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Abstract 

MENLO-PARC is a general purpose Monte Carlo program for calculating the next-to- 
leading order O(a:) corrections to four-jet quantities in electron-positron annihilation. 

Any quantity which can be constructed out of the four jet momenta and which is in- 
sensitive to the quark helicities and the beam orientation can be computed. Both, 

virtual photon and 2 intermediate states (and y 2 interference) are included, hence 
. the quantities can be computed for arbitrary center of mass energies. The cancellation 

of real and virtual singularities has been achieved using a general version of the sub- 
traction method. The only approximation which has been made is the neglect of the 

light quark masses and terms which are suppressed by l/m&, or higher powers of the 
top quark mass. 
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PROGRAM SUMMARY 

Title of program: MENLO-PARC1 

Catalogue number: ?? 

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland 
(see application form in this issue) 

Licensing provisions: none 

_ Computer and operating system: Any system with a standard Fortran 90 compiler 

Programming language used: Fortran 90 

Memory required to execute with typical data: 1028 Kbytes 

Number of bits in a word: ?? 

Has the code been vectorised ?: No 

Number of lines in distributed program, including test data, etc: 10926 

Keywords: electron-positron annihilation, next-to-leading order corrections, four jet, sub- 
traction method 

Nature of physical problem: The expansion in the strong coupling constant of any four-jet 
quantity in electron-positron annihilation starts only at O(Q~). As a result, the dependence 
of the theoretical predictions on the renormalization scale is very large. The only reliable 
way to reduce this dependence and, therefore, get more precise predictions is to include the 
full next-to-leading order correction. 

Method of solution: Recently, the calculations of the one-loop amplitudes for electron- 
. 

positron annihilation into four partons have been completed, using the helicity method and 
color ordering [1,2]. S ince the tree-level amplitudes with five partons in the final state have 
also been calculated by several groups a few years ago, all amplitudes which contribute 
to the next-to-leading order cross section are now available. A general version [3] of the 
subtraction method has been used to cancel the real and virtual singularities for arbitrary 
four-jet quantities. The integrand has been split into pieces which contain only a very 
limited number of square root singularities. Each of these contributions can then be reliably 
integrated. 

Typical running time: Between hours and months, depending on the nature of the calcula- 
tion and the desired accuracy of the result. 

References: [l] Z. Bern, L. Dixon and D. Kosower, preprint SLAC-PUB-7529 
[2] Z. Bern, L. Dixon, D. Kosower and S. Weinzierl, Nucl. Phys. B489 (1997) 3 
[3] S. Frixione, Z. Kunszt and A. Signer, Nucl. Phys. B467 (1996) 399 
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LONG WRITE-UP 

Several general purpose Monte Carlo programs have been written for the calculation 
of next-to-leading order corrections to three-jet events in electron-positron annihilation [l]. 
They have proven to be extremely useful for comparing theory with experiment. For instance, 
several measurements of the strong coupling constant CY, would have been impossible without 
these programs. 

In the case of four-jet events, the situation was much less satisfactory. Until recently, 
only tree-level predictions were available [a]. H owever, since the perturbative expansion 
of these quantities starts only at O(c$) these results depend strongly on the choice of the 
renormalization scale. Thus, only for normalized quantities such as angular distributions [33 
could more or less reliable theoretical predictions be obtained. These quantities do not suffer 
from the scale dependence, since the overall normalization does not enter the prediction. 

In view of the importance of four-jet events at LEP2 and of the existing large four-jet 
data samples at the Z-pole it is certainly highly desirable to be able to get next-to-leading 
order predictions. First results have been presented in ref.[4]. They have been obtained with 
an earlier version of MENLO-PARC, which neglected subleading in color contributions. In 
the current version of the program all these subleading pieces are implemented and some 
result have been reported in ref.[5]. 

In theories with massless gauge bosons and in particular in QCD, the calculation of next- 
to-leading order corrections generally requires the cancellation of real and virtual singulari- 
ties. It has become standard to regularize these singularities with dimensional regularization, 
i.e. by performing the calculation in D = 4 - 26 space-time dimensions. As a result, the 
infrared singularities show up as poles l/c; and after the cancellation of these poles, the limit 
e + 0 can be safely made and, thus, the physical result is recovered. 

One possible way to carry through this program is to use the subtraction [6] method. 
Several variations [7, 8] of this method have been developed which allow the computation 
of arbitrary next-to-leading order corrections once the corresponding amplitudes are known. 
The basic idea is the following. In order to make the phase-space integration of the real 
contribution finite, all singular limits are subtracted from the initial integrand. Of course, 
these subtracted pieces have to be added back. But since their analytic structure is simple, 
the phase space integration of these pieces can be done partly analytically. Thereby, the 
poles in E are obtained and can be cancelled against the virtual poles. The remaining finite 
integrations can all be done numerically. 

It is important to note that although the remaining integrals are finite, the integrands are 
not. In fact, one is usually left with square root singularities in the integrand. Such square 
root singularities can appear in many phase space points and, thus, require some care upon 
numerical integration. In the method used in MENLO-PARC [7] this has been achieved by 
decomposing the integrand into pieces, which contain only a very limited number of these 
singularities. Then, each contribution can be integrated separately in a reliable way. It has 
to be sfressed that only the general structure of an infrared safe quantity has to be used to 
obtain this partitioning and that there is no loss in generality! In section 1 a brief overview 
of this method will be given. 

The amplitudes which are needed for the calculation of four-jet quantities in electron- 
positron annihilation at tree level are e+e- + tjqgg and e+e- --+ qqij’q’ [6]. For the one-loop 
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corrections to four-jet events we need not only the one-loop corrections to the amplitudes 
mentioned above [9, 10, 111, but also the tree-level amplitudes of the processes e+e- + 44999 
and e+e- t ijqq’q’g [12, 131. For the tree-level amplitudes, MENLO-PARC uses the results 
of ref. [la] and for the one-loop amplitudes the results of refs. [lo, ll] are used. All these 
results have been obtained with the help of color ordering and the helicity method. The 
squaring of the amplitudes will always be done numerically. 

1 A general version of the subtraction method 

There are several general methods available [14, 7, 81 t o obtain the cancellation of the soft 
singularities for next-to-leading order Monte Carlo programs. By general we mean that as 
soon as all needed amplitudes are known, the application of these algorithms is straightfor- 
ward and in particular, no integrals have to be computed any more. This section gives a very 
short summary of the method developed in [7], specified to @ processes since MENLO-PARC 
is a straightforward implementation of this method. The reader is referred to [7] or the doc- 
umentation of the program for more details. 

Any next-to-leading order jet cross section is a sum of real and virtual contributions 

da(l) = da(‘) + da(“) (1) 

where 

da@-)(p,,pz; {J}l,m) = c $A4(“+1’o)(~,,~2; {%,m+l; b>l,m+d 
IR R 

S(m+ly{&n+l; {J)l,m> 4h+lwLm+d 

(2) 

(3) 

In these equations {Ic}r,,+i G {& . . . km+1 } and {~}i,,+~ denote the momenta and flavors 
of the outgoing partons respectively. The momenta of the incoming leptons pl and p2 and 
the jets { J}l,m are often suppressed in the notation. The m + 1-parton final state squared 
tree-level matrix elements, summed (averaged) over final (initial) spin and including the 
flux factor are denoted by M(“+‘r’). Similarly, M( m~l) denotes the next-to-leading order 
contribution to the m-parton squared matrix elements, i.e. the interference term of the 
tree-level and one-loop amplitude. The sum is over all real (1~) and virtual (IV) processes 
and the dependence of M on the process is shown via its dependence on the final state 
flavor, while the symmetry factors szR and slV are shown explicitly. Finally, S denotes the 

- measurement function, which will be discussed in the following subsection and by ddm we 

denote the m-body phase space in D = 4 - 2~ dimensions, 

( 
m+l 

d&n E (27+%@7 PI + ~2 - c h 

l=l 

m+l 

s (274%(D) PI + ~2 - c h 

l=l 

3 

(4) 
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E; = lc! denotes the energy of parton i. 

1 .l The measurement function 

The measurement function 28”) specifies which quantity is calculated. The superscript (m) 
indicates how many partons enter this function. For an m-jet quantity at next-to-leading or- 
der only 28”) and S(“+i) p ay a role. In order to get the cancellation of singularities between 1 
the real and virtual contributions the measurement function has to fulfill the requirements 
of infrared safety. That is, S should be independent of whether or not a final state parton is 

- split into two collinear partons and it should be independent of whether or not a soft parton 
is added to the final state. These requirements translate into 

~~~S(“+l)({k)l,m+l > = S+w>!!m+1) (5) 

l~,pm+‘)({&n+l) = s(“)({qy$+,, kj) (6) 

where we introduced the notation {Ic}f!m+l E {Ici . . . km+i}\{k;}. Note that eqs.(5) and (6) 
imply that 

~$pq{~}l,m) = l@Sq{k)l,m) = 0 (7) 

for any m-jet quantity. 
Obviously, any measurement function can be decomposed according to 

$“+I) - _ c $.y+l) 

ii 
(8) 

where the sum~is over all pairs {ij}, i # j. Si(,“+i) vanishes in all phase space regions where 
the squared amplitude has a singularity except for illj and i + 0. This decomposition of the 

* measurement function leads to a decomposition of the real cross section 

&A’) zz c da!;) (9) 
id 

with 

where da$) is singular only for iI[j and i + 0. 

1.2 The virtual cross section 

The calculation of the virtual contributions requires the knowledge of the one-loop m-parton 
matrix elements. In spite of the complexity of these amplitudes, the structure of the divergent 

- terms is very simple, 

M(“J)( (k)l,m; {&n> = m - 

+kgln--- ‘lcp . ‘, M;T~‘)( { k}l,m; {a}l,,) + A@$( {kh,m; hhn> 
PA=1 P2 

4 
_ 

(11) 
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In this equation, ,LL is the renormalization scale and the factor -CI. E (4~)’ I’(1 + c)I’(l - 
c)2/r(1-2 ) t t na urally results from the one-loop integrals. The M$y’O), usually called color- 
linked Born squared amplitudes2, are symmetric in p and 4. In eq. (11) we also made use of 
the flavor dependent quantities C(u,) and $a,); for the SU(N,) color group, they are 

C(g) = CA = NC Y(S) = 
llCA - 4TFNf 

6 

where TF = l/2 and Nf is the number of quark flavors. All the non-divergent terms in 

eq. (11) were collected in Mgil). Usually, the calculations are carried out using helicity 
amplitude methods in the dimensional reduction (DR) SC h eme and, thus, they have to be 
converted into the conventional dimensional regularization (CDR) scheme [ 151. 

1.3 Decomposition of the real cross section 

The decomposition of the real contribution into single singular pieces, as discussed above, 
allows for a very clear disentangling of the soft and collinear singularities. To illustrate this 
point, consider a certain real process IR. The contribution of this process to dal;‘), as defined 
in eq.(lO), is given by 

As a first step, da? can be decomposed into a piece da,‘jlyts) containing the soft singularity 
. i + 0, a piece daij IR’(‘) containing the collinear singularity i]]j and a piece da$‘(f), which is 

IRdf) free of any singularity. However, since d~ij contains subtractions, it will generally have 
square root singularities. Thus, the numerical integration can be quite non-trivial. In fact, 
the whole purpose of splitting up the full cross section into single singular pieces da? is done 
in order to be able to control the numerical integration of this part of the cross section. 

1.3.1 Soft contribution 

For the separation of the soft singularity it is convenient to use a set of independent variables 
which contains the energy scale & of the parton i. The phase space factor in 4 - 2~ dimensions 
will then contain a factor [f-2’ and the squared matrix element will have a singularity in the 
limit & t 0. The basic idea is to shuffle this singularity into the phase space by multiplying 

_ the squared matrix element by [;” and, therefore, render it finite in the soft limit. Obviously, 
this has to be corrected by replacing [l-“’ --+ &1-2’ in the phase space. Then, by making 
use of the identity 

p-2 = -gq&) + ($) - 2t (y) + (+2) 

z c 2 c 
(15) 

2Note that the. normalization used here is different from [7]. 
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the desired separation has been achieved. Indeed, we only have to define dafr’(“) to be this 

part of da? which is obtained by taking the first term in eq.(15). The remaining part of 

d@, i.e. the one which is obtained by taking the last two terms of eq.(15) will be called 

da$‘(“s) and still contains the collinear singularity. In eq.( 15), tcut is an arbitrary parameter 
satisfying the condition 0 < tcut _ < 1, and the distributions on the r.h.s. are defined as 
follows: 

(16) 

(17) 

Thanks to the S([i) f unction, all phase space integrations associated with parton i can 

be done analytically in daij zR’(s). Performing these integrations and summing over the labels 
i and j we end up with 

&,~Rh) = 
2 S(“)( { k}l,m> dbn( { k>l,m> (18) 

1 1 -- 
U 

Sk 2 pq 
Z;;” + I;?‘) M;yj’)( { k}~,,; {a}~,,) 

Here, slV is the symmetry factor of the process 1~ which is defined to be the process IR with 
one gluon removed. The explicit form of the integrals is [7] 

. 

(19) 

where S is the squared center of mass energy. Note that besides the expected soft poles 
there are some spurious poles, proportional to lntCUt which will get cancelled by similar 
poles coming from the collinear region. 

After the cancellation of the singularities, there remains a finite contribution from d&R?(“). 
It can be obtained from eq.(18) by simply setting Zpq tdiv) to zero. After summation over all 
processes we find 

daE = ~$-E,, z@‘“~) Mf.,;loJ(Iv) S(“)( { k}l,m; { J}~,rn> dbn( { k>l,m> (21) 
” P<q 

e - 

1.3.2 Collinear contribution 

We still have to separate the collinear singularity iI13 . in daffiytns). This is done in a similar 
way as in the soft case. We choose a set of independent zariables which contains yi, the 
cosine of the angle between partons i and j. The collinear singularity of the squared matrix 
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element in the limit y; + 1 is moved into the phase space by multiplying the matrix element 
with (1 - y;). A s a result, the phase space contains a factor (1 - yi)-l-c. Using the identity 

(1 - yi)-l-E = -F&(1 - yj) + r’ 
( ) 

+ O(c) 
3 6 

(22) 

JR,(f) which holds for 0 < S 5 2, we end up with da,ljR’(““) = da,‘$‘(“) + daij . 
IRdc) Again, the integrations associated with the partons i and j in daij can be done ana- 

lytically. Performing this integration and summing over all pairs i, j and all real processes 
we find the expected collinear singularities which cancel against the virtual poles as well 
as spurious poles which cancel against those spurious poles which come from the soft part. 
After this cancellation we are left with the finite piece 

do~=-~~~7 t(ap)M(“~o)(lv) S(m)({k}l,m; {J}l,m) d&n({k}l,,) 
Iv p V 

where 
Shg 

2(uj) = $uj) In p - ~‘(a~) _ 2C(p) ln A..- ln ss’i’cut 

t cut 2P2 

We defined & = 2 Ej /a and 

y’(g) = ;C, - TC, - ;TFNf 

2r2 
y’(q) = fc, - 3CF 

. 1.3.3 The remaining finite contribution 

Collecting all terms which are neither included in da$‘(“) nor in da;‘jx’(c) we find 

dogptf) = (;), (+--)& (tf(1 - y,)~M(“+‘~‘)({k}l,~+l; ihn+l)) 

x Si(,“+“( { k}l,,+l) df$$ 

(23) 

(24) 

(25) 

(26) 

(27) 

where d6!fil is a slightly modified integration over the phase space. The detailed form of 
this phase-space integration is not needed for the present discussion. The only important 
fact is that the integral is well defined and finite. 

1.4 Numerical implementation 

Finally we are in the position to put everything together and give a recipe for the calculation 
of the he&-to-leading order corrections to any jet quantity. As already mentioned several 
times, there are several contribution which have to be included, namely dog, doti, dcc 

and do(f). Of course, all four parts’ are finite. Also, they may depend on the unphysical 
parameters 6 and tcut, however,. this dependence has to cancel in the final answer. In the 
remainder of this subsection we briefly comment on all four parts. 
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1.4.1 The virtual part 

Once the one-loop amplitudes are known, this part is simple to handle. All we have to 
calculate is the one-loop correction to the matrix element squared. This is the interference 
of the born amplitude with the one-loop amplitude. Thus, we need to numerically calculate 

dot! = 2 z $Mk”(r,) S+)({ k}l,m; { J}l,m) d$,( { k}l,m) (28) 
V 

where the sum is over all virtual processes and M&?) has been defined in eq.( 11). Thanks 
to the measurement function, eq.(7), the integrand is finite over the whole phase space and, 
therefore, the numerical integration can easily be done. 

1.4.2 The soft and collinear part 

Our starting point is eq.(21). I n order to get the soft part we have to integrate doE over 
the phase space. Again, the measurement function makes this expression finite and thus the 
integration trivial. Very much the same comments apply to the collinear part. We merely 
have to use eq.(23) instead of eq.(21). 

Since the structure of the virtual, soft and collinear part is very similar, it is convenient 
to put these three contributions together. Thus we define 

(29) 

. 
x [Mp;‘)(Iv) - c ~(u~)M(~~~)(Iv) + cZ;y) M;~lo)(r,)] 

P P<LJ 

1.4.3 The finite part 

This is the only part which is problematic - the splitting of the cross section into several 
pieces has been performed solely to be able to control the numerics in this part of the 
computation. We are aiming to integrate numerically 

(30) 

where dgfP’(f) * 
23 1s given in eq.(27). A s noted previously, this integrand contains many square 

root singularities, but each single da,‘jRytf) has at most two problematic regions, namely when 
- parton i becomes soft or collinear to parton j. Writing out explicitly the distributions which 

enter into eq.(27) we obtain 
m - 

(i), ($--Jm/,,) = (31) 

.f(<i, Yj, * * *) 7 8(6zut - ti)f(O, Yj, * * *) 

- d(S - 1 + yj)f([i, 1, * * a) + @(&cut - ti)O(& - 1 + Yj)f(O, l,. . .> 
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This defines the subtracted function (squared matrix element). Since the problematic regions 
are well known and their number is very limited an adaptive Monte Carlo can do these 
integrations in a reliable way. 

Now we are prepared to write the full next-to-leading order correction to a jet cross 
section: 

,-J&) = da&‘) + da(f) 
(32) 

As a final remark we note that usually not all daij 1R’(f) have to be calculated. In fact, 

due to Bose symmetry dgij 1R’(f) depends only on the flavors of the partons i and j. This 
- results in a big reduction of computing time. Indeed, if we consider e.g. the real process 

@ --+ ~(3>~(4)s(5>g(6>>s(7) we have to compute only da$fttf), da.$‘(f), do$‘(f) and da$‘(f). 

2 Organization and usage of the program 

In this section a brief overview of the potential uses and restrictions of the program is given. 
For proper documentation and detailed instructions on how to use it, the reader is referred 
to the documentation. 

2.1 The modules 

The whole program is split up into several modules and two main programs, MENLO-PARC 
and MENLO. The former should be used for the calculation of single numbers (e.g. the four 
jet fraction for a certain jet definition and a certain choice of ycut) whereas the latter has to 
be used for the calculation of distributions. In Fig. 1 a schematic diagram of the program is 
shown. 

, The module GLOBALDEF contains parameters and variables which should be easily 
accessible. 

In addition to various auxiliary functions which are needed for the calculation of the 
tree-level and one-loop amplitudes, the module FUNCTIONS also contains the definition of 
the measurement functions. 

The routines for the generation of the phase space for an arbitrary number of massless 
final state partons are programmed in the module PHASE-SPACE. 

The purpose of the modules TREE-MATEL and LOOP-MATEL is to calculate all 
needed (squared) amplitudes. In the former are the functions which are needed for the 
calculation of the four and five-parton tree-level matrix elements (taken from ref. [12]), as 
well as their soft and collinear limits. The latter contains the one-loop corrections of the 
amplitudes (taken from refs. [lo, 111). 

In the module LIMITS we find the needed soft, collinear and soft-collinear limits of the 
squared matrix elements and the measurement functions. 

The-proevious modules contain all necessary procedures for constructing an arbitrary four- 
jet quantity or distribution. The construction of this function should be done in the module 
USER. This is the only module which has to be touched by the user of the program. 

Finally, the module INTEGRANDS stores the basic functions which have to be inte- 
grated, i.e. dgg”) and da(f). These integrands are functions of a list of random numbers 
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and are ready to be integrated with VEGAS [16]. Thus th ’ e mam result of all of the above 
modules is to provide us with these integrands. 

Besides these modules the program contains a file with the integration routine VEGAS 
and two files with the main programs, MENLO-PARC and MENLO. 

2.2 How to use the program 

In electron-positron annihilation it has become standard to use cluster algorithms for defin- 
ing jets. There one has to make two choices: (1) a cluster definition which is a measure of . 

- closeness dij that determines whether two partons i and j will be merged, and (2) a recombi- 
nation scheme which is a description of how to construct the momentum of a proto-jet from 
the momenta of the two merging partons. Most of the common choices are predefined in 
the program (in the module FUNCTIONS). Th e are Durham, Jade, Geneva and Invariant y 
Mass for the cluster definition and E, EO and P for the recombination scheme. 

There are basically two classes of applications. Either the user wants to compute a 
single number (e.g. the four-jet fraction, a moment of a certain distribution, etc.) or a 
binned distribution (in the Nachtmann-Reiter angle, etc.). In the former case he should use 
MENLO-PARC, in the latter case MENLO. In any case, the only module which has to be 
touched by the user (if he is using a predefined jet definition) is the module USER. 

These two classes of applications are treated separately because the user is advised to 
use MENLO-PARC whenever possible. Since the adaption of the grid in the Monte Carlo 
integration is much more efficient if just a single number is computed, the results obtained 
with MENLO-PARC are generally more precise and more reliable than the results obtained 
with MENLO. 

In order to tell the program what to compute the user has to do two things. First, he 
has to specify which quantity he wants to calculate. This is done by programming a certain , 
function (QUANT for a single number, i.e. for use in MENLO-PARC or QUANTITY for 
one or more distributions, i.e. for use in MENLO) in the module USER. Second, the user 
has to set some input variables. 

For constructing the quantity to be calculated, the program provides the four momenta 
of the jets, jet1 . . . j et4. They are energy ordered, i.e. the energy of j et1 (j et4) is the 
largest (smallest). Thus, the user can construct any jet quantity he desires and add any cut 
he wants. As a jet quantity it will automatically be infrared safe. 

There are quantities whose perturbative expansion starts also at O(cyz) but which can not 
be constructed out of the four jet momenta such as the D-parameter or the C-parameter for 
C > 3/4. These quantities have to be expressed directly through the parton momenta. In the 
current version of MENLO-PARC such quantities can no be calculated without modifying 
several modules. 

2.3 *Input variables 

This subsection is not meant to contain a precise explanation of how to set all input variables. 
Its only purpose is to give the reader an overview of what can be done with the program. 
For more detailed instructions the user is referred to the documentation. 
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In order to define precisely what four-jet means, the user can choose the cluster algorithm 
(input variable jet-scheme) and recombination scheme (input variable ret-scheme) as well 
as the ycut value (input variable ycut). Furthermore, an additional variable ycutfive has to 
be set. This is the ycut variable which will be used for the first step in the cluster algorithm, 
i.e. for going from five to four partons. By setting ycutfive equal to one all events are 
forced to contain at most four jets, that is there are by definition no five jet events. In 
the original definition of cluster algorithms ycutfive is set equal to ycut, however, certain 
experimental analyses have made different choices. 

Any four-jet quantity can be split into various color pieces. The input variable color-part 
- specifies which color part will be calculated. At tree level, MENLO-PARC organizes this 

decomposition via the two different processes, i.e. 2q2g and 4q final state. Other possible 
choices are ertE to get the Pauli exchange terms, i.e. the E-terms of ref. [6] and axal to 
get the terms proportional to the axial coupling of the Z-boson. The one-loop correction to 
a four-jet cross section can be written as 

(1) 
g4-jet = (33) 

+oqertE + qct + qcal 1 
where N, (Nj) is the number of colors (light quark flavors). With the input variable 
color-part it is possible to pick each contribution separately. ~7~ and ayal contain the 
“light-by-glue” terms which are proportional to the vector and axial coupling of the Z-boson 
respectively. Some generic cut diagrams for these terms are shown in Fig. 2. Note that in the 

. Born case, due to Furry’s theorem the vect part vanishes under integration if a charge-blind 
quantity is computed. 

As discussed in section 1, eq.(30) th e real contribution to (a certain color part of) any 
four-jet like quantity can be decomposed into single singular pieces do;. The input variables 
i-jet and j-jet in principle allow one to choose each of these pieces separately although 
only the sum of all contributions has a physical meaning. In addition to the standard choices 
3 < i, j 5 7; i # j th ere are some special choices available which allow one to compute the 
sum of all contributions at once, as well as four- and five-jet tree-level quantities. 

Furthermore, the user can choose the renormalization scale with musqfac, the seed for 
the random number generator with ran-seed and the number of points and iterations for the 
adaption of the grid and the actual calculation. Finally, the unphysical parameters S and tcut 
as defined in eqs.(l5) and (22) can be specified. This allows one to check the independence 

- of the final result on these two parameters and thus gives a hint about the reliability of the 
error estimate given by the program. 

m - 

2.4 Approximations and restrict ions 

The whole calculation is done on the purely partonic level, i.e. parton showers and hadroniza- 
tion effects have not been included. Furthermore, the masses of the light quarks (u, d, s, c, b) 

11 .- 



have been neglected. For running at or above the Z-pole this is usually a very good approx- 
imation although the inclusion of the b-quark mass at tree-level can give corrections which 
are not always completely negligible [ 171. In th e axial part there are terms which are sup- 
pressed by the mass of the top quark mtop. In MENLO-PARC terms which are suppressed 

bY w&p are included but l/m&, terms and higher powers are neglected, assuming that 
all other kinematic invariants are smaller than mtop. Besides neglecting the quark masses, 
there is no approximation at all associated with the phase space integration. 

There are some restrictions which have to be made for the quantity to be computed. 
First of all it is assumed that it does not depend on the helicities of the quarks. Secondly, 

- it should not be sensitive to correlations between the beam directions and the final state 
hadrons. These restrictions are made primarily so that the electroweak structure can be 
factored out. 

The coupling of the intermediate gauge boson to the primary quarks or the leptons is of 
the form yfi(~ + ay5) = yp(v~P~ + DRPR). Here TJL(Z’R) is the left(right) handed coupling 
and ?L,R = f( 1 7 y5). The couplings are: 

-1 + 2sin20w 2 sin2 6~ 
eL = 

sin 20~ 
eR = 

sin 20~ 
-- 

UL = 
1 - 5 sin2 8~~7 

sin 20~ 
UR = 

f sin2 8~ 

sin 219~ 

dL = 
-1+ !jsin2Bw 

dR = 
!j sin2 6~ 

sin 26~47 sin 20~ 

(34) 

To understand the structure of the squared matrix elements better, consider the hadronic 
tensor HP”. It has to fulfill HP” = H* “p and, thus, can schematically be written as 

The H; are functions of the momentap; of the final state partons and gp” and the Levi-Civita 
tensor. H, and H, are symmetric and Hz is antisymmetric under the exchange of p and V. 
The explicit factor i in front of Hc” comes from the fact that in diagrams contributing to 
HfV there is exactly one y5 matrix present. 

Neglecting electroweak corrections and lepton polarization, the leptonic tensor is 

LPLv N (v; + aF)(prpi + p,“pg - gPVpz. pe) L1 + 2vlal itPVP”p$p~L2 (36) 

Thus, multiplying the two tensors with each other results in three non-vanishing terms, 

Tl N v;(v; + uf)Hl”L1 WI 

T2 - +I; + u;)Hf’Ll (38) 

573 N aqvqww PYpap;p; H;V L2 (39) 

The term T3 contains a factor ?‘@ ’ u p,-pe, which is odd under e +-+ l. As long as the physical 
quantity under consideration is independent under 1 +-+ f, T3 does not contribute to the cross 
section and, therefore, these terms are not implemented in MENLO-PARC. 
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Furthermore, we observe that T,/v,~ = T / 2 ui as long as both intermediate gauge bosons 
couple to the same quark loop. This can easily be seen by considering a generic cut diagram 
as shown in Fig. 3, anticommuting one 7, matrix over to the other 75 and using y?j = 1. If 
we restrict ourselves to quantities which do not depend on the quark helicities nor on the 
beam orientation, (i.e. quantities which are invariant under J! ++ i) we can simply multiply 
the squared matrix element with the overall coupling factor 

f standard = (CQ;) ‘( 2 + 4 eL + e~)(N,(& + &> + N&i + di)) IPz(s>I~ (40) 

- &L-t eR) (#&L+ uR)- kNd(dL + dR)) Re(h(s)) 

The first two terms correspond to the photon and Z-boson exchange respectively, whereas 
the third term comes from the gamma 2 interference term, and 

Pz(s) = 
S 

s - M$ + irziL!lz 
(41) 

where Mz and Iz are the mass and the width of the Z-boson. The number of light up 
(down) type flavors is denoted by N, (Nd). 

A special role is played by diagrams where the two intermediate gauge bosons couple to 
different quark loops (“light-by-glue” terms). Some examples are shown in Fig. 2. First of 
all, these are the only diagrams where the axial part differs from the vector part. Note that 
in the axial case, we get a cancellation between the two massless members of an iso-doublet. 
As a result, only the b-t doublet contribution survives, thanks to its large mass splitting. As 
mentioned previously, we keep terms proportional to l/m&, but neglect terms which are 
suppressed by higher powers of mtop. These “light-by-glue” terms get a different coupling 
constant prefactor. In the case of Tl it is 

. 

f vector = (c Q,).’ ’ ( 2 + s Ed + &)(N&L + uR)+ N&k + dR))2 IPz(s)12 (42) 

- &L + eR)~Q?(N&L +~R)+h(h +dR)) @pz(s>) 

(43) 

whereas in the case of T2 the prefactor is 

faxid = S sin2 28 l ei + e; IPz(s)12 (44 

The coupling factors are slightly modified in the case of polarized electron beams. In 
fact, the only modification in this case is 

(4 + 63) + ((1 - 644 + (1 + a>4J (45) 

(a + a> + ((l - deL + (1 + deft) 

where p denotes the polarization of the electrons, i.e. p = 1 (-1) for right (left)-handed 
polarization, and for unpolarized electrons we have p = 0. 
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Structure of the program 

c GLOBAL-DEF 7 

I FUNCTIONS l- 

Figure 1: Structure of the program MENLO-PARC and MENLO. Bold arrows indicate the “using” 

of other modules, small arrows indicate partial “using”. 

Figure 2: “Light-by-glue” cut diagrams whose axial part differs from the vector part. 

Figure 3: Some generic cut diagrams for next-to-leading order four-jet production. Each diagram 

can be cut in several ways. 
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