hadron de-

cay, or any hard exclusive hadron process can be constructed as the convolution of

the light-cone Fock state wavefunctions with quark-gluon matrix elements [9]

MHadron =
Y
H

X
n

Z nY
i=1

d2k?

nY
i=1

dx �

 
1 �

nX
i=1

xi

!
�

 
nX
i=1

~k?i

!

� 
(�)

n=H(xi;
~k?i;�i)M

(�)

q;g : (5)
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Here M(�)

q;g is the underlying quark-gluon subprocess scattering amplitude, where

the (incident or �nal) hadrons are replaced by quarks and gluons with momenta

xip
+, xi~p? + ~k?i and invariant mass above the separation scale M2

n > �2. The

LC ultraviolet regulators thus provide a factorization scheme for elastic and inelastic

scattering, separating the hard dynamical contributions with invariant mass squared

M2 > �2

global
from the soft physics with M2 � �2

global
which is incorporated in the

nonperturbative LC wavefunctions. The DGLAP evolution of parton distributions

can be derived by computing the variation of the Fock expansion with respect to

�2

global
[9].

The simplest, but most fundamental, characteristic of a hadron in the light-cone

representation, is the hadronic distribution amplitudes [9], de�ned as the integral over

transverse momenta of the valence (lowest particle number) Fock wavefunction; e.g.

for the pion

��(xi; Q) �
Z
d2k?  

(Q)

qq=�(xi;
~k?i; �) (6)

where the global cuto� �global is identi�ed with the resolution Q. The distribution

amplitude controls leading-twist exclusive amplitudes at high momentum transfer,

and it can be related to the gauge-invariant Bethe-Salpeter wavefunction at equal

light-cone time � = x+. The logQ evolution of the hadron distribution amplitudes

�H(xi; Q) can be derived from the perturbatively-computable tail of the valence light-

cone wavefunction in the high transverse momentum regime [9].

Light-cone quantization methods have had remarkable success in solving quantum

�eld theories in one-space and one-time dimension|virtually any (1+1) quantum �eld

theory can be solved using DLCQ. A beautiful example is \collinear" QCD: a vari-

ant of QCD(3 + 1) de�ned by dropping all of interaction terms in HQCD
LC involving

transverse momenta [10]. Even though this theory is e�ectively two-dimensional, the

transversely-polarized degrees of freedom of the gluon �eld are retained as two scalar

�elds. Antonuccio and Dalley [11] have used DLCQ to solve this theory. The diag-

onalization of HLC provides not only the complete bound and continuum spectrum

of the collinear theory, including the gluonium states, but it also yields the complete

ensemble of light-cone Fock state wavefunctions needed to construct quark and gluon

structure functions for each bound state. Although the collinear theory is a drastic

approximation to physical QCD(3 + 1), the phenomenology of its DLCQ solutions

demonstrate general gauge theory features, such as the peaking of the wavefunction-
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s at minimal invariant mass, color coherence and the helicity retention of leading

partons in the polarized structure functions at x! 1.

2 Applications of Light-Cone Methods to QCD

Phenomenology

Regge behavior.

The light-cone wavefunctions  n=H of a hadron are not independent of each other,

but rather are coupled via the equations of motion. Recently Antonuccio, Dalley and

I [12] have used the constraint of �nite \mechanical" kinetic energy to derive\ladder

relations" which interrelate the light-cone wavefunctions of states di�ering by 1 or 2

gluons. We then use these relations to derive the Regge behavior of both the polarized

and unpolarized structure functions at x ! 0, extending Mueller's derivation of

the BFKL hard QCD pomeron from the properties of heavy quarkonium light-cone

wavefunctions at large NC QCD [13].

High momentum transfer exclusive reactions.

Given the solution for the hadronic wavefunctions  (�)

n with M2

n < �2, one can con-

struct the wavefunction in the hard regime with M2

n > �2 using projection operator

techniques [9]. The construction can be done perturbatively in QCD since only high

invariant mass, far o�-shell matrix elements are involved. One can use this method

to derive the physical properties of the LC wavefunctions and their matrix elements

at high invariant mass. Since M2

n =
Pn

i=1

�
k2
?
+m2

x

�
i

, this method also allows the

derivation of the asymptotic behavior of light-cone wavefunctions at large k?, which

in turn leads to predictions for the fall-o� of form factors and other exclusive matrix

elements at large momentum transfer, such as the quark counting rules for predict-

ing the nominal power-law fall-o� of two-body scattering amplitudes at �xed �cm:

The phenomenological successes of these rules can be understood within QCD if the

coupling �V (Q) freezes in a range of relatively small momentum transfer [14].

Analysis of di�ractive vector meson photoproduction.

The light-cone Fock wavefunction representation of hadronic amplitudes allows a

simple eikonal analysis of di�ractive high energy processes, such as �(Q2)p! �p, in

terms of the virtual photon and the vector meson Fock state light-cone wavefunctions
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convoluted with the gp! gp near-forward matrix element [15]. One can easily show

that only small transverse size b? � 1=Q of the vector meson wavefunction is involved.

The hadronic interactions are minimal, and thus the �(Q2)N ! �N reaction can

occur coherently throughout a nuclear target in reactions such as without absorption

or shadowing. The �A! �A process thus provides a natural framework for testing

QCD color transparency [16].

Structure functions at large xbj.

The behavior of structure functions where one quark has the entire momentum re-

quires the knowledge of LC wavefunctions with x! 1 for the struck quark and x! 0

for the spectators. This is a highly o�-shell con�guration, and thus one can rigor-

ously derive quark-counting and helicity-retention rules for the power-law behavior of

the polarized and unpolarized quark and gluon distributions in the x ! 1 endpoint

domain. It is interesting to note that the evolution of structure functions is minimal

in this domain because the struck quark is highly virtual as x! 1; i.e. the starting

point Q2

0
for evolution cannot be held �xed, but must be larger than a scale of order

(m2 + k2
?
)=(1 � x) [8].

Intrinsic gluon and heavy quarks.

The main features of the heavy sea quark-pair contributions of the Fock state expan-

sion of light hadrons can also be derived from perturbative QCD, since M2

n grows

with m2

Q. One identi�es two contributions to the heavy quark sea, the \extrinsic"

contributions which correspond to ordinary gluon splitting, and the \intrinsic" sea

which is multi-connected via gluons to the valence quarks. The intrinsic sea is thus

sensitive to the hadronic bound state structure [17]. The maximal contribution of

the intrinsic heavy quark occurs at xQ ' m?Q=
P

im? where m? =
q
m2 + k2

?
; i.e.

at large xQ, since this minimizes the invariant mass M2

n. The measurements of the

charm structure function by the EMC experiment are consistent with intrinsic charm

at large x in the nucleon with a probability of order 0:6 � 0:3% [18]. Similarly, one

can distinguish intrinsic gluons which are associated with multi-quark interactions

and extrinsic gluon contributions associated with quark substructure [19]. One can

also use this framework to isolate the physics of the anomaly contribution to the

Ellis-Ja�e sum rule.

Rearrangement mechanism in heavy quarkonium decay.

It is usually taken for granted that a heavy quarkonium state such as the J= decays to

6



light hadrons via the annihilation of the heavy quark constituents to gluons. However,

as Karliner and I [20] have recently shown, the transition J= ! �� can also occur by

the rearrangement of the cc from the J= into the jqqcc > intrinsic charm Fock state

of the � or �. On the other hand, the overlap rearrangement integral in the decay

 0 ! �� will be suppressed since the intrinsic charm Fock state radial wavefunction

of the light hadrons will evidently not have nodes in its radial wavefunction. This

observation provides a natural explanation of the long-standing puzzle why the J= 

decays prominently to two-body pseudoscalar-vector �nal states, whereas the  0 does

not.

Asymmetry of Intrinsic heavy quark sea.

As Ma and I have noted [21], the higher Fock state of the proton juudss > should

resemble a jK� > intermediate state, since this minimizes its invariant mass M. In

such a state, the strange quark has a higher mean momentum fraction x than the

s. [22, 21] Similarly, the helicity intrinsic strange quark in this con�guration will

be anti-aligned with the helicity of the nucleon [21]. This Q $ Q asymmetry is a

remarkable, striking feature of the intrinsic heavy-quark sea.

Direct measurement of the light-cone valence wavefunction.

Di�ractive multi-jet production in heavy nuclei provides a novel way to measure the

shape of the LC Fock state wavefunctions. For example, consider the reaction [23, 24]

�A! Jet1 + Jet2 +A0 (7)

at high energy where the nucleus A0 is left intact in its ground state. The transverse

momenta of the jets have to balance so that ~k?i+~k?2 = ~q? < R�1

A ; and the light-cone

longitudinal momentum fractions have to add to x1+x2 � 1 so that �pL < R
�1

A . The

process can then occur coherently in the nucleus. Because of color transparency; i.e.

the cancellation of color interactions in a small-size color-singlet hadron; the valence

wavefunction of the pion with small impact separation will penetrate the nucleus with

minimal interactions, di�racting into jet pairs [23]. The x1 = x, x2 = 1�x dependence

of the di-jet distributions will thus reect the shape of the pion distribution amplitude;

the ~k?1 � ~k?2 relative transverse momenta of the jets also gives key information on

the underlying shape of the valence pion wavefunction. The QCD analysis can be

con�rmed by the observation that the di�ractive nuclear amplitude extrapolated to

t = 0 is linear in nuclear number A, as predicted by QCD color transparency. The
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integrated di�ractive rate should scale as A2=R2

A � A4=3. A di�ractive experiment

of this type is now in progress at Fermilab using 500 GeV incident pions on nuclear

targets [25].

Data from CLEO for the � ! �0 transition form factor favor a form for the pion

distribution amplitude close to the asymptotic solution [9] �asympt

� (x) =
p
3f�x(1�x)

to the perturbative QCD evolution equation [26, 27, 14] It will be interesting to see

if the di�ractive pion to di-jet experiment also favors the asymptotic form.

It would also be interesting to study di�ractive tri-jet production using proton

beams pA ! Jet1 + Jet2 + Jet3 + A0 to determine the fundamental shape of the

3-quark structure of the valence light-cone wavefunction of the nucleon at small

transverse separation. Conversely, one can use incident real and virtual photons:

�A! Jet1+Jet2+A
0 to con�rm the shape of the calculable light-cone wavefunction

for transversely-polarized and longitudinally-polarized virtual photons. Such experi-

ments will open up a remarkable, direct window on the amplitude structure of hadrons

at short distances.
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