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Abstract 

These lectures constitute a short course in ‘Beyond the Standard 

Model’ for students of experimental particle physics. I discuss the 

general ideas which guide the construction of models of physics 

beyond the Standard Model. The central principle, the one which 

most directly motivates the search for new physics, is the search for 

the mechanism of the spontaneous symmetry breaking observed 

in the theory of weak interactions. To illustrate models of weak- 

interaction symmetry breaking, I give a detailed discussion of the 

idea of supersymmetry and that of new strong interactions at the 

TeV energy scale. I discuss experiments that will probe the details 

of these models at future pp and e+e- colliders. 

1. Introduction 

Every year, the wise people who organize the European School of Particle Physics 

feel it necessary to subject young experimentalists to a course of lectures on ‘Beyond the 

Standard Model’. They treat this subject as if it were a discipline of science that one 

could study and master. Of course, it is no such thing. If we knew what lies beyond the 

Standard Model, we could teach it with some confidence. But the interest in this subject 

is precisely that we do not know what is waiting for us there. 

The confusion about ‘Beyond the Standard Model’ goes beyond students and sum- 

mer school organizers to the senior scientists in our field. A theorist such as myself who 

claims to be able to explain things about physics beyond the Standard Model is very of- 

ten met with skepticism that such explanations are even possible. ‘Do we really have any 

idea’, o_neis told, ‘what we will find a higher energies?’ ‘Don’t we just want the highest 

possible energy and luminosity. ?’ ‘The Standard Model works very well, so why must there 

be any new physics at all?’ 

And yet there are specific things that one can teach that should be relevant to 

physics beyond the Standard Model. Though we do not know what physics to expect at 

higher energies> the principles of physics that we have learned in the explication of the 

.Standard Model should still apply there. In addition, we hope that some of the questions 
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not answered by the Standard Model should be answered there. This course will concen- 

trate its attention on these two issues: What questions are likely to be addressed by new 

physics beyond the Standard Model, and what general methods of analysis can we use to 

create and analyze proposed answers to these questions? 

A set of lectures on ‘Beyond the Standard Model’ should have one further goal 

as well. It is possible that the first sign of physics beyond the Standard Model could be 

discovered next year at LEP, or perhaps it is already waiting in the unanalyzed data from 

the Fermilab collider. On the other hand, it is possible that this discovery will have to wait 

for the great machines of the next generation. Many people feel dismay at the fact that the 

pace of discovery in high-energy physics is very slow, with experiments operating on the 

-time scale of a decade familiar in planetary science rather than on the time scale of days 

or weeks. Because of the cost and complexity of modern elementary particle experiments, 

these long time scales are inevitable, and we have to adjust our expectations to them. But 

the long time scales also require that we set for ourselves very clear goals that we can try 

to realize a decade in the future. To do this, it is useful to have a concrete understanding 

of what experiments will look like at the next generation of colliders and what physics 

issues they address. Even if we cannot correctly predict what Nature will provide for us 

at higher energy, it is essential to take some models as illustrative examples and work out 

in complete detail how to analyze them experimentally. With luck, we can choose models 

will have features relevant to the ultimate correct theory of the next scale in physics. But 

even if we are not sufficiently lucky or insightful to predict what will appear, such a study 

will leave us prepared to solve whatever puzzles Nature has set. 

This, then, is what I would like to accomplish in these lectures. I will set out 

some questions which I feel are the most important ones at the present stage of our 

understanding, and the ones which I feel are most likely to be addressed by the new 

phenomena of the next energy scale. I will explain some theoretical ideas that have come 
. 

from our understanding of the Standard Model that I feel will play an important role at 

the next level. Building on these ideas, I will describe illustrative models of physics beyond 

the Standard Model. And, for each case, I will describe the program of experiments that 

will clarify the nature of the new physics that the model implies. 

When we design a program of future high-energy experiments, we are also calling 

for the construction of new high-energy accelerators that would be needed to carry out this 

program. I hope that students of high-energy physics will take an interest in this practical 

or political aspect of our field of science. Those who think about this seriously know that 

we cannot ask society to support such expensive machines unless we can promise that these 

facilities will give back fundamental knowledge that is of the utmost importance and that 

cannot be obtained in any other way. I hope that they will be interested to see how central 

a role the CERN Large Hadron Collider (LHC) plays in each of the experimental programs 

that I will describe. Another proposed facility will also play a major role in my discussion, 

a high-energy e + - e linear collider with center-of-mass energy about 1 TeV. I will argue in 

these lectures that, with these facilities, the scientific justification changes qualitatively 

from that of the present colliders at CERN and Fermilab. Whereas at current energies, 

we search for new physics and try to place limits, at next step in energy we must find new 

physics that addresses. one of the’major gaps in the Standard Model. 

This last issue leads to us to ask another, and perhaps unfamiliar, question about 

2 



I 
. 

the colliders of the next generation. Much ink has been wasted in comparing hadron and 

lepton colliders on the basis of energy reach and asking which is preferable. The real issue 

for these machines is a different one. We will see that illustrative models of new physics 

based on simple ideas will out to have rich and complex phenomenological consequences. 

Thus, it is a serious question whether we will be able to understand the model that Nature 

has put forward for us from experimental observations. I will argue through my examples 

that these two types of colliders, which focus on different and complementary aspects of 

the high-energy phenomena, can bring back a complete picture of the new phenomena of 

a clarity that neither, working alone, could achieve. 

The outline of these lectures is as follows. In Section 2, I will introduce the question 

of the mechanism of electroweak symmetric breaking and also two related questions that 

influence the construction and analysis of models of new physics. In Sections 3 and 4, I 

will give one illustrative set of answers to these questions through a detailed discussion 

of models with supersymmetry at the weak-interaction scale. Section 3 will develop the 

formalism of supersymmetry and derive its connection to the questions I have set out. 

Section 4 will discuss more detailed properties of supersymmetric models which provide 

interesting experimental probes. In Section 5, I will discuss models with new strong in- 

teractions at the TeV mass scale, models which give very different answers to our broad 

questions about physics beyond the Standard Model. In Section 6, I will summarize the 

lessons of our study of these two very different types of models and draw some general 

conclusions. 

2. Three Basic Questions 

To begins our study of physics beyond the Standard Model, I will review some 

properties of the Standard Model and some insights that it provides. I will also discuss 

, some questions that the Standard Model does not answer, but which might reasonably 

be answered at the next scale in fundamental physics. 

2.1 Why not just the Standard Model? 

To introduce the study of physics beyond the Standard Model, I must first explain 

what is wrong with the Standard Model. To see this, we only have to compare the publicity 

for the Standard Model, what we say about it to beginning students and to our colleagues 

in other fields, with the explicit expression for the Standard Model Lagrangian. 

When we want to advertise the virtues of the Standard Model, we say that it 

is a model whose foundation is symmetry. We start from the principle of local gauge 

invariance, which tells us that the interactions of vector bosons are associated with a 

global symmetry group. The form of these interactions is uniquely specified by the group 

structure. Thus, from the knowledge of the basic symmetry group, we can write down 

the Lagrangian or the equations of motion. Specifying the group to be U(l), we derive 

electromagnetism. To create a complete theory of Nature, we choose the group, in accord 

with observation, to be SU(3) x SU(2) x U(1). Th’ g is rou is a product, and we are free p 

to include a different coupling constant for each factor. But in the ideal theory, these 

would be-the only parameters. Specify to which representations of the gauge group the 

matter particles belong, fix the three coupling constants, and we have a complete theory 

.of Nature. 
.- 
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This set of ideas is tantalizing because it is so close to being true. The couplings 

of quarks and leptons to the strong, weak, and electromagnetic- interactions are indeed 

fixed correctly in terms of three coupling constants. From the LEP and SLC experiments, 

we have learned that the pattern of weak-interaction couplings of the quarks and leptons 

follows the symmetry prediction to the accuracy of a few percent, and also that the 

strong-interaction coupling is universal among quark flavors at a similar level of accuracy. 

On the other hand, the Lagrangian of the Minimal Standard Model tells a rather 

different story. Let me write it here for reference: 

The first line of (1) is the pure gauge theory discussed in the previous paragraph. 

This line of the Lagrangian contains only three parameters, the three Standard Model 

gauge couplings g,, g, g’, and it does correctly describe the couplings of all species of 

quarks and leptons to the strong, weak, and electromagnetic gauge bosons. 

The second line of (1) is associated with the Higgs boson field 4. The Minimal 

Standard Model introduces one scalar field, a doublet of weak interaction SU(2), so that 

its vacuum expectation value can give a mass to the IV and 2 bosons. The potential energy 

of this field V(d) contains at least two new parameters which play a role in determining 

the IV boson mass. At this moment, there is no experimental evidence for the existence 

of the Higgs field $ and very little evidence that constrains the form of its potential. 

The third line of (1) similarly gives an origin for the masses of quarks and lep- 

tons. In the Standard Model, the left- and right-handed quark fields belong to different 

representations of SU(2) x U(1); a similar conclusion holds for the leptons. On the other 

hand, a mass term for a fermion couples the left- and right-handed components. This is 

impossible as long as the gauge symmetry is exact. In the Standard Model, one can write 

a trilinear term linking a left- and right-handed pair of species to the Higgs field. When 

the Higgs field acquires a vacuum expectation value, this coupling turns into a mass term. 

Unfortunately, a generic fermion-fermion-boson coupling is restricted only rather weakly 

by gauge symmetries. The Standard Model gauge symmetry allows three complex 3 x 3 

matrices of couplings, the paramaters XiJ’ of (1). When 4 acquires a vacuum expectation 

values, these matrices become the mass matrices of quarks and leptons. Thus, whereas 

the gauge couplings of quarks and leptons were strongly restricted by symmetry, the mass 

terms for these particles can be of general and, indeed, complex, structure. 

If we consider (1) to be the fundamental Lagrangian of Nature, the situation is even 

worse. The Higgs coupling matrices Xij are renormalizable couplings in this Lagrangian. 

The property of renormalizability implies that, once these couplings are specified, the the- 

ory gives definite predictions. However, the specification of the renormalizable couplings is 

part of the statement of the problem. Except in very special field theories, these couplings 

cannot be determined from the internal consistency of the theory itself. The Standard 

Model Lagrangian then leaves us with the three matrices Xij, and the parameters of the 

Higgs potential- V( #), as conditions of the problem which cannot in principle be deter- 

.mined. In order to understand why the masses of the quarks, the leptons, and the IV and 
.- 
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2 bosons have their observed values, we must find a deeper theory beyond the Standard 

Model from which the Lagrangian (l), or some replacement for it, can be derived. 

Thus, it is a disappointing feature of the Minimal Standard Model that it has a 

large number of parameter which are undetermined, and which cannot be determined. 

This disappointment, though, has an interesting converse. Typically in physics, when we 

meet a system with a large number of parameters, what stands behind it is a system with a 

simple description which is realized with some complexity in its dynamics. The transport 

coefficients of fluids or the properties of electrons in a semiconductor are described in 

terms of a large number of parameters, but these parameters can be computed from 

an underlying atomic picture. Through this analogy, we would conclude that the gauge 

-couplings of quarks and leptons are likely to reflect a fundamental structure, but that 

the Higgs boson is unlikely to be simple, minimal, or elementary. The multiplicity of 

undermined couplings of the Minimal Standard Model are precisely those of the Higgs 

boson. If we could break through and discover the simple underlying picture behind the 

Higgs boson, or behind the breaking of SU(2) x U( 1) s y mmetry, we would then have the 

correct deeper viewpoint from which to understand the undetermined parameters of the 

Standard Model. 

2.2 Three models of electroweak symmetry breaking 

The argument given in the previous section leads us to the question: What is 

actually the mechanism of electroweak symmetry breaking? In this section, I would like 

to present three possible models for this phenomenon and to discuss their strengths and 

weaknesses. 

The first of these is the model of electroweak symmetry breaking contained in the 

Minimal Standard Model. We introduce a Higgs field 

with SU(2) x U(1) q uantum numbers 1 = i, Y = f. I will use ra = @/2 to denote 

the generators of SU(2), and I normalize the hypercharge so that the electric charge is 

Q = I3 + Y. 

Take the Lagrangian for the field 4 to be the second line of (l), with 

V(d) = -p2++4 + q$+$>” * (3) 

This potential is minimized when 4t$ = p2/2X. Th us, one particular vacuum state is 

given by 

(4) 

where v2 = p2/X. 

The-most general 4 field configuration can be written in the same notation as 

In this expression, CY”(X) parametrizes an SU(2) gauge transformation. The field h(z) is 

a gauge-invariant fluctation away from the vacuum state; this is the physical Higgs field. 
.- 
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The mass of this field is given by 

rni = 2p2 = 2x11~ . (6) 

Notice that, in this model, h(z) is the only gauge-invariant degree of freedom in d(x), and 

so the symmetry-breaking sector gives rise to only one new particle, the Higgs scalar. 

If we insert (4) into the kinetic term for 4, we obtain a mass term for W and 2; this 

is the usual Higgs mechanism for producing these masses. If g and g’ are the SU(2) x U( 1) 

coupling constants, one finds the familiar result 

rnw=g: 
2 ’ 

rnz=j/Ymz. (7) 

The measured values of the masses and couplings then lead to 

v = 246 GeV . (8) 

This is a very simple model of SU(2) x U( 1) y s mmetry breaking. Perhaps it is 

even too simple. If we ask the question, why is SU(2) x U(1) broken, this model gives the 

answer ‘because (--1~~) < 0.’ This is a perfectly correct answer, but it teaches us nothing. 

Normally, the grand qualitative phenomena of physics happen as the result of definite 

physical mechanisms. But there is no physically understandable mechanism operating 

here. 

One often hears it said that if the minimal Higgs model is too simple, one can 

make the model more complex by adding a second Higgs doublet. For our next case, then, 

let us consider a model with two Higgs doublets +r, CJ$~, both with 1 = f, Y = i. The 

Lagrangian of the Higgs fields is 

. with 

(10) 

where M2 is a 2 x 2 matrix. It is not difficult to engineer a form for V such that, at the 

minimum, the vacuum expectation values of $i and 4S2 are aligned: 

(44 = :vl ) ( ) fi ($2) = lyv2 . ( ) Jz (11) 

The ratio of the two vacuum expectation values is conventionally parametrized by an 

angle P, 

tan/3 = ‘2 . 
Vl 

(12) 

- To reproduce the correct values of the W and 2 mass, 

e - v; + vi = v2 = (246 GeV)2 . (13) 

The field content of this model is considerably richer than that of the minimal 

model. An infinitesimal gauge transformation of the vacuum configuration (11) leads to 

a field configuration 

(14) 
.- 



The fluctuations of the field configuration which are orthogonal to this lead to new physical 

particles. These include the motions 

sqb, = f 
sinp . (hi + ih2) 

sinp . (ih3) ’ 
- ~0s P. (h $ ih2) 

- cos p . (Zh3) 
, 

(15) 

as well as the fluctuations vi -+ vi + H; of the two vacuum expectation values. Thus we 

find five new particles. The fields hi and h2 combine to form charged Higgs bosons H*. 

The field h3 is a CP-odd neutral boson, usually called A’. The two fields Hi typically mix 

to form mass eigenstates called ho and Ho. 

I have discussed this structure in some detail because we will later see it appear 

- in specific model contexts. But it does nothing as far as answering the physical question 

that I posed a moment ago. Again, if one asks what is the mechanism of weak interaction 

symmetry breaking, the answer this model gives is that the matrix (-M2) has a negative 

eigenvalue. 

The third model I would like to discuss is a model of a very different kind proposed 

in 1979 by Weinberg and Susskind [l, 21. I ma ine that the fundamental interactions g 

include a new gauge interaction which is almost an exact copy of QCD with two quark 

flavors. The new interactions differ from QCD in only two respects: First, the quarks 

are massless; second, the nonperturbative scales A and mp are much larger in the new 

subsection. The two flavors of quarks should be coupled to SU(2) x U( 1) just as (u, d) 

are, and I will call them (U, 0). 

In QCD, the strong interactions between quarks and antiquarks leads to the gen- 

eration of large effective masses for the u and d. This mass generation is associated with 

spontaneous symmetry breaking. The strong interactions between very light quarks and 

antiquarks make it energetically favorable for the vacuum of space to fill up with quark- 

antiquark pairs. This gives vacuum expectation values to operators built from quark and 
. antiquark fields. 

The analogue of this phenomenon should occur in our theory of new interactions- 

for just the same reason-and so we should find 

(,‘U)=(DD)=-A#O. (16) 

In terms of chiral components, 

uu = UgJ~ + UgJL , (17) 
and similarly for 00. But, in the weak-interaction theory, the left-handed quark fields 

transform under SU(2) while the right-handed fi e s Id d o not. Thus, the vacuum expectation 

value in (16) signals SU(2) y s mmetry breaking. In fact, under SU(2) x U(l), the operator 

GLUT has the same quantum numbers 1 = 2, Y = $ as the elementary Higgs boson that 

- we introduced in our earlier model. The vacuum expectation value of this operator then 

has the same effect: It breaks SU(2) x U(1) to the U(1) symmetry of electromagnetism 

and gives mass to the three weak-interaction bosons. 

I will explain in Section 5.1 that the pion decay constant F, of the new strong 

interaction theory plays the role of v in (7) in determining the mass scale of rnw and mz. 

If we were to set F, to the value given in (S), we would need to scale up QCD by the 

factor 
246 GeV = 2600 
93 MeV ’ 

(18) .- 
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Then the hadrons of these new strong interactions would be at TeV energies. 

For me, the Weinberg-Susskind model is much more appealing as a model of elec- 

troweak symmetry breaking than the Minimal Standard Model. The reason for this is that, 

in the Weinberg-Susskind model, electroweak symmetry breaking happens naturally, for 

a reason, rather than being included as the result of an arbitrary choice of parameters. I 

would like to emphasize especially that the Weinberg-Susskind model is preferable even 

though it is more complex. In fact, this complexity is an essential part of its founda- 

tion. In this model, something happens, and that physical action gives rise to a set of 

consequences, of which electroweak symmetry breaking is one. 

This notion that the consequences of physical theories flow from their complexity 

is familiar from the theories in particle physics that we understand well. In QCD, quark 

confinement, the spectrum of hadrons, and the parton description of high-energy reactions 

all flow out of the idea of a strongly-coupled non-Abelian gauge interaction. In the weak 

interactions, the V-A structure of weak couplings and all of its consequences for decays 

and asymmetries follow from the underlying gauge structure. 

Now we are faced with a new phenomenon, the symmetry breaking of SU(2) x U(l), 

whose explanation lies outside the realm of the known gauge theories. Of course it is 

possible that this phenomenon could be explained by the simplest, most minimal addition 

to the laws of physics. But that is not how we have seen Nature work. In searching for an 

explanation of electroweak symmetry breaking, we should not be searching for a simplistic 

theory but rather for a simple idea from which deep and rich consequences might flow. 

2.3 Questions for orientation 

The argument of the previous section gives focus to the study of physics beyond the 

Standard Model. We have a phenomenon necessary to the working of weak-interaction the- 

ory, the symmetry-breaking of SU(2) x U(l), w ic we must understand. This symmetry- h’ h 
. breaking is characterized by a mass scale, v in (8), which is close to the energy scales now 

being probed at accelerators. At the same time, it is a new qualitative phenomenon which 

cannot originate from the known gauge interactions. Therefore, it calls for new physics, 

and in an energy region where we can hope to discover it. For me, this is the number one 

question of particle physics today: 

* What is the mechanism of electroweak symmetry breaking? 

Along with this question come two subsidiary ones. Both of these are connected 

to the fact that electroweak symmetry breaking is necessary for the generation of masses 

for the weak-interaction bosons, the quarks, and the leptons. Perhaps there are also other 

particles which cannot obtain mass until SU(2) x U(1) is broken. Then these particles 

also must have masses at the scale of a few hundred GeV or below. The heaviest of these 

particles must be especially strongly coupled to the fields that are the basic cause of the 

symmetry-breaking. At the very least, the top quark belongs to this class of very heavy 

particle?, and other members of this class might well be found. Thus, we are also led to 

ask, 

* What is the spectrum of elementary particles at the 1 TeV energy scale? 

* Is the mass of the top quark generated by weak couplings or by new strong 

interactions? 

In the remainder of this section, I will comment on these three questions. In the 

.following sections, when we consider explicit models of electroweak symmetry breaking, I 
.- 
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will develop the models theoretically to propose answer these questions. At any stage in the 

argument, though, you should have firmly in mind that these answers will ultimately come 

from experiment, and, in particular, from direct observations of TeV-energy phenomena. 

The goal of my theoretical arguments, then, will be to suggest particular phenomena 

which could be observed experimentally to shed light on these questions. We will see in 

Sections 4 and 5 that models which attempt to explain electroweak symmetry breaking 

typically suggest a variety of new experimental probes, which may allow us to uncover a 

whole new layer of the fundamental interactions. 

2.4 General features of electroweak symmetry breaking 

Since the question of electroweak symmetry breaking will be our main concern, 

it is important to state at the beginning what we do know about this phenomenon. 

Unfortunately, our knowledge is very limited. Basically it consists of only three items. 

First, we know the general scale of electroweak symmetry breaking, which is set by 

the scale of mw and mz, 

v = 246 GeV . (19) 

If there are new particles associated with the mechanism of electroweak symmetry break- 

ing, their masses should be at the scale v. Of course, this is only an order-of-magnitude 

estimate. The precise relation between v and the masses of new particles depends on 

the specific model of electroweak symmetry breaking. In the course of these lectures, I 

will discuss examples in which the most important new particles lie below v and other 

examples in which they lie higher by a large factor. 

Second, we know that the electroweak boson masses follow the pattern (7), that is, 

mw 
- = cos 0, , m -0. 
mz 

Y- (20) 

In terms of the original SU(2) and U(1) gauge bosons A;, B,, this pattern tells us that 

the mass matrix had the form 

acting on the vector (AE,AE,Az,Rp). Notice that the 3 x 3 block of this matrix acting 

on the SU(2) b osons is diagonal. This would naturally be a consequence of an unbroken 

SU(2) symmetry under which (A:, A:, AZ) form a triplet [3, 41. This strongly suggests 

that an unbroken SU( 2) y s mmetry, called custodial SU(2), should be included in any 

- successful model of electroweak symmetry breaking. 

The Minimal Standard Model actually contains such a symmetry accidentally. the 

compleg doublet C$ can be viewed as a set of four real-valued fields, 

The Higgs potential (3) is invariant to SO(4) rotations of these fields. The vacuum expec- 

.tation value (4) gives an expectation value to one of the four components and so breaks 

_ 
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SO(4) spontaneously to SO(3) = SU(2). In the Weinberg-Susskind model, there is also a 

custodial SU(2) y s mmetry, the isospin symmetry of the new strong interactions. In this 

case, the custodial symmetry is not an accident, but rather a component of the new idea. 

Third, we know that the new interactions responsible for electroweak symmetry 

breaking contribute very little to precision electroweak observables. I will discuss this 

constraint in somewhat more detail in Section 5.2. For the moment, let me point out that, 

if we take the value of the electromagnetic coupling Q and the weak interaction parameters 

GF and mz as input parameters, the value of the weak mixing angle sin2 8, that governs 

the forward-backward and polarization asymmetries of the 2’ can be shifted by radiative 

corrections involving particles associated with the symmetry breaking. In the Minimal 

-Standard Model, this shift is rather small, 

S(sin2 0,) = 
a 1 +9sin28, 

cos2 0, - sin2 19, 24~ 
log 2 . (23) 

The coefficient of the logarithm has the value 6 x 10m4. The accuracy of the LEP and 

SLC experiments is such that the size of the logarithm cannot be much larger than 1, and 

larger radiative corrections from additional sources are forbidden. In models of electroweak 

symmetry breaking based on new strong interactions, this can be an important constraint. 

2.5 The evolution of couplings 

Now I would like to comment similarly on the two subsidiary questions that I put 

forward in Section 2.3. I will begin with the first of these questions: What is the spectrum 

of elementary particles at the 1 TeV energy scale? In the discussion above, I have already 

argued for the importance of this question. Because mass generation in quantum field 

theory is associated with symmetry breaking, and because one of the major symmetries 

. of Nature is broken at the scale v, we might expect a sizeable multiplet of particles to 

have masses of the order of magnitude of v, that is, in the range of hundreds of GeV. Well 

above the scale of v, these particles are effectively massless species characterized by their 

definite quantum numbers under SU(2) x U(1). 

It is important to note that, at energies much higher than v, the basic species 

are chiral. For example, the right- and left-handed components of the u quark have the 

following quantum numbers in this high-energy world: 

UR : I=O, Y=i 
u 

0 d L 
: (2, Y-$. (24) 

There are no relations between these two species; each half of the low-energy u quark has 

a completely different fundamental assignment. And, each multiplet is prohibited from 

- acquiring mass by SU(2) x U(1) symmetry. 

It, is- tempting to characterize the full set of elementary particles at 1 TeV-the 

particles, that is, that we have a chance of observing at accelerators in the foreseeable 

future-as precisely those which are forbidden to acquire mass until SU(2) x U(1) is 

broken. This would explain why these particles are left over from the truly high-energy 

dynamics -of Nature, the dynamics which generates and perhaps unifies the gauge and 

flavor interactions, to survive down to the much lower energy scales accessible to our 

experiments. 
.- 
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Figure 1: The simplest diagram which generates a Higgs boson mass term in the Minimal 

Standard Model. 

Before giving in to this temptation, however, I would like to point out that the 

Minimal Standard Model contains a glaring counterexample to this point of view, the 

Higgs boson itself. The mass term for the Higgs field 

AL = -p2d+$, (25) 

respects all of the symmetries of the Standard Model whatever the value of p. This model, 

then, gives no reason why p2 is of order v rather than being, for example, twenty orders 

of magnitude larger. 

Further, if we arbitrarily set p2 = 0, the p2 term would be generated by radiative 

corrections. The first correction to the mass is shown in Figure 1. This simple diagram is 

formally infinite, but we might cut off its integral at a scale A where the Minimal Standard 

Model breaks down. With this prescription, the diagram contributes to the Higgs boson 

mass m2 = -p2 in the amount 

4 ’ -im2 = -ix (g4$ J 
. . x = -x -A2 . 

167r2 (26) 

Thus, the contribution of radiative corrections to the Higgs boson mass is nonzero, diver- 

gent, and positive. The last of these properties is actually the worst. Since electroweak 

symmetry breaking requires that m2 be negative, the contribution we have just calculated 

must be cancelled by the Higgs boson bare mass term, and this cancellation must be made 

more and more fine to achieve a negative m2 of the order of -v2 in models where A is 

very large. This problem is often called the ‘gauge hierarchy problem’. I think of it as just 

a special aspect of the fact that the Minimal Standard Model does not explain why -p2 

is negative or why electroweak symmetry is broken. Once we have left this fundamental 

question to a mere choice of a parameter, it is not surprising that the radiative corrections 

to this parameter might drive it in an unwanted direction. 

To continue, however, I would like to set this issue aside and think more carefully 

about t-he-properties of the massless, chiral particle multiplets that we find at the TeV 

energy scale and above. If these particles are described by a renormalizable field theory but 

we can ignore any mass parameters, the interactions of these particles are governed by the 

dimensionless couplings of their renormalizable interactions. The scattering amplitudes 

generated by these couplings will reflect the maximal parity violation of the field content, 

with forward-backward and polarization asymmetries in scattering processes typically of 

.order 1. 
.- 
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Figure 2: Diagrams which renormalize the Higgs coupling constant in the Minimal Stan- 

- dard Model. 

For massless fermions, there is an ambiguity in writing the quantum numbers in 

such a chiral situation becuase a left-handed fermion has a right-handed antifermion, and 

vice versa. For reasons that will be clearer in the next section, I will choose the convention 

of writing all species of fermions in terms of their left-handed components, viewing all 

right-handed particles as antiparticles. Thus, I will now recast the right-handed u quark in 

(24) as the antiparticle of a left-handed species u which belongs to the 3 representation of 

color SU(3). Th e f ermions of the Standard Model thus belong to the left-handed multiplets 

L Q : I=;, Y=f 

e : I=O, Y=l ii : I=(), Y=-i 

a: I=O,Y=f. (27) 

. Here L is the left-handed lepton doublet and Q is the left-handed quark doublet. Q is a 

color 3, and U, 2 are color 3’s. The right-handed electron is the antiparticle of E, and there 

is no right-handed neutrino. This set of quantum numbers of repeated for each quark and 

lepton generation. 

If the dimensionless couplings of the theory at TeV energies are small, these cou- 

pling will run according to their renormalization group equations, but only at a loga- 

rithmic rate. Thus, above the TeV scale, the description of elementary particles would 

change very slowly. In this circumstance, it is reasonable to extrapolate many orders of 

magnitude above the TeV energy scale and to derive definite physical conclusions from 

that extrapolation. I will now describe two consequences of this idea. 

The first of these concerns the coupling constant of the minimal Higgs theory. For 

this analysis, it is best to write the Higgs multiplet as four real-valued fields as in (22). 

- Then the Higgs Lagrangian (ignoring the mass term) takes the form 

* - 
L = ;(Qb”)’ - fX” ((c#+)s)a ) (28) 

where i = l,... ,4. I have given the coupling a subscript b to remind us that this is the 

bare coupling. The value of the first, tree-level, diagram shown in Figure 2 is 

(29) .- 

12 
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To compute the three one-loop diagrams in Figure 2, we need to contract two of these 

structures together, using Sii = 4 where necessary. The easiest way to do this is to isolate 

the terms in each diagram which are proportional to S ‘j Ice Since the set of three diagrams S . 

is symmetric under crossing, the other two index contractions must appear also with equal 

coefficients. The contributions to this term from the three loop diagrams shown in Figure 

2 have the form 

(-2iXb)2 

2 I 

d4k i i 
--- ([8 + 2 + 2]Si%ke + . . -) , 
(27r)4 k2 k2 (30) 

where I have ignored the external momentum, and the numbers in the bracket give the 

- contribution from each diagram. In a scattering process, this expression is a good approx- 

imation when k lies in the range from the momentum transfer Q up to the scale A at 

which the Minimal Standard Model breaks down. Then the sum of the diagrams in Figure 

2 is 

- 2& 1 - ;;;)2 log $ . 
( 

b2 

) 
pp + . . .] . (31) 

The coefficient in this expression can be thought of as the effective value of the Higgs 

coupling constant for scattering processes at the momentum transfer Q. Often, we trade 

the bare coupling Xb for the value of the effective coupling at a low-energy scale (for 

example, w), which we call the renormalized coupling A,. In terms of A,, (31) takes the 

form 

- 2ix, 1 + (!trT2 log 7 . 
( 

Q2 
1 

[&“’ + . . .] . (32) 

Whichever description we choose, the effective coupling X(Q) has a logarithmically 

slow variation with Q. The most convenient way to describe this variation is by writing a 

differential equation, called the renormalization group equation [5] 
. 

&X(B) = &A2tQ) . (33) 

If the coupling is not so weak, we should add further terms to the right-hand side which 

arise from higher orders of perturbation theory. 

The solution of (33) is 

‘(‘) = 1 - (3X/2r2) log Q/v 

It is interesting that the effective coupling is predicted to become strong at high energy, 

specifically, at the scale 

Q,=uexp $ . [ 1 
Either the minimal Higgs Lagrangian is a consequence of strong-interaction behavior at 

the scak Q*, or, at some energy scale below Q+ the simple Higgs theory must become a 

part of some more complex set of interactions. 

Making use of (6), we can relate this bound on the validity of the simple Higgs 

theory to the value of. the Higgs mass, be rewriting (35) as 

Q*=uexp $ . [ 1 h 
(36) 

.- 
_ 
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Figure 3: Region of validity of the minimal Higgs model in the (mh, m,) plane, including 

two-loop quantum corrections to the Higgs potential, from [6]. 

This is a remarkable formula, because the mass of the Higgs boson sits in the denominator 

of an exponential. Thus, for small mh or a small value of X at U, the energy scale Q* up . 
to which the minimal Higgs theory can be valid is very high. On the other hand, as mh 

increases above w, the value of Q* decreases catastrophically. Here is a table of the values 

predicted by (36): 

mh Q* 

150 GeV 6 x lOi GeV 

200 GeV 1 x lOi GeV (37) 
300 GeV 2 x lo6 GeV 

500 GeV 6 x lo3 GeV 

700 GeV 1 x lo3 GeV 

Notice that, as the mass of the Higgs boson goes above 700 GeV, the scale Q* comes down 

to mh. Larger values of the Higgs boson mass in the minimal model are self-contradictory. 

A-more accurate evaluation of the limit Q* in the Standard Model, including the full 

field content of the model and terms in perturbation theory beyond the leading logarithms, 

is shown in Figure 3 [6]. Note that, in this more sophisticated calculation, the limit Q+ 

depends on the value of the top quark mass when mt becomes large. The calculation I 

have just described explains the top boundary of the regions indicated in the figure; I will 

describe the physics that leads to the right-hand boundary in Section 2.6. 

The same idea, that the basic coupling constants can evolve slowly on a logarithmic 
.- 
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Figure 4: A one-loop diagram contributing to the renormalization-group evolution of a 

gauge coupling constant. 

scale in Q due to loop corrections from quantum field theory, can be applied to the 

-W(3) x SU(2) x U(1) g au g e couplings. The renormalization group equation for the gauge 

coupling g; which includes the effects of one-loop diagrams such as that shown in Figure 4 

has the form 

-&g”(B) = -49: . 
(44 

(38) 

That is, the rate of change of g” with log Q is proportional to 94, as the diagram indicates. 

The bi are constants which depend on the gauge group and on the matter multi- 

plets to which the gauge bosons couple. For SU(N) gauge theories with matter in the 

fundamental representation, 

11 1 1 
-N--nf--n, 
3 3 6 

, 

_ where nf is the number of chiral (left-handed) f ermions and n, is the number of complex 

scalars which cauple to the gauge bosons. For a U(1) gauge theory in which the matter 

particles have charges t, the corresponding formula is 

(40) 

I will not derive these formulae here; you can find their derivation in any textbook of 

quantum field theory (for example, [5]). In the SU(N) case, when nf and n, are sufficiently 

small, bN is positive, leading to a decrease of the effective coupling as Q increases. This 

is the remarkable phenomenon of asymptotic freedom. 

It is especially interesting that the effect of asymptotic freedom is stronger for SU(3) 

than for SU(2) while the SU(3) g au g e coupling is larger at the energy of 2 boson mass. 

This suggests that, if we extrapolate to very high energy, the strong- and weak-interaction 

coupling constants should become equal, and perhaps the three different interactions that 

make up the Standard Model may become unified [7]. In the remainder of this section, I 

_ will investigate this question quantitatively. 

In order to discuss the unification of gauge couplings, there is one small technical 

point that-we must address first. For a non-Abelian group, we conventionally normalize 

the generators t” so that, in the fundamental representation, 

(41) 

Also, for any simple non-Abelian group, tr[t”] = 0. For example, the matrices ra = 

‘a”/2 which we used to represent the SU(2) generators below (2) obey these conditions. 
.- 

_ 
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However, for a U(1) group th ere is no similar natural way to normalize the charges. In 

principle, we could hypothesize that the SU(2) and SU(3) charges are unified with a 

charge proportional to the hypercharge, 

ty = c- Y (42) 

for any value of the scale factor c. 

In building a theory of unified strong, weak, and electromagnetic interactions, we 

might not want to assume that all fermion species necessarily belong to the fundamental 

representation of some SU(N) group; th us, we would not wish to impose the condition 

_ (41) on ty. But it is not so unreasonable to insist that there is a single large non-Abelian 

group for which ty and the SU(2) and SU(3) h g c ar es are all generators, and that the 

quarks and leptons of the Standard Model form a representation of this group. This leads 

to the normalization condition for ty, 

tr(ty)2 = tr(t)2 , (43) 

where t is a generator of SU(2) or SU(3). A n such generator gives the same constraint. y 

For convenience, I will choose to implement this condition using t = t3, the third compo- 

nent of weak-interaction isospin. The trace could be taken over three or over one Standard 

Model generations. Before evaluating c, it is interesting to sum over the fermions with 

quantum numbers in the table (27), t o check that ty has zero trace. Indeed, including 

each species in (27) with its SU(2) and color multiplicity, we find 

tr[ty] = ctr[Y] 

-;.2+1.1+;6-;.3+;.3 1 
= 0 . (44) 

Then we can comnute 

(45) 

and 

*2+1.1+ (;)ZFt (;)2.3+ (:)2.3] =c2$. (46) 

Equating these expressions, we find c = ,/3/5; that is, 

ty = 
J 

;y 7 

or, writing the U(1) gauge coupling g’Y = glty, 
* - 

91 = 
\i 

igt . 

(47) 

(48) 

These formulae give the normalization of the U( 1) coupling which unifies with SU(2) and 

SU(3) in the SU(5) and SO(10) g rand unfied theories, and in many more complicated 

schemes of unification. 
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Figure 5: Evolution of the SU(3) x SU(2) x U(1) g au g e couplings to high energy scales, 

using the one-loop renormalization group equations of the Standard Model. The double 

line for cr3 indicates the current experimental error in this quantity; the errors in ol and 

o2 are too small to be visible. 

In the Standard Model, the U(1) coupling constant gr and the SU(2) and SU(3) 

couplings g2 and gs evolve with Q according to the renormalization group equation (38) 

with 

b3 = 11 - $n, 

. b2 = $ _ fng - $n, 

bl = 
4 

-p - ‘nh . 
10 

In this formula, ng is the number of quark and lepton generations and nh is the number 

of Higgs doublet fields. Note that a complete generation of quarks and leptons has the 

same effect on all three gauge couplings, so that (at the level of one-loop corrections), the 

validity of unification is independent of the number of generations. The solution to (38) 

can be written, in terms of the measured coupling constants at Q = mz, as 

9” h-> 
‘;“(‘) = 1 + (b;/8r2) log Q/mz ’ (50) 

Alternatively, if we let (Y; = gz/47r, 

Q 
a;l(Q) = a;l(rnz) + $ log mz . 

The evolution of coupling constants predicted by (49) and (51), with nh = 1, is shown 

in Figure 5. It is disappointing that; although the values of the coupling constants do 

converge, -they do not’come to a common value at any scale. 

We can be a bit more definite about this test of the unification of couplings as 

follows: I will work in the A&S scheme for defining coupling constants. The precisely known .- 
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values of (Y, mz, and GF imply a-‘(mz) = 127.90f .09, sin2 @,(mz) = 0.2314% .003 [ll]; 

combining this with the value of the strong interaction coupling cx,(mz) = 0.118 f .003 
[8], we find for the MS couplings at Q = mz: 

-1 
% = 58.98 f .08 
-1 

02 = 29.60 f .04 
-1 

a3 = 8.47 f .22 (52) 

On the other hand, if we assume that the three couplings come to a common value at 

a scale mu, we can put Q = mu into the three equations (51), eliminate the unknowns 

a-l(rnu) and log(mu/mz), and fi n d one relation among the measured coupling constants 

at mz. This relation is 

Q3 -l =(l+B)a,l-Ba,l ) (53) 

where 
b3 - b2 B=- 
b2 - bl . (54) 

From the data, we find 

B = 0.719 f .008 f .03 , (55) 

where the second error reflects the omission of higher order corrections, that is, finite 

radiative corrections at the thresholds and two-loop corrections in the renormalization 

group equations. 

On the other hand, the Standard Model gives 

B=i+&nh. (56) 
. 

This is inconsistent with the unification hypothesis by a large margin. But perhaps an 

interesting scheme for physics beyond the Standard Model could fill this gap and allow a 

unification of the known gauge couplings. 

2.6 The special role of the top quark 

In the previous section, we discussed the role of the quarks and leptons in the 

energy region above 1 TeV. However, we ought to give additional consideration to the 

role of the top quark. This quark is sufficiently heavy that its coupling to the Higgs 

boson is an important perturbative coupling at very high energies. Thus, even in the 

simplest models, the top quark plays an important special role in the renormalization 

group evolution of couplings. It is possible that the top quark has an even more central 

role in electroweak symmetry breaking, and, in fact, that electroweak symmetry breaking 

may be-caused by the strong interactions of the top quark. I will discuss this connection of 

the top quark to electroweak symmetry breaking later, in the context of specific models. 

In this section, I would like to prepare for that discussion by analyzing the effects of the 

large top quark-Higgs boson coupling which is already present in the Minimal Standard 

Model. 

In the minimal Higgs model, the masses of quarks and leptons arise from the 

‘perturbative couplings to the Higgs boson written in the third line of (1). These couplings 
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are most often called the ‘Higgs Yukawa couplings’. The top quark mass comes from a 

Yukawa coupling 

A,!Z = -X,Z,ij . QL + h.c. , (57) 

where QL = (tL, bL). When the Higgs field acquires a vacuum expectation value of the 

form (4), this term becomes 

AL = -$ tt, (58) 

and we can read off the relation mt = &v/z/z. Th e value of the top quark mass measured 

at Fermilab is 176 f 6 GeV for the on-shell mass [9], which corresponds to 

(mt)m = 166 f 6 GeV . (59) 

With the value of u in (8), this implies 

A, = 1 or ot = z = (14.0 f 0.7)-l . 

In this simplest model, the top quark Yukawa coupling is weak at high energies but still 

is large enough to compete with QCD. 

The large value of Xt gives rise to two interesting effects. The first of these is an 

essential modification of the renormalization group equation for the Higgs boson coupling 

X given in (33). Let me now rewrite this equation including the one-loop corrections due 

to Xt and also to the weak-interaction couplings [lo]: 

-f--X = & 
dk Q 

x2 - &x1+ $3 + 2s2 + s”) 1 ) (61) 

- where I have abbreviated .? * sin2 19,. 

A remarkable property of the formula (61) is that the top quark Yukawa coupling 

enters the renormalization group equation with a negative sign (which essentially comes 

from the factor (-1) for the top quark fermion loop). This sign implies that, if the top 

quark mass is sufficiently large that that X4 term dominates, the Higgs coupling X is driven 

negative at large Q. This is a dangerous instability which would push the expectation value 

‘u of the Higgs field to arbitrarily high values. The presence of this instability gives an 

upper bound on the top quark mass for fixed mh, or, equivalently, a lower bound on the 

Higgs mass for fixed mt. If we replace X, &, and g in (61) with the masses of h, t, and 

W, we find the condition 
1 

rni > - 
[ 

3 

2 
m,2 - -m& . 

4 1 (62) 

I should note that finite perturbative corrections shift this bound in a way that is impor- 

tant quentitatively. This effect accounts for the right-hand boundary of the regions shown 

in Figure 3. 

The implications of Figure 3 for the Higgs boson mass are quite interesting. For 

the correct value of the top quark mass (59), the Minimal Standard Model description of 

the Higgs- boson can be valid only if the mass of the Higgs is larger than about 60 GeV. 

But for values of the mh below 100 GeV or above 200 GeV, the Higgs coupling must be 

sufficiently large that this coupling becomes strong well below the Planck scale. Curiously, 
.-. 
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the fit of current precision electroweak data to the Minimal Standard Model (for example, 

to the more precise version of (23)) gives the value [ll] 

mh = 124+:;” GeV , (63) 

which actually lies in the region for which the Minimal Standard Model is good to ex- 

tremely high energies. It is also important to point out that the regions of Figure 3 apply 

only to the Minimal version of the Standard Model. In models with additional Higgs dou- 

blets, with the boundaries giving limits on the lightest Higgs boson, the upper boundary 

remains qualitatively correct, but the boundary associated with the heavy top quark is 

usually pushed far to the right. 

The second perturbative effect of the top quark Yukawa coupling is its influence 

back on its own renormalization group evolution. In the same simple one-loop approxi- 

mation as (61), th e renormalization group equation for the top quark Yukawa coupling 

takes the form 

d 

dlog Q 
hf-8g$g2(l+;s2)] . VW 

The signs in this equation are not hard to understand. A theory with Xt and no gauge 

couplings cannot be asymptotically free, and so Xt must drive itself to zero at large 

distances or small Q. On the other hand, the effect of the QCD coupling gs is to increase 

quark masses and also Xt as Q becomes small. 

The two effects of the Xt and QCD renormalization of Xt balance at the point 

4 
xt = 3(4rcY,)“2 N 1.5 ) (65) 

corresponding to mt - 250 GeV. This condition was referred to by Hill [la] as the ‘quasi- 

r infrared fixed point’ for the- top quark mass. This ‘fixed point’ is in fact a line in the 

(X,, cays) plane. The renormalization group evolution from large Q to small Q carries a 

general initial condition into this line, as shown in Figure 6; then the parameters flow 

along the line, with CX, increasing in the familiar way as Q decreases, until we reach 

Q N mt. The effect of this evolution is that theories with a wide range of values for Xt 

at a very high unification scale all predict the physical value of mt to lie close to the 

fixed-point value (65). Th is convergence is shown in Figure 7. The fixed point attracts 

initial conditions corresponding to arbitrarily large values of X, at high energy. However, 

if the initial condition at high energy is sufficiently small, the value of Xt or mt might not 

be able to go up to the fixed point before Q comes down to the value mt. Thus, there are 

two possible cases, the first in which the physical value of mt is very close to the fixed 

point value, the second in which the physical value of mt lies at an arbitrary point below 

- the fixed-point value. 

In the Minimal Standard Model, the observed top quark mass (59) must correspond 

to the lecond possibility. However, in models with two Higgs doublet fields, the quantity 

which is constrainted to a fixed point is mt/ cos ,B, where ,B is the mixing angle defined in 

(12). The fixed p oint location also depends on the full field content of the model. In the 

supersymmetric models to be discussed in the next section, the fixed-point relation is 

mt 
- N 190 GeV 
cos p (66) 
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Figure 6: Renormalization-group evolution of the top quark Yukawa coupling At and the 

strong interaction coupling a,, from large Q to small Q. 
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Figure 7: Convergence of predictions for the top quark mass in the Minimal Standard 

Model, due to renormalization-group evolution, from [ 121. 

for values of tan p that are not too large. In such theories it is quite reasonable that 

the physical value of the top quark mass could be determined by a fixed point of the 

renormalization group equation for At. 

Now that we understand the implications of the large top quark mass in the simplest 

Higgs models, we can return to the question of the implications of the large top quark 

mass in more general models. We have seen that the observed value of mt can consistently 

be generated solely by perturbative interactions. We have also seen that, in this case, the - - 
coupling At can have important effects on the renormalization group evolution of couplings. 

But this observation shows that the observed value of mt is not sufficiently large that it 

must lead to nonperturbative effects ‘or that it can by itself drive electroweak symmetry 

breaking.- In fact, we -now see that mt or At can be the cause of electroweak symmetry 

breaking only if we combine these parameters with additional new dynamics that lies 

-outside the Standard Model. I will discuss some ideas which follow this line in Section 5. 
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2.7 Recapitulation 

In this section, I have introduced the major questions for physics beyond the Stan- 

dard Model by reviewing issues that arise when the Standard Model is extrapolated to 

very high energy. I have highlighted the issue of electroweak symmetry breaking, which 

poses an important question for the Standard Model which must be solved at energies 

close to those of our current accelerators. There are many possibilities, however, for the 

form of this solution. The new physics responsible for electroweak symmetry breaking 

might be a new set of strong interactions which changes the laws of particle physics fun- 

damentally at some nearby energy scale. But the analysis we have done tells us that the 

solution might be constructed in a completely different way, in which the new interactions 

-are weakly coupled for many orders of magnitude above the weak interaction scale but 

undergoes qualitative changes through the renormalization group evolution of couplings. 

The questions we have asked in Section 2.4 and this dichotomy of strong-coupling 

versus weak-coupling solutions to these questions provide a framework for examining 

theories of physics beyond the Standard Model. In the next sections, I will consider some 

explicit examples of such models, and we can see how they illustrate the different possible 

answers. 

3. Supersymmetry: Formalism 

The first class of models that I would like to discuss are supersymmetric extensions 

of the Standard Model. Supersymmetry is defined to be a symmetry of Nature that links 

bosons and fermions. As we will see later in this section, the introduction of supersymme- 

try into Nature requires a profound generalization of our fundamental theories, including 

a revision of the theory of gravity and a rethinking of our basic notions of space-time. 

For many theorists, the beauty of this new geometrical theory is enough to make it com- 

pelling. For myself, I think this is quite a reasonable attitude. However, I do not expect 

’ you to share this attitude in -order to appreciate my discussion. 

For the skeptical experimenter, there are other reasons to study supersymmetry. 

The most important is that supersymmetry is a concrete worked example of physics 

beyond the Standard Model. One of the virtues of extending the Standard Model using 

supersymmetry is that the phenomena that we hope to discover at the next energy scale- 

the new spectrum of particles, and the mechanism of electroweak symmetry breaking- 

occur in supersymmetric models at the level of perturbation theory, without the need 

for any new strong interactions. Supersymmetry naturally predicts are large and complex 

spectrum of new particles. These particles have signatures which are interesting, and 

which test the capabilities of experiments. Because the theory has weak couplings, these 

signatures can be worked out directly in a rather straightforward way. On the other 

hand, supersymmetric models have a large number of undetermined parameters, so they 

can exhibit an interesting variety of physical effects. Thus, the study of supersymmetric 

models can give you very specific pictures of what it will be like to experiment on physics * - 
beyond the Standard Model and, through this, should aid you in preparing for these 

experiments. For this reason, I will devote a large segment of these lectures to a detailed 

discussion of supersymmetry. However, as a necessary corrective, I will devote Section 

5 of this article to a review of a.model of electroweak symmetry breaking that runs by 

strong-coupling .effects. 

This discussion immediately raises a question: Why is supersymmetry relevant to 
.- 
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the major issue that we are focusing on in these lectures, that of the mechanism of elec- 

troweak symmetry breaking? A quick answer to this question is that supersymmetry legit- 

imizes the introduction of Higgs scalar fields, because it connects spin-0 and spin-i fields 

and thus puts the Higgs scalars and the quarks and leptons on the same epistemological 

footing. A better answer to this question is that supersymmetry naturally gives rise to a 

mechanism of electroweak symmetry breaking associated with the heavy top quark, and to 

many other properties that are attractive features of the fundamental interactions. These 

consequences of the theory arise from renormalization group evolution, by arguments sim- 

ilar to those we used to explain the features of the Standard Model that we derived in 

Sections 2.5 and 2.6. The spectrum of new particles predicted by supersymmetry will also 

-be shaped strongly by renormalization-group effects. 

In order to explain these effects, I must unfortunately subject you to a certain 

amount of theoretical formalism. I will therefore devote this section to describing construc- 

tion of supersymmetric Lagrangians and the analysis of their couplings. I will conclude 

this discussion in Section 3.7 by explaining the supersymmetric mechanism of electroweak 

symmetry breaking. This analysis will be lengthy, but it will give us the tools we need to 

build a theory of the mass spectrum of supersymmetric particles. With this understanding, 

we will be ready in Section 4 to discuss the experimental issues raised by supersymmetry, 

and the specific experiments that should resolve them. 

3.1 A little about fermions 

In order to write Lagrangians which are symmetric between boson and fermion 

fields, we must first understand the properties of these fields separately. Bosons are simple, 

one component objects. But for fermions, I would like to emphasize a few features which 

are not part of the standard presentation of the Dirac equation. 

The Lagrangian of a massive Dirac field is 

where $ is a 4-component complex field, the Dirac spinor. I would like to write this 

equation more explicitly by introducing a particular representation of the Dirac matrices 

where the entries are 2 x 2 matrices with 

c.9 = (1,:) ) P = (1,-a’) . 

(68) 

(69) 

- We may then write $J as a pair of 2-component complex fields 

The subscripts indicate left- and right-handed fermion components, and this is justified 

because, in this representation, 

(71) 
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This is a handy representation for calculations involving high-energy fermions which in- 

clude chiral interactions or polarization effects, even within the Standard Model [5]. 

In the notation of (68), (70), the Lagrangian (67) takes the form 

The kinetic energy terms do not couple $L and $R but rather treat them as distinct 

species. The mass term is precisely the coupling between these components. 

I pointed out above (27) that, since the antiparticle of a masssless left-handed 

particle is a right-handed particle, there is an ambiguity in assigning quantum numbers 

- to fermions. I chose to resolve this ambiguity by considering all left-handed states as 

particles and all right-handed states as antiparticles. With this philosophy, we would like 

to trade $R for a left-handed field. To do this, define the 2 x 2 matrix 

c = -ig2 = 
0 -1 ( ) 1 0 * 

and let 

XL = CG 7 xi = C$‘R 

Note that c-l = cT = -c, c* = c, so (74) implies 

. . Also note, by multiplying out the matrices, that 

cope-1 = (ay ) c?7~c-1 = (dy . 

(73) 

(74) 

(75) 

(76) - 
. 

Using these relations, we can rewrite 

The minus sign in the third line came from fermion interchange; it was eliminated in the 

fourth line by an integration by parts. After this rewriting, the two pieces of the Dirac 

kinetic energy term have precisely the same form, and we may consider $L and XL as two 

species of the same type of particle. 

If we replace +R by XL, the mass term in (67) becomes 

Note that 

x;C$L = GCXL , (79) 

with one minussign from fermion interchange and a second from taking the transpose of 

.c. Thus, this mass term is symmetric between the two species. It is interesting to know 
.- 
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that the most general possible mass term for spin-i fermions can be written in terms of 

left-handed fields V& in the form 

1 
- ,mab+~Tc$~ + h.c. , (80) 

where mab is a symmetric matrix. For example, this form for the mass term incorporates 

all possible different forms of the neutrino mass matrix, both Dirac and Majorana. 

From here on, through the end of Section 4, all of the fermions that appear in these 

lectures will be 2-component left-handed fermion fields. For this reason, there will be no 

ambiguity if I now drop the subscript L in my equations. 

3.2 Supersymmetry transformations 

Now that we have a clearer understanding of fermion fields, I would like to explore 

the possible symmetries that could connect fermions to bosons. To begin, let us try to 

connect a free massless fermion field to a free massless boson field. Because the scalar 

product (79) of t wo chiral fermion fields is complex, this connection will not work unless 

we take the boson field to be complex-valued. Thus, we should look for symmetries of the 

Lagrangian 

L = a,$*%$ + $J+iri. a$ (81) 

which mix 4 and $. 

To build this transformation, we must introduce a symmetry parameter with spin-i 

to combine with the spinor index of $. I will introduce a parameter [ which also transforms 

as a left-handed chiral spinor. Then a reasonable transformation law for C$ is 

* A fermion field has the dimensions of (mass)3/2, while a boson field has the dimensions of 

(mass)i; thus, xi must carry the dimensions (mass)-li2 or (length)ri2. This means that, 

in order to form a dimensionally correct transformation law for 4, we must include a 

derivative. A sensible formula is 

It is not difficult to show that the transformation (82), (83) is a symmetry of (81). 

Inserting these transformations, we find 

The term in the first set of parentheses is the right-hand side of (82). The term in the 

- second set of parentheses is the Hermitian conjugate of the right-hand side of (83). The 

last term refers to terms proportional to [* arising from the variation of 4” and $. To 

manipri’latk (84)) integrate both terms by parts and use the identity 

.g.da.d=d2 (85) 

which can be verified’directly from (69). This gives 

S,C = -~*t32(~~Tc~) - V5iETc - id21C) + ([*) . (86) .- 
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The two terms shown now cancel, and the <* terms cancel similarly. Thus, S,fZ = 0 and 

we have a symmetry. 

The transformation (83) appears rather strange at first sight. However, this formula 

takes on a bit more sense when we work out the algebra of supersymmetry transformations. 

Consider the commutator 

To obtain the fourth line, I have used (76); in the passage to the next line, a minus sign 

appears due to fermion interchange. In general, supersymmetry transformations have the 

commutation relation 

(S,S~ - S&,)A = 2i[~t+‘J - [t#‘v] 3,A (88) 

on every field A of the theory. 

To clarify the significance of this commutation relation, let me rewrite the trans- 

formations Se as the action of a set of operators, the supersymmetry charges Q. These 

charges must also be spin-i. To generate the supersymmetry transformation, we contract 

them with the spinor parameter [; thus 

St = tTcQ - Q+c(* . (89) 

At the same time, we may replace (ii?,) in (88) by the operator which generates spa- 
. 

tial translations, the energy-momentum four-vector Pp. Then (88) becomes the operator 

relation 

{Q: > Qb} = (F”)abPp (90) 

which defines the supersymmetry algebra. This anticommutation relation has a two-fold 

interpretation. First, it says that the square of the supersymmetry charge Q is the energy- 

momentum. Second, it says that the square of a supersymmetry transformation is a spatial 

translation. The idea of a square appears here in the same sense as we use when we say 

that the Dirac equation is the square root of the Klein-Gordon equation. 

We started this discussion by looking for symmetries of the trivial theory (81), but 

at this stage we have encountered a structure with deep connections. So it is worth looking 

back to see whether we were forced to come to high level or whether we could have taken 

- another route. It turns out that, given our premises, we could not have ended in any other 

place [13]. W e set out to look for an operator Q that was a symmetry of Nature which 

carriedspin-;. From this property, the quantity on the left-hand side of (90) is a Lorentz 

four-vector which commutes with the Hamiltonian. In principle, we could have written a 

more general formula 

(&j, , Qb} = @‘)ab& , (91) 
where R” is a conserved four-vector charge different from Pp. But energy-momentum 

conservation is already a very strong restriction on particle scattering processes, since 
.- 
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it implies that the only degree of freedom in a two-particle reaction is the scattering 

angle in the center-of-mass system. A second vector conservation- law, to the extent that 

it differs from energy-momentum conservation, places new requirements that contradict 

these restrictions except at particular, discrete scattering angles. Thus, it is not possible 

to have an interacting relativistic field theory with an additional conserved spin-l charge, 

or with any higher-spin charge, beyond standard momentum and angular momentum 

conservation [14]. For this reason, (90) is actually the most general commutation relation 

that can be obeyed by supersymmetry charges. 

The implications of the supersymmetry algebra (90) are indeed profound. If the 

square of a supersymmetry charge is the total energy-momentum of everything, then 

supersymmetry must act on every particle and field in Nature. We can exhibit this action 

explicitly by writing out the a = 1, b = 1 component of (go), 

{Q! , QI} = PO + p3 = P+ . (92) 

On states with P+ # 0 ( h’ h w lc we can arrange for any particle state by a rotation), define 

Ql 
a=Jp+7 

t- Q! 
a -z/p+* (93) 

These operators obey the algebra 

ia+ , a} = 1 (94) 

of fermion raising and lowering operators. They raise and lower J3 by f unit. Thus, in a 

supersymmetric theory, every state of nonzero energy has a partner of opposite statistics 

differing in angular momentum by AJ3 = hf. 

On the other hand, for any operator Q, the quantity {Qt, Q} is a Hermitian matrix - 

with eigenvalues that are either positive or zero. This matrix has zero eigenvalues for those * 
states that satisfy 

Q I’3 = Q+ IO> = 0 > (95) 

that is, for supersymmetric states. In particular, if supersymmetry is not spontaneously 

broken, the vacuum state is supersymmetric and satisfies (95). Since the vacuum also has 

zero three-momentum, we deduce 

(01 H IO) = 0 (96) 

as a consequence of supersymmetry. Typically in a quantum field theory, the value of the 

vacuum energy density is given by a complicated sum of vacuum diagrams. In a super- 

symmetric theory, these diagrams must magically cancel [15]. This is the first of a number 

of magical cancellations of radiative corrections that we will find in supersymmetric field 

theories. 

3.3 Supersymmetric Lagrangians 

At this point, we have determined the general formal properties of supersymmet- 

ric field theories. Now it is time to be much more concrete about the form of the La- 

grangians which respect supersymmetry. In this section, I will discuss the particle content 

of supersymmetric theories and present the most general renormalizable supersymmetric 

-Lagrangians for spin-0 and spin-i fields. 
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We argued from (92) that all supersymmetric states of nonzero energy are paired. In 

particular, this applies to single-particle states, and it implies that-supersymmetric models 

contain boson and fermion fields which are paired in such a way that the particle degrees 

of freedom are in one-to-one correspondence. In the simple example (81), I introduced a 

complex scalar field and a left-handed fermion field. Each leads to two sets of single-particle 

states, the particle and the antiparticle. I will refer to this set of states-a left-handed 

fermion, its right-handed antiparticle, a complex boson, and its conjugate-as a chiral 

supermultiplet. 

Another possible pairing is a a massless vector field and a left-handed fermion, 

which gives a vector supermultiplet-two transversely polarized vector boson states, plus 

the left-handed fermion and its antiparticle. In conventional field theory, a vector boson 

obtains mass from the Higgs mechanism by absorbing one degree of freedom from a scalar 

field. In supersymmetry, the Higgs mechanism works by coupling a vector supermultiplet 

to a chiral supermultiplet. This coupling results in a massive vector particle, with three 

polarization states, plus an extra scalar. At the same time, the left-handed fermions in 

the two multiplets combine through a mass term of the form (78) to give a massive Dirac 

fermion, with two particle and two antiparticle states. All eight states are degenerate if 

supersymmetry is unbroken. 

More complicated pairings are possible. One of particular importance involves the 

graviton. Like every other particle in the theory, the graviton must be paired by super- 

symmetry. Its natural partner is a spin-i field called the gravitino. In general relativity, 

the graviton is the gauge field of local coordinate invariance. The gravitino field can also 

be considered as a gauge field. Since it carries a vector index plus the spinor index carried 

by t or Q, it can h ave the transformation law 

which makes it the gauge field of local supersymmetry. This gives a natural relation 

between supersymmetry and space-time geometry and emphasizes the profound character 

of this generalization of field theory. 

I will now present the most general Lagrangian for chiral supermultiplets. As a 

first step, we might ask whether we can give a mass to the fields in (81) consistently with 

supersymmetry. This is accomplished by the Lagrangian 

+m(qSF - f$Tc~) + h.c. . (98) 

In this expression, I have introduced a new complex field F. However, F has no kinetic 

- energy and does not lead to any new particles. Such an object is called an auxiliary field. 

If we vary the Lagrangian (98) with respect to F, we find the field equations 
- - 

Ft = -mq5, F = -m$* . (99) 

Thus F carries only the degrees of freedom that are already present in 4. We can substitute 

this solution back into (98) and find the Lagrangian 

- 
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which has equal, supersymmetric masses for the bosons and fermions. 

It is not difficult to show that the Lagrangian (98) is invariant to the supersymmetry 

transformation 

The two lines of (98) are invariant separately. For the first line, the proof of invariance is 

a straightforward generalization of (86). For the second line, we need 

The first and last terms in the second line cancel by the use of (79); the terms in the third 

line cancel after an integration by parts and a rearrangement similar to that in (87) in the 

second term. Thus, (101) is an invariance of (98). With some effort, one can show that 

this transformation obeys the supersymmetry algebra, in the sense that the commutators 

of transformations acting on 4, $, and F follow precisely the relation (88). 

The introduction of the auxiliary field F allows us to write a much more general 

class of supersymmetric Lagrangians. Let $j, Gj, Fj be the fields of a number of chiral 

supermultiplets indexed by j. Assign each multiplet the supersymmetry transformation 

laws (101). Th en it can be shown by a simple generalization of the discussion just given 

that the supersymmetry transformation leaves invariant Lagrangians of the general form 

(103) 

where IV($) is an analytic function of the complex fields 4j which is called the superpo- 

tential. It is important to repeat that IV($) can have arbitrary dependence on the $j, but 

it must not depend on the $5. The auxiliary fields Fj obey the equations 

F+=-g. 
3 

(104) 

If W is a polynomial in the ~$j, the elimination of the Fj by substituting (104) into (103) 

- produces polynomial interactions for the scalar fields. 

The free massive Lagrangian (98) is a special case of (103) for one supermultiplet 

with th; superpotential 

W = irnqt2 . (105) 

A more interesting model is obtained by setting 

w = fx4”. (106) 
_ 
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Figure 8: (a) Yukawa and four-scalar couplings arising from the supersymmetric La- 

grangian with superpotential (106); (b) D’ g la rams which give the leading radiative correc- 

tions to the scalar field mass term. 

In this case, W leads directly to a Yukawa coupling proportional to A, while substituting 

for F from (104) y’ Id ie s a four scalar coupling proportional to X2: 

These two vertices are shown in Figure 8(a). Their sizes are such that the two leading 

diagrams which contribute to the scalar field mass renormalization, shown in Figure 8(b), 

are of the same order of magnitude. In fact, it is not difficult to compute these diagrams 

for external momentum p = 0. The first diagram has the value 

d4k 1 - 4X2i. J J -- (27r)4 k2 ’ (108) 

To compute the second diagram, note that the standard form of the fermion propagator is 

( > VW+ 7 and be careful to include all minus signs resulting from fermion reordering. Then 

you will find 

:(-2iA)(2ih) J f$ tr 
io . k -in-k T 
Ic2c(F ) 1 c 

= -2x2 J d4k tr[a . kg 9 k] 
- 
(27r)4 k4 ’ W) 

Using (85), the trace gives 2k2, and the two diagrams cancel precisely. Thus, the choice 

- (106) presents us with an interacting quantum field theory, but one with exceptional 

cancellations in the scalar field mass term. 

In this simple model, it is not difficult to see that the scalar field mass corrections 

must vanish as a matter of principle. The theory with superpotential (106) is invariant 

under the symmetry 

q5 + e2q ) 1c, -+ e-%) . (110) 

This symmetry is inconsistent with the appearance of a fermion mass term m$Tc$, as 

in (100). Th e s y mmetry does not prohibit the appearance of a scalar mass term, but if 
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the theory is to remain supersymmetric, the scalar cannot have a different mass from the 

fermion. However, the cancellation of radiative corrections in models of the form (103) 

is actually much more profound. It can be shown that, in a general model of this type, 

the only nonvanishing radiative corrections to the potential terms are field resealings. If 

a particular coupling-the mass term, a cubic interaction, or any other-is omitted from 

the original superpotential, it cannot be generated by radiative corrections [16, 171. 

For later reference, I will write the potential energy associated with the most general 

system with a Lagrangian of the form (103). This is 

dW v=-F’F’-F’-- 
Eli 

Substituting for Fj from (104), we find 

v=c E’. 
I I j wi 

(111) 

(112) 

This simple result is called the F-term potential. It is minimized by setting all of the Fj 

equal to zero. If this is possible, we obtain a vacuum state with (H) = 0 which is also 

invariant to supersymmetry, in accord with the discussion of (96). On the other hand, 

supersymmetry is spontaneously broken if for some reason it is not possible to satisfy all 

of the conditions Fj = 0 simultaneously. In that case, we obtain a vacuum state with 

(H) > 0. 

3.4 Coupling constant unification 

At this point, we have not yet completed our discussion of the structure of su- 

persymmetric Lagrangians. In particular, we have not yet written the supersymmetric 

* Lagrangians of vector fields,- beyond simply noting that a vector field combines with a 

chiral fermion to form a vector supermultiplet. Nevertheless, it is not too soon to try to 

write a supersymmetric generalization of the Standard Model. 

I will first list the ingredients needed for this generalization. For each of the SU(3) x 

SW4 x UP) g au e g b osons, we need a chiral fermion X” to form a vector supermultiplet. 

These new fermions are called gauginos. I will refer the specific partners of specific gauge 

bosons with a tilde. For example, the fermionic partner of the gluon will be called c, the 

gluino, and the fermionic partners of the W+ will be called W+, the wino. 

None of these fermions have the quantum numbers of quarks and leptons. So we 

need to add a complex scalar for each chiral fermion species to put the quarks and leptons 

into chiral supermultiplets. I will use the labels for left-handed fermion multiplets in 

(27) also to denote the quark and lepton supermultiplets. Hopefully, it will be clear from 

- context whether I am talking about the supermultiplet or the fermion. The scalar partners 

of quarks and leptons are called quarks and sleptons. I will denote these with a tilde. 

For exa-mile, the partner of ei = L- is the selectron Ei or i-. The partner of ?z* = ei 

is a distinct selectron which I will call E;I. The Higgs fields must also belong to chiral 

supermultiplets. I will denote the scalar components as h; and the left-handed fermions 

as x;. We.will see in a moment that at least two different Higgs multiplets are required. 

Although we need a bit more formalism to write the supersymmetric generalization 

-of the Standard Model gauge couplings, it is already completely straightforward to write 

- 
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the supersymmetric generalization of the Yukawa couplings linking quarks and leptons 

to the Higgs sector. The generalization of the third line of (1) -is given by writing the 

superpotential 
j,j,’ = X;yjih2. Qj + A:&, . Qj + $$h,. Lj (113) 

Note that, where in (1) I wrote C$ and +*, I am forced here to introduce two different 

Higgs fields hl and h2. The hypercharge assignments of u and Q require for the first term 

a Higgs field with Y = +i; for the next two terms, we need a Higgs field with Y = -i. 

Since W must be an analytic function of supermultiplet fields, as I explained below (103), 

replacing hl by (h,)* g ives a Lagrangian which is not supersymmetric. There is another, 

more subtle, argument for a second Higgs doublet. Just as in the Standard Model, triangle 

-1 oop diagrams involving the chiral fermions of the theory contain terms which potentially 

violate gauge invariance. These anomalous terms cancel when one sums over the chiral 

fermions of each quark and lepton generation. However, the chiral fermion h2 leads to a 

new anomaly term which violates the conservation of hypercharge. This contribution is 

naturally cancelled by the contribution from xi. 

We still need several more ingredients to construct the full supersymmetric gener- 

alization of the Standard Model, but we have now made a good start. We have introduced 

the minimum number of new particles (unfortunately, this is not a small number), and we 

have generated new couplings for them without yet introducing new parameters beyond 

those of the Standard Model. 

In addition, we already have enough information to study the unification of forces 

using the formalism of Section 2.5. To begin, we must extend the formulae (39), (40) 

to supersymmetric models. For SU(N) gauge theories, the gauginos give a contribution 

(-$N) to the right-hand side of (39). In (40), th ere is no contribution either from the 

gauge bosons or from their fermionic partners. We should also group together the contri- 

* butions from matter fermions and scalars. Then we can write the renormalization group 

coefficient bN for SU(N) gauge theories with nf chiral supermultiplets in the fundamental 

represent at ion as 

bN = 3N - in 
2 f* (114) 

Similarly, the renormalization group coefficient for U(1) gauge theories is now 

bl = - c t; , 
f 

(115) 

where the sum runs over chiral supermultiplets. 

Evaluating these expressions for SU(3) x SU(2) x U(1) gauge theories with ng 

quark and lepton generations and nh Higgs fields, we find 

b3 = 9 - 2n, 

- - b2 = 6-2n, - inh 

bl = - 2n, - &zh . 
10 

Now insert these expressions into (54); for nh = 2, we find 

(116) 

B = ; = 0.714 , (117) 
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Figure 9: Evolution of the SU(3) x SU(2) x U(1) g au g e couplings to high energy scales, 

using the one-loop renormalization group equations of the supersymmetric generalization 

of the Standard Model. 

in excellent agreement with the experimental value (55). Apparently, supersymmetry re- 

pairs the difficulty that the Standard Model has in linking in a simple way to grand 

unification. The running coupling constants extrapolated from the experimental values 

(52) using the supersymmetric renormalization group equations are shown in Figure 9. 

Of course it is not difficult to simply make up a model that agrees with any previ- 

ously given value of B. I hope to have convinced you that the value (117) arises naturally 

in grand unified theories based on supersymmetry. By comparing this agreement to the 

* error bars for B quoted in (55), you can decide for yourself whether this agreement is 

fortuitous. 

3.5 The rest of the supersymmetric Standard Model 

I will now complete the Lagrangian of the supersymmetric generalization of the 

Standard Model. First, I must write the Lagrangian for the vector supermultiplet and 

then I must show how to couple that multiplet to matter fields. After this, I will discuss 

some general properties of the resulting system. 

The vector multiplet (A;, Xa) containing the gauge bosons of a Yang-Mills theory 

and their partners has the supersymmetric Lagrangian 

L = -i (F$,)2 + Xt”iPD,X” + i(Da)’ , (1% 

- where D, = (ap - igAit”> is the gauge-covariant derivative, with t” the gauge group 

generator. In order to write the interactions of this multiplet in the simplest form, I have 

introduced a set of auxiliary real scalar fields, called D”. (The name is conventional; please 

do not confuse them with the covariant derivatives.) The gauge interactions of a chiral 

multiplet are then described by generalizing the first line of (103) to 
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Eliminating the auxiliary fields using their field equation 

D” = -9 c c,b+t”qS (120) 

gives a second contribution to the scalar potential, which should be added to the F-term 

(112). This is the D-term 

(121) 

-As with the F-term, the ground state of this potential is obtained by setting all of the D” 

equal to zero, if it is possible. In that case, one obtains a supersymmetric vacuum state 

with (H) = 0. 

The full supersymmetric generalization of the Standard Model can be written in 

the form 

L = J&Lge + lkin + LYukawa + L/L * (122) 
The first term is the kinetic energy term for the gauge multiplets of SU(3) x SU(2) x U(1). 

The second term is the kinetic energy term for quark, lepton, and Higgs chiral multiplets, 

including gauge couplings of the form (119). The third term is the Yukawa and scalar 

interactions given by the second line of (103) using the superpotential (113). The last 

term is that following from an additional gauge-invariant term that we could add to the 

superpotential, 

AW = ,uhl . h2 . (123) 

This term contributes a supersymmetric mass term to the Higgs fields and to their fermions 

partners. This term is needed on phenomenological grounds, as I will discuss in Section 
. 

4.4. The parameter p is the only new parameter that we have added so far to the Standard 

Model. 

This Lagrangian does not yet describe a realistic theory. It has exact supersymme- 

try. Thus, it predicts charged scalars degenerate with the electron and massless fermionic 

partners for the photon and gluons. On the other hand, it has some very attrative proper- 

ties. For the reasons explained below (llO), th ere is no quadratically divergent renormal- 

ization of the Higgs boson masses, or of any other mass in the theory. Thus, the radiative 

correction (26)) which was such a problem for the Standard Model, is absent in this gen- 

eralization. In fact, the only renormalizations in the theory are renormalizations of the 

SU(3) x SU(2) x U(1) g au g e couplings and resealings of the various quark, lepton, and 

Higgs fields. In the next section, I will show that we can modify (122) to maintain this 

property while making the mass spectrum of the theory more realistic. 

The Lagrangian (122) conserves the discrete quantum number 

R = (-qL+Q+2J , (1% 

where L is the lepton number, Q = 3B is the quark number, and J is the spin. This quan- 

tity is called R-parity;and it is constructed precisely so that R = +l for the conventional 

gauge boson, quark, lepton, and Higgs states while R = -1 for their supersymmetry part- 

ners. If R is exactly conserved, supersymmetric particles can only be produced in pairs, 
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and the lightest supersymmetric partner must be absolutely stable. On the other hand, R- 

parity can be violated only by adding terms to ,C which violate baryon- or lepton-number 

conservation. 

It is in fact straightforward to write a consistent R-parity-violating supersymmetric 

theory. The following terms which can be added to the superpotential are invariant under 

SU(3) x SU(2) x U(1) b u violate baryon or lepton number: t 

aw = Xijki-.i-k u d d + ‘$“Qi . Li;t’” + x”,3”Li. Lick + &,Li. h2 . (125) 

A different phenomenology is produced if one adds the baryon-number violating couplings 

- Xg, or if one adds the other couplings written in (125), which violate lepton number. If 

one were to add both types of couplings at once, that would be a disaster, leading to rapid 

proton decay. 

For a full exploration of the phenomenology of supersymmetric theories, we should 

investigate both models in which R-parity is conserved, in which the lightest superpartner 

is stable, and models in which R-parity is violated, in which the lightest superpartner 

decays through B- or L- violating interactions. In these lectures, since my plan is to 

present illustrative examples rather than a systematic survey, I will restrict my attention 

to models with conserved R-parity. 

3.6 How to describe supersymmetry breaking 

Now we must address the question of how to modify the Lagrangian (122) to obtain 

a model that could be realistic. Our problem is that the supersymmetry on which the 

model is based is not manifest in the spectrum of particles we see in Nature. So now we 

must add new particles or interactions which cause supersymmetry to be spontaneously 

broken. 
* 

It would be very attractive if there were a simple model of supersymmetry breaking 

that we could connect to the supersymmetric Standard Model. Unfortunately, models of 

supersymmetry breaking are generally not simple. So most studies of supersymmetry 

do not invoke the supersymmetry breaking mechanism directly but instead try to treat 

its consequences phenomenologically. This can be done by adding to (122) terms which 

violate supersymmetry but become unimportant at high energy. Some time ago, Grisaru 

and Girardello [18] listed the terms that one can add to a supersymmetric Lagrangian 

without disturbing the cancellation of quadratic divergences in the scalar mass terms. 

These terms are 

L soft = -Mf ldi12 - maXTacXa + Bphl * h2 + AW($) , (126) 

where W is the superpotential (113), plus other possible analytic terms cubic in the scalar 

fields 4~. These terms give mass to the squarks and sleptons and to the gauginos, moving 

the unobserved superpartners to higher energy. Note that terms of the structure ~$*4$ and 

the mass term $T~lC, do not appear in (126) b ecause they can regenerate the divergences 

of the nonsupersymmetric theory. All of the coefficients in (126) have the dimensions 

of (mass)- or (mass) . 2 .These new terms in (126) are called soft supersymmetry-breaking 

terms. We can build a phenomenological model of supersymmetry by adding to (122) the 

various terms in lCsoft with coefficients to be determined by experiment. 

_ 
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It is not difficult to understand that it is the new, rather than the familiar, half of 

the spectrum of the supersymmetric model that obtains mass from (126). In Section 2.5, I 

argued that the particles we see in high-energy experiments are visible only because they 

are protected from acquiring very large masses by some symmetry principle . In that dis- 

cussion, I invoked only the Standard Model gauge symmetries. In supersymmetric models, 

we have a more complex situation. In each supermultiplet, one particle is protected from 

acquiring mass, as before, by SU(2) x U(1). H owever, their superpartners-the squarks, 

sleptons, and gauginos-are protected from obtaining mass only by the supersymmetry 

relation to their partner. Thus, if supersymmetry is spontaneously broken, all that is nec- 

essary to generate masses for these partners is a coupling of the supersymmetry-breaking 

-expectation values to the Standard Model supermultiplets. 

This idea suggests a general structure for a realistic supersymmetric model. All 

of the phenomena of the model are driven by supersymmetry breaking. First, supersym- 

metry is broken spontaneously in some new sector of particles at high energy. Then, the 

coupling between these particles and the quarks, leptons, and gauge bosons leads to soft 

supersymmetry-breaking terms for those supermultiplets. It is very tempting to speculate 

further that those terms might then give rise to the spontaneous breaking of SU(2) x U(1) 

and so to the masses for the W and 2 and for the quarks and leptons. I will explain in 

the next section how this might happen. 

The size of the mass terms in (126) d e en p d s on two factors. The first of these is the 

mass scale at which supersymmetry is broken. Saying for definiteness that supersymmetry 

breaking is due to the nonzero value of an F auxiliary field, we can denote this scale by 

writing (F), which has the dimensions of (mass) 2. The second factor is the mass of the 

bosons or fermions which couple the high-energy sector to the particles of the Standard 

Model and thus communicate the supersymmetry breaking. I will call this mass M, the 

messenger scale. Then the mass parameters that appear in (126) should be of the order 
* 

of -- 

,,,+ (127) 

If supersymmetry indeed gives the mechanism of electroweak symmetry breaking, then 

ms should be of the order of 1 TeV. A case that is often discussed in the literature is that 

in which the messenger is supergravity. In that case, M is the Planck mass m pr, equal to 

101’ GeV, and (F) - lOi (GeV)2. Alt ernatively, both (8’) and M could be of the order 

of a few TeV. 

The detailed form of the soft supersymmetry-breaking terms depends on the under- 

lying model that has generated them. If one allows these terms to have their most general 

form (including arbitrary flavor- and CP-violating interactions, they contain about 120 

new parameters. However, any particular model of supersymmetry breaking generates 

- a specific set of these soft terms with some observable regularities. One of our goals in 

Section 4 of these lectures will be to understand how to determine the soft parameters e - 
experimentally and thus uncover the patterns which govern their construction. 

3.7 Electroweak symmetry breaking from supersymmetry 

There is a subtlety in trying to determine the pattern of the soft parameters exper- 

imentally. Like all other coupling constants in a supersymmetric theory, these parameters 

run under the influence of the renormalization group equations. Thus, the true underlying 
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pattern might not be seen directly at the TeV energy scale. Rather, it might be necessary 

to extrapolate the measured values of parameters to higher energy to look for regularities. 

The situation here is very similar to that of the Standard Model coupling con- 

stants. The underlying picture which leads to the values of the SU(3) x SU(2) x U(1) 

coupling constants is not very obvious from the data (52). Only when these data are 

extrapolated to very high energy using the renormalization group do we see evidence for 

their unification. Obviously, such evidence must be indirect. On the other hand, the dis- 

covery of supersymmetric particles, and the discovery that these particles showed other 

unification relations-with the same unification mass scale-would give powerful support 

to this picture. 

I will discuss general systematics of the renormalization-group running of the soft 

parameters in Section 4.2. But there is one set of renormalization group equations that 

I would like to call your attention to right away. These are the equations for the soft 

mass of the Higgs boson and the squarks which are most strongly coupled to it. We saw 

in Section 2.6 that the top quark Yukawa coupling was sufficiently large that it could 

have an important effect in renormalization group evolution. Let us consider, then, the 

evolution equations for the three scalars that interact through this coupling, the Higgs 

boson ha, the scalar top et = &, and the scalar top FR. The most important terms in 

these equations are the following: 

d 

dlogQ@ = (47r)2 
--A- { 3x;( iv; + iL!l($ + Mt”) + . . .} 

d 

dlog Q 
d 

dlog Q 

where gs is the QCD coupling, m3 is the mass of the gluino, and the omitted terms are 

of electroweak strength. The last two equations exhibit the competition between the top 

quark Yukawa coupling and QCD renormalizations which we s,i”w earlier in (61) and (64). 

The supersymmetric QCD couplings cause the masses of the Qt and Ek to increase at low 

energies, while the effect of X, causes all three masses to decrease. 

Indeed, if the ot and 5~ masses stay large, the equations (128) predict that Mi 

should go down through zero and become negative [19]. Th us, if all scalar mass parameters 

are initially positive at high energy scales, these equations imply that the Higgs boson 

h2 will acquire a negative parameter and thus an instability to electroweak symmetry 

breaking. An example of the solution to the full set of renormalization group equations, 

exhibiting the instability in Ml, is shown in Figure 10 [20]. 

At first sight, it might have been any of the scalar fields in the theory whose 

potential would be unstable by renormalization group evolution. But the Higgs scalar h2 

has the-strongest instability if the top quark is heavy. In this way, the supersymmetric 

extension of the Standard Model naturally contains the essential feature that we set out 

to find, a physical mechanism for electroweak symmetry breaking. As a bonus, we find 

that this mechanism is closely associated with the heaviness of the top quark. 

If you have been patient through all of the formalism I have presented in this section, 

-you now see that your patience has paid off. It was not obvious when we started that 
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Figure 10: Example of the evolution of the soft supersymmetry-breaking mass terms from 

the grand unification scale to the weak interaction scale, from [20]. The initial conditions 

for the evolution equations at the grand unification scale are taken to be the universal 

among species, in a simple pattern presented in Section 4.2. 

, supersymmetry would give the essential ingredients of a theory of electroweak symmetry 

breaking. But it turned out to be so. In the next section, I will present more details 

of the physics of supersymmetric models and present a program for their experimental 

exploration. 

4. Supersymmetry: Experiments 

In the previous section, I have presented the basic formalism of supersymmetry. 

I have also explained that supersymmetric models have several features that naturally 

answer questions posed by the Standard Model. At the beginning of Section 3, I told 

you that supersymmetry might be considered a worked example of physics beyond the 

Standard Model. Though I doubt you are persuaded by now that physics beyond the 

Standard Model must be supersymmetric, I hope you see these models as reasonable 

- alternatives that can be understood in very concrete terms. 

Now I would like to analyze the next step along this line of reasoning. What if, * - 
at LEP 2 or at some higher-energy machine, the superpartners appear? This discovery 

would change the course of experimental high-energy physics and shape it along a certain 

direction. We should then ask, what will be the important issues in high-energy physics, 

and how will we resolve these issues experimentally? In this section, I will give a rather 

detailed answer to this question. 

I emphasize again that I am not asking you to become a believer in supersymmetry. 
.- 
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A different discovery about physics beyond the Standard Model would change the focus 

of high-energy physics in a different direction. But we will learn more by choosing a 

particular direction and studying its far-reaching implications than by trying to reach 

vague but general conclusions. I will strike off in a different direction in Section 5. 

On the other hand, I hope you are not put off by the complexity of the supersym- 

metric Standard Model. It is true that this model has many ingredients and a very large 

content of new undiscovered particles. On the other hand, the model develops naturally 

from a single physical idea. I argued in Section 2.2 that this structure, a complex phe- 

nomenology built up around a definite principle of physics, is seen often in Nature. It 

leads to a more attractive solution to the problems of the Standard Model than a model 

-whose only virtue is minimality. 

It is true that, in models with complex consequences, it may not be easy to see the 

underlying structure in the experimental data. This is the challenge that experimenters 

will face. I will now discuss how we can meet this challenge for the particular case in 

which the physics beyond the Standard Model is supersymmetric. 

4.1 More about soft supersymmetry breaking 

As we discussed in Section 3.6, a realistic supersymmetric theory has a Lagrangian 

of the form 

L = &zuge + lkin + LYukawa + Lp + LCsoft . wo 

Of the various terms listed here, the first three contain only couplings that are already 

present in the Lagrangian of the Standard Model. The fourth term contains one new 

parameter p. The last term, however, contains a very large number of new parameters. 

I have already explained that one should not be afraid of seeing a large number of 

undetermined parameters here. The same proliferation of parameters occurs in any theory 

* with a certain level of complexity when viewed from below. The low-energy scattering 

amplitudes of QCD, for example, contain many parameters which turn out to be the 

masses and decay constants of hadronic resonances. If it is possible to measure these 

parameters, we will obtain a large amount of new information. 

In thinking about the values of the soft supersymmetry-breaking parameters, there 

are two features that we should take into account. The first is that the soft parameters 

obey renormalization group equations. Thus, they potentially change significantly from 

their underlying values at the messenger scale defined in (127) to their physical values 

observable at the TeV scale. We have seen in Section 3.7 that these changes can have 

important physical consequences. In the next section, I will describe the renormalization 

group evolution of the supersymmetry-breaking mass terms in more detail, and we will 

use our understanding of this evolution to work out some general predictions for the 

_ superparticle spectrum. 

The second feature is that there are strong constraints on the flavor structure of soft 

supersymmetry breaking terms which come from constraints on flavor-changing neutral 

current processes. In (126), I h ave written independent mass terms for each of the scalar 

fields. In principle, I could also have written mass terms that mixed these fields. However, 

if we write the scalars in the basis in which the quark masses are diagonalized, we must 

not find substantial off-diagonal terms. A mixing 



Figure 11: A potentially dangerous contribution of supersymmetric particles to fla- 

vor-changing neutral current processes. 

-for example, would induce an excessive contribution to the KL-K~ mass difference through 

the diagram shown in Figure 11 unless 

ml; 

n/rd” < 1o-2 (30ZeVJ2 ’ (131) 

Similar constraints arise from D-D mixing, B-B mixing, ~1 + ey [al]. 

The strength of the constraint (131) suggests that the physical mechanism that 

generates the soft supersymmetry breaking terms contains a natural feature that sup- 

presses such off-diagonal terms. One possibility is that equal soft masses are generated for 

all scalars with the same SU(2) x U(1) q uantum numbers. Then the scalar mass matrix is 

proportional to the matrix 1 and so is diagonal in any basis [22, 231. Another possibility is 

that, by virtue of discrete flavor symmetries, the scalar mass matrices are approximately 

diagonal in the same basis in which the quark mass matrix is diagonal [24]. These two 

solutions to the potential problem of supersymmetric flavor violation are called, respec- 

tively, ‘universality’ and ‘alignment’. A problem with the alignment scenario is that the 

bases which diagonalize the u and d quark mass matrices differ by the weak mixing angles, 

. so it is not possible to completely suppress the mixing both for the u and d partners. This 

scenario then leads to a prediction of D-a mixing near the current experimental bound. 

4.2 The spectrum of superparticles-concepts 

We are now ready to discuss the expectations for the mass spectrum of super- 

symmetric partners. Any theory of this spectrum must have two parts giving , first, the 

generation of the underlying soft parameters at the messenger scale and , second, the mod- 

ification of these parameters through renormalization group evolution. In this section, I 

will make the simplest assumptions about the underlying soft parameters and concentrate 

on the question of how these parameters are modified by the renormalization group. In 

the next section, we will confront the question of how these simple assumptions can be 

tested. 

Let us begin by considering the fermionic partners of gauge bosons, the gauginos. 

If the messenger scale lies above the scale of grand unification, the gauginos associated 

with theSU(3) x SU(2) x U(1) g au e g b osons will be organized into a single representation 

of the grand unification group and thus will have a common soft mass term. This gives a 

very simple initial condition for renormalization group evolution. 

The renormalization group. equation for a gaugino mass mi is 

d 

dlog Q 
(132) 
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Figure 12: A simple radiative correction giving gaugino masses in the pattern of ‘gaugino 

unification’. 

where i = 3,2,1 for the gauginos of SU(3) x SU(2) x U( 1) and bi is the coefficient in the 

- equation (38) for th e coupling constant renormalization. Comparing these two equations, 

we find that mi(Q) and o;(Q) h ave the same renormalization group evolution, and so 

their ratio is constant as a function of Q. This relation is often written 

m;(Q) ml/2 

cr;o= CYU ’ 
(133) 

where (YU is the unification value of the coupling constant (oY,i = 24), and ml12 is the 

underlying soft mass parameter. As the oi flow from their unified value at very large scales 

to their observed values at Q = mz, the gaugino masses flow along with them. The result 

is that the grand unification of gaugino masses implies the following relation among the 

observable gaugino masses: 
ml m2 m3 -=-=- (134) 
a1 a2 Q3 . 

I will refer to this relation as gaugino unification. It implies that, for the values at the 

weak scale, 
ml 
-=0.5, 7x3.5. 

, m2 m2 

I caution you that these equations apply to a perturbative (for example, MS) definition 

of the masses. For the gluino mass m3, the physical, on-shell, mass may be larger than 

the MS mass by lo-20%, due to a radiative correction which depends on the ratio of the 

masses of the gluon and quark partners [25]. 

Though gaugino unification is a consequence of the grand unification of gaugino 

masses, it does not follow uniquely from this source. On the contrary, this result can 

also follow from models in which gaugino masses arise from radiative corrections at lower 

energy. For example, in a model of Dine, Nelson, Nir, and Shirman [26], gaugino masses 

are induced by the diagram shown in Figure 12, in which a supersymmetry-breaking 

expectation value of F couples to some new supermultiplets of mass roughly 100 TeV, 

and this influence is then tranferred to the gauginos through their Standard Model gauge 

couplings. As long as the mass pattern of the heavy particles is sufficiently simple, we 

obtain gaugino masses m; proportional to the corresponding Q;, which reproduces (134). 

Now consider the masses of the squarks and sleptons, the scalar partners of quarks 

and leptons. We saw in Section 3.4 that, since the left- and right-handed quarks belong 

to different supermultiplets Q, ii, d, each has its own scalar partners. The same situation 

applies for the leptons. In this section, I will assume for maximum simplicity that the 

underlying values of the squark and slepton mass parameters are completely universal, 

with the value A&. This is a stronger assumption than the prediction of grand unification, 
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and one which does not necessarily have a fundamental justification. Nevertheless, there 

are two effects that distort this universal mass prediction into a complex particle spectrum. 

The first of these effects comes from the D-term potential (121). Consider the 

contributions to this potential from the Higgs fields hl, h2 and from a squark or slepton 

field f: Terms contributing to the fl mass comes from the D” terms associated with the 

U(1) and the neutral SU(2) gauge bosons, 

v = $ (h;(-;)h, + h;(;)h2 + J-y?)2 

+; (h;T3hl + h;T3h2 + p13ff)2 . 

The factors in the first line are the hypercharges of the fields hl, ha. Now replace these 

Higgs fields by their vacuum expectation values 

(h,) = 5 (“‘;““) 
lh2) = 5 (vinp) (137) 

and keep only the cross term in each square. This gives 

V = 2$~(-~cos2~+~sin2~)fYf+2$~(+J2cos2~-~sin2~)fr3f 

= -c2mi(sin2 p - cos2 P)p(I” - $Y)j 

= -mi(sin2 ,B - cos2 P)f;(I” - s2&)f”. (138) 

Thus, this term gives a contribution to the scalar mass 

(139) 

3-96 
f 8137Al 

Figure 13: Renormalization of the soft scalar mass due to the gaugino mass. 

The second effect is the renormalization group running of the scalar mass induced 

_ by the gluino mass through the diagram shown in Figure 13. The renormalization group 

equation for the scalar mass Mf is 

d 

dlog Q Mf = 747$)2 
* 8 * C C2(r;)gFmf , 

i (140) 

where 

0, ! singlets, doublets of SU(2) . 

0, $ singlets, triplets of SU(3) 
(141) 
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In writing this equation, I have ignored the Yukawa couplings of the flavor f. This is 

a good approximation for light flavors, but we have already seen that it is not a good 

approximation for the top squarks, and it may fail also for the b and r partners if tan p is 

large. In those cases, one must add further terms to the renormalization group equations, 

such as those given in (128). 

To integrate the equation (140), we need to know the behavior of the gaugino masses 

as a function of Q. Let me assume that this is given by gaugino unification according to 

(133). Then 
g:rn? 
z = &i(Q) . $(Q)mi(M) 

4n 4M 
= af(Q). ?? . 

4 
(142) 

where oiM is the value of oy; at the messenger scale, and the quantities at the extreme 

right are to be evaluated at the weak interaction scale. If we inserting this expression into 

(140) and taking th e evolution of o;(Q) t o e b g iven by (51), the right-hand side of (140) 

is given as an explicit function of Q. To integrate the equation from messenger scale to 

the weak scale, we only need to evaluate 

Then, assembling the renormalization group and D-term contributions, the physical scalar 

mass at the weak interaction scale is given by 

The term in (144) . d m uced by the renormalization group effect is not simple, but it 

is also not so difficult to understand. It is amusing that it is quite similar in form to the 

formula one would find for a one-loop correction from a diagram of the general structure 

shown in Figure 13. Indeed, in the model of Dine, Nelson, Nir, and Shirman referred 

to above, for which the messenger scale is quite close to the weak interaction scale, the 

computation of radiative corrections gives the simple result 

A$ = c2C2(ri)$rnz + AM; , (145) 
i 

where, in this formula, the quantity mJcr2 is simply the mass scale of the messenger 

particles. The formulae (144) and (145) do differ quantitatively, as we will see in the next 

section. 

The equations (133) and (144) give a characteristic evolution from the large scale 

M down to the weak interaction scale. The colored particles are carried upward in mass 

by a large factor, while the masses of color-singlet sleptons and gauginos change by a 

smaller amount. The effects of the top Yukawa coupling discussed in Section 3.7 add to 

these mass shifts, lowering the masses of the top squarks and sending the (mass)2 of the 

Higgs field h2 down through zero. These observations explain all of the basic qualitative 

features of the evolution which we saw illustrated in Figure 10. 

_ 
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4.3 The spectrum of superparticles-diagnostics 

Now that we understand the various effects that can contribute to the superpartner 

masses, we can try to analyze the inverse problem: Given a set of masses observed exper- 

imentally, how can we read the pattern of the underlying mass parameters and determine 

the value of the messenger scale? In this section, I will present some general methods for 

addressing this question. 

This question of the form of the underlying soft-supersymmetry breaking param- 

eters requires careful thought. If supersymmetric particles are discovered at LEP 2 or 

LHC, this will become the most important question in high-energy physics. It is therefore 

important not to trivialize this question or to address it only in overly restrictive contexts. 

- In reading the literature on supersymmetry experiments at colliders, it is important to 

keep in mind the broadest range of possibilities for the spectrum of superparticles. Be 

especially vigilant for code-words such as ‘the minimal SUGRA framework’ [27] or ‘the 

Monte Carlo generator described in [93]’ [28] which imply the restriction to the special 

case in which A& is universal and M is close to the Planck mass. 

Nevertheless, in this section, I will make some simplifying assumptions. If the first 

supersymmetric partners are not found a LEP 2, the D-term contribution (139) is a small 

correction to the mass formula. In any event, I will ignore it from here on. Since this term 

is model-independent, it can in principle be computed and subtracted if the value of tan p 

is known. (It is actually not so easy to measure tan ,L?; a collection of methods is given 

in [29].) In addition, I will ignore the effects of weak-scale radiative corrections. These 

are sometimes important and can distort the overall pattern unless they are subtracted 

correctly [30]. 

I will also assume, in my description of the spectrum of scalars, that the spectrum 

of gauginos is given in terms of m2 by gaugino unification. As I have explained in the 

previous section, gaugino unification is a feature of the simplest schemes for generating the 
* 

soft supersymmetry-breaking masses both when M is very large and when it is relatively 

small. However, there are many more complicated possibilities. The assumption of gaugino 

unification can be tested experimentally, as I will explain in Section 4.5. This is an essential 

part of any experimental investigation of the superparticle spectrum. If the assumption 

is not valid, that also affects the interpretation of the spectrum of scalar particles. In 

particular, the renormalization effects included in the various curves shown in this section 

must be recomputed using the correct mass relations among the three gauginos. 

Once the gaugino masses are determined, we can ask about the relation between 

the mass spectrum of gauginos and that of scalars. To analyze this relation, it is useful 

to form the ‘Dine-Nelson plot’, that is, the plot of 

!Y? against 
m2 

c = [~c2(ri)q’2 ) (146) 

suggestld by (145). S ome sample curves on this plot are shown in Figure 14. The quantity 

C takes on only five distinct values, given by the SU(3) x SU(2) x U(1) quantum numbers 

of Z, L, d, U, and Q. These are indicated in the figure as vertical dashed lines. (The values 

of C for 2 and u are almost identical. The dot-dash line is the prediction of (145). The 

solid lines are the predictions of the renormalization group term in (144) for M = 100 

.TeV, 2 x 1016 GeV (the grand unification scale), and 10 is GeV (the superstring scale). 
.- 
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Figure 14: The simplest predictions for the mass spectrum of squarks and sleptons, ex- 

pressed on the Dine-Nelson plot (146). The dot-dashed curve is the prediction of (145); 

the solid curves show the effect of renormalization-group evolution with (from bottom to 

top) M = lo5 GeV, 2 x 10r6. GeV, 10” GeV. 

With this orientation, it is interesting to ask how a variety of models of supersym- 

metry breaking appear in this presentation. In Figure 15, I show the Dine-Nelson plot 

for a collection of models from the literature discussed in [31]. The highest solid curve 

from Figure 14 has been retained for reference. The model in the upper left-hand corner 

is the ‘minimal SUGRA’ model with a universal Ms at the Planck scale. In this case, 

the dashed curve lies a constant distance in m2 above the solid curve. The model in the 

upper right-hand corner is that of [26] with renormalization-group corrections properly 

included. The model in the bottom right-hand corner gives an example of the alignment 

- scenario of [24]. The plot is drawn in such a way as to suggest that, the underlying soft 

scalar masses tend to zero for the first generation of quarks and leptons. This behavior * 
could be discovered experimentally with the analysis I have suggested here. 

It is interesting that the various models collected in Figure 15 look quite different 

to the eye in this presentation. This ‘fact gives me confidence that, if we could actually 

measure the mass parameters needed for this analysis, those data would provide us with 

incisive information on the physics of the very large scales of unification and supersym- 

metry breaking. 
.- 
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Figure 15: Scalar spectrum predicted in a number of theoretical models of supersymmetry 

breaking, as displayed on the Dine-Nelson plot, from 1311. 
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4.4 The superpartners of W and Higgs 

Now that we have framed the problem of measuring the mass spectrum of super- 

particles, we must address the question of how this can be done. What are the signatures 

of the presence of supersymmetric particles, and how can we translate from the charac- 

teristics of observable processes to the values of the parameters of which determine the 

supersymmetry spectrum? 

I will discuss the signatures and decay schemes for superparticles in the next section. 

First, though, we must discuss a complication which needs to be taken into account in 

this phenomenology. 

After SU(2) x U(1) symmetry-breaking, any two particles with the same color, 

-charge, and spin can mix. Thus, the spin-i supersymmetric partners of the W bosons and 

the charged Higgs bosons can mix with one another. Similarly, the partners of the y, Z”, 

hy, and hi enter into a 4 x 4 mixing problem. 

Consider first the mixing problem of the charged fermions. The mass terms for 

these fermions arise from the gaugino-Higgs coupling in (119), the soft gaugino mass term 

in (126), and the fermion mass term arising from the superpotential (123). The relevant 

terms from the Lagrangian are 

If we replace hy and h: by their vacuum expectation values in (137), these terms take the 

form 

AL=--(ii?- ilh;)Tcm j$ , 
( ) 2 

, where m is the mass matrix 

m= firn:cosp ( 1/2rnw sin p 

p ) 

(148) 

(149) 

The physical massive fermions are the eigenstates of this mass matrix. They are called 

charginos, Xt,, where 1 labels the lighter state. More precisely, the charginos Xt, 2: 

are the linear combinations that diagonalize the matrix mtm, and Xl, 22 are the linear 

combinations that diagonalize the matrix mm+. 

The diagonalization of the matrix (149) is especially simple in the limit in which 

the supersymmetry parameters m2 and p are large compared to mw. In the region ~1 > 

m2 >> mw, 2: is approximately W+, with mass ml z m2, while 2,’ is approximately 

ii+ 2 , with mass m2 M p. For m2 > p >> mw, the content of 2:: and 2; reverses. More 

- generally, we refer to the region of parameters in which X;’ is mainly W+ as the gaugino 

region, and that in which j$ is mainly xh2f as the Higgsino region. If charginos are found * 
are LEP 2,Oit is quite likely that they may be mixtures of gaugino and Higgsino; however, 

the region of parameters in which the charginos are substantially mixed decreases as the 

mass increases. The contours of constant j$ mass in the (cl, m2) plane, for tan ,B = 4 are 

shown in Figure 16. 

An analysis similar to that leading to (149) g ives the mass matrix of the neutral 

fermionic partners. This is a 4 x 4 matrix acting on the vector (i, W3, i?$, i@), where b 

_ 
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Figure 16: Contours of fixed chargino mass in the plane of the mass parameters (11, m2), 

computed for tanp = 4. 

and W3 are the partners of the U(1) and the neutral SU(2) gauge boson. In this basis, 

the mass matrix takes the form 

m= 

i 

ml 0 -mzs cos p mzs sin p 

0 m2 mzc cos p -mzc sin p 

-mZs cos p mzc cos p 0 

I 
-1” * 

(150) 

mzs sin /3 -mzc sin /? -P 0 

The linear combinations which diagonalize this matrix are called neutralinos, 2: through 

. 22 from lowest to highest mass. The properties of these states-are similar to those of the 

charginos. For example, in the gaugino region, 2: is mainly b with mass ml, and 2; is 

mainly W3, with mass m2. 

Note that, when p = 0, the neutralino mass matrix (150) has an eigenvector with 

zero eigenvalue (0, 0, sin ,B, cos p). In addition, the vector (0, 0, cos ,B, - sin ,B) has a rela- 

tively small mass m, N rni /mz. This situation is excluded by the supersymmetry searches 

at LEP 1, for example, [32]. Th us, we are required on phenomenological grounds to include 

the superpotential (123) with a nonzero value of p. It is also important to note that, with 

the ‘minimal SUGRA’ assumptions used in many phenomenological studies, it is easiest 

to arrange electroweak symmetry breaking through the renormalization group mechanism 

discussed in Section 3.7 if p is of order m3 M 3.5m2. Thus, this set of assumptions typically 

leads to the gaugino region of the chargino-neutralino physics. 

4.5 Decay schemes of superpartners 

\ijrilh this information about the mass eigenstates of the superpartners, we can 

work out their decay schemes and, from this, their signatures. As I have explained at 

the end of Section 3.5, I restrict this ‘discussion to the situation in which R-parity, given 

by (124),-is conserved and so the lightest supersymmetric partner is stable. In most of 

this discussion, I will assume that this stable particle is the lightest neutralino 2:. The 

neutralino is a massive but weakly-interacting particle. It would not be observed directly 
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Figure 17: Diagrams leading to the decay of the chargino 2: to the 3-body final state 

P@y. The chargino can decay to u$jy by similar processes. 

in a detector at a high-energy collider but rather would appear as missing energy and 

unbalanced momentum. 

In this context, we can discuss the decays of specific superpartners. Clearly, the 

lighter superpartners will have the simplest decays, while the heavier superpartners will 

decay to the lighter ones. Since heavy squarks and sleptons often decay to charginos and 

neutralinos, it is convenient to begin with these. 

The decay pattern of the lighter chargino depends on its field content and, in 

particular, on whether its parameters lie in the gaugino region or the Higgsino region. In 

the gaugino region, the lighter chargino is mainly W+, with mass m2. The second neutralino 

is almost degenerate, but the first neutralino has mass ml = 0.5m2, assuming gaugino 

unification. If m2 > 2mw, the decay 2:: --+ IV’zy typically dominates. If m2 is smaller, 

the chargino decays to 3-body final states through the diagrams shown in Figure 17, and 

through the analogous diagrams involving quarks. The last two diagrams involve virtual 

sleptons. If the slepton mass is large, the branching ratio to quarks versus leptons is the 
. usual color factor of 3. However, if the sleptons are light, the branching ratio to leptons 

may be enhanced. 

In the Higgsino region, the chargino 2: and the two lightest neutralinos xl, x2 are 

all roughly degenerate at the mass 1-1. The first diagram in Figure 17 dominates in this 

case, but leads to only a small visible energy in the PV or uz system. 

The decay schemes of the second neutralino 2: are similar to those of the chargino. 

Since supersymmetry models typically have a light neutral Higgs boson ho, the decay 

2: + gyh” may be important. If neither this process nor the on-shell decay to 2’ are 

allowed, the most important decays are the 3-body processes such as j$! + jjyqq. The 

process 2; -+ g:PP is particularly important at hadron colliders, as we will see in 

Section 4.8. 

Among the squarks and sleptons, we see from Figure 15 that the EE of each gener- 

ation is typically the lightest. This particle couples to U(1) but not SU(2) and so, in the 

gaugino region, it decays through Ek --+ ejiy. On the other hand, the partners ,! of the 

left-handed leptons prefer to decay to exi or ~2: if these modes are open. 

It is a typical situation that the squarks are heavier than the gluino. For example, 

the renormalization group term in (i44), with M of the order of the unification scale, 

already gi-ves a contribution equal to 3m 2. In that case, the squarks decay to the gluino, 

@ -+ q?j. If the l g uinos are heavier, then, in the gaugino region, the superpartners of the 

right-handed quarks decay dominantly to qg:, while the partners of the left-handed quarks 
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Figure 18: Branching fractions for gluino decay in the various classes of final states possible 

for m(i) < m(G), from [34]. Th e f our graphs correspond to the gluino masses (a) 120 GeV, 

(b) 300 GeV, (c) 700 GeV, (d) 1000 GeV. Th e b ranching fractions are given as a function 

of p with m2 determined from the gluino mass by the gaugino unification relation (133). 

prefer to decay to qj$ or qff. 

If the squarks and gluinos are much heavier than the color-singlet superpartners, 

their decays can be quite complex, including cascades through heavy charginos, neutrali- 

nos, and Higgs bosons [33, 34, 351. F’g 1 ure 18 shows the branching fractions of the gluino 

as a function of /J, assuming gaugino unification and the condition that the squarks are 

heavier than the gluino. The boundaries apparent in the figure correspond to the tran- 

sition from the gaugino region (at large ]p]) to the Higgsino region. The more complex 

decays indicated in the figure can be an advantage in hadron collider experiments, be- 

cause they lead to characteristic signatures such as multi-leptons or direct 2’ production 

in association with missing transverse momentum. On the other hand, as the dominant 

gluino decay patterns become more complex, the observed inclusive cross sections depend 

more indirectly on the underlying supersymmetry parameters. 

U,p to now, I have been assuming that the lightest superpartner is the 2:. How- 

ever, there is an alternative possibility that is quite interesting to consider. According to 

Goldstone’s theorem, when a continuous symmetry is spontaneously broken, a massless 

particle appears as a result. In the most familiar examples, the continuous symmetry 

transforms the internal quantum. numbers of fields, and the massless particle is a Gold- 

stone boson. If the spontaneously broken symmetry is coupled to a gauge boson, the 

Goldstone boson combines with the gauge boson to form a massive vector bosom this is 
.- 
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the Higgs mechanism. Goldstone’s theorem also applies to the spontaneous breaking of 

supersymmetry, but in this case the massless particle is a Goldstone fermion or Goldstino. 

Then it would seem that the Goldstino should be the lightest superpartner into which all 

other superparticles decay? 

To analyze this question, we need to know two results from the theory of the Gold- 

stino. Both have analogues in the usual theory of Goldstone bosons. I have already pointed 

out in (97) that the gravitino, the spin-i supersymmetric partner of the graviton, acts as 

the gauge field of local supersymmetry. This particle can participate in a supersymmetric 

version of the Higgs mechanism. If supersymmetry is spontaneously broken by the expec- 

tation value of an F term, the gravitino and the Goldstino combine to form a massive 

spin-i particle with mass 

P) 
mdJ = J3m p1 ’ 

(151) 

where m pr is the Planck mass. Notice that, if the messenger scale M is of the order of 

m p1, this mass scale is of the order of the scale ms of soft supersymmetry-breaking mass 

terms given in (127). In fact, in this case, the massive gravitino is typically heavier than 

the Xy. On the other hand, if M is of order 100 TeV, with (F) such that the superparticle 

masses are at the weak interaction scale, m+ is of order 10m2 eV and so is much lighter 

than any of the superpartners we have discussed above. 

used 

(2 is 

The second result bears on the probability for producing Goldstinos. The methods 

to analyze pion physics in QCD generalize to this case and predict that the Goldstino 

produced through the effective Lagrangian 

(152) _ 

where (F) is the supersymmetry-breaking vacuum expectation value in (151) and j, is 

the conserved current associated with supersymmetry. Integrating by parts, this gives a 

coupling for the vertex f + f (? proportional to 

Am 

(F) ’ 
(153) 

where Am is the supersymmetry-breaking mass difference between f and f”. If the Gold- 

stino becomes incorporated into a massive spin-; field, this does not affect the production 

amplitude, as long as the Goldstinos are emitted at energies large compared to their mass. 

I will discuss this point for the more standard case of a Goldstone boson in Section 5.3. 

_ This result tells us that, if the messenger scale M is of order m pr and (F) is connected 

with M through (127), th e rate for the decay of any superpartner to the Goldstino is so 

slow that it is irrelevant in accelerator experiments. On the other hand, if M is less than 

100 TeV, decays to the Goldstino can become relevant. 

For the case of the coupling of the %, the superpartner of the U(1) gauge boson, to 

the photon and 2’ fields, the effective Lagrangian (152) takes the more explicit form 

(154) 
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This interaction leads to the decay g + ye with lifetime [36] 

c7 = (0.1 mm) (‘“;yev)5 ( l;)::;)4 . (155) 

It is difficult to estimate whether the value of cr resulting from (155) should be meters 

or microns. But this argument does predict that, if the 2: is the lightest superpartner of 

Standard Model particles, all decay chains should end with the decay of the 2; to $‘. 

If the lifetime (155) is short, each 2: momentum vector, which we visualized above as 

missing energy, should be realized instead as missing energy plus a direct photon. 

It is also possible in this case of small (F) that the lightest sleptons Es could 

be lighter than the 2 y. If these particles are the lightest superparticles, they lead to an 

unacceptable cosmological abundance of stable charged matter. This problem disappears, 

however, if they can decay to the Goldstino. In that case, all supersymmetric decay chains 

terminate with leptons and missing energy, for example, 

2; -+ e-2; .+ e-e+G . (156) 

From here on, I will concentrate on the most straightforward case in which the 

2: is the lightest superparticle and is stable over the time scales observable in collider 

experiments. However, it is important to keep these alternative phenomenologies in mind 

when you are actually looking for superparticle signatures in the data. 

4.6 The mass scale of supersymmetry 

At last, we have all the background we require to discuss the experiments which 

will detect and study supersymmetric particles at colliders. In this section, I would like to 

, recapitulate the general ideas that we have formulated for this study. I will also note the 

implication of the these idea for the mass range of supersymmetric particles. If the picture 

of supersymmetry that I have constructed here is correct, the supersymmetric particles 

should be discovered at planned, or even at the present, accelerators. 

Although the mass scale of supersymmetry depends on many parameters and is in 

principle adjustible over a large range, there is a good reason to expect to find supersym- 

metric particles relatively near at hand. As I have discussed in Section 3.7, supersymmetry 

provides a mechanism for electroweak symmetry breaking. If we assume that this indeed 

is the mechanism of supersymmetry breaking, the W and 2 masses must be masses char- 

acteristic of the scale of soft supersymmetry-breaking parameters. Alternatively, mw can 

only be much less than rns in (127) by virtue of an unnatural cancellation or fine-tuning 

of parameters. This possibility has been studied quantitatively in a number of theoretical 

- papers [37, 38, 391, with the conclusion that the relation between mw and ms is natural 

(by the authors’ definitions) only when 
* - 

m2 < 3mw . (157) 

Of course, it is possible that the mechanism of electroweak symmetry breaking does not 

involve supersymmetry. In that case, there might still be supersymmetry at a very high 

scale (to satisfy.aesthetic arguments or to aid in the quantization of gravity), but in this 

‘case supersymmetry would not be relevant to experimental high-energy physics. 
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The schemes for the supersymmetric mass spectrum discussed in Sections 4.2 and 

4.3 give a definite expectation for the ordering of states. The gaugino unification relation 

predicts that the gluino is the heaviest of the gauginos, with the on-shell gluino mass 

satisfying 

m(c) N 4m2 . (158) 

Our results were much less definitive about the mass relations of the squarks and sleptons. 

Roughly, though, 

m(@) N (2 - 6) . m(i) , and m(i) - m2 , (159) 

-in the models discussed in Section 4.3. 

The relations (157)-(159) predict that we should find charginos below 250 GeV in 

mass and gluinos below 1 TeV. This mass region is not very far away. The LEP 2 and 

Tevatron experimental programs will cover almost half of this parameter space in the next 

five years. The LHC can probe for supersymmetric particles up to masses about a factor 

3 beyond the region predicted by the relations above, and an e+e- linear collider with up 

to 1.5 TeV in the center of mass would have a roughly equivalent reach. 

Search strategies for supersymmetric particles depend on the detailed properties of 

the model. But in general, assuming R-parity conservation and the identification of 2: as 

the lightest superparticle, the basic signature of supersymmetry is new particle production 

associated with missing energy. In collider experiments, we would typically be looking for 

a multi-jet or multi-lepton final state, together with the characteristic missing transverse 

momentum or acoplanarity. 

Because I would like to continue in a somewhat different direction, I will not de- 

scribe in detail the techniques and strategies for the discovery of supersymmetry at these 

colliders. The search strategies for various supersymmetric particles at LEP 2 are de- 
. scribed in [40]. E x p erimental strategies for discovering supersymmetry at the Tevatron 

are reviewed in [41], together with an estimation of the reach in the mass spectrum. 

It is important to point out, though, that if the phenomenology of supersymmetry 

follows the general lines I have laid out here, it will be discovered, at the latest, by the LHC. 

The cross sections for LHC signatures of supersymmetry involving multiple leptons and 

direct 2’ production associated with missing transverse energy are shown in Figure 19 [35]. 

These cross sections are very large, of order 100 fb, for example, for the like-sign dilepton 

signal, at a collider that is designed to produce an event sample of 100 fb-’ per year per 

detector. Supersymmetry can also be seen by looking for events with large jet activity 

and missing transverse momentum. A sample comparison of signal and background for 

an observable that measures the jet activity is shown in Figure 20 [42]. The authors 

of this analysis conclude that, at the LHC, the major backgrounds to supersymmetry 

reactions do not come from Standard Model background processes but rather from other 

supersymmetry reactions. 

That prospect is enticing, but it is only the beginning of an experimental research 

program on supersymmetry. We have seen that the theory of the supersymmetry spectrum 

is complex and subtle. The investigation of supersymmetry should allow us to measure this 

spectrum, That in turn will give us access to the soft supersymmetry-breaking parameters, 

which are generated at very short distances and which therefore should hold information 

-about the very deep levels of fundamental physics. So it is important to investigate to 
.- 
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Figure 19: Cross sections for various signatures of supersymmetric particle production at 

the LHC, from from [35]. The observables studied are, from top to bottom, missing ET, 

like-sign dileptons, multi-leptons, and Z+ leptons. The top graph plots the cross sections 

as a function of m(j) for m(i) = am(s), and p = -150 GeV, and m2 given by gaugino 

-unification. The bottom graph, plotted for m(s) = 750 GeV as a function of p, shows the 

model-dependence of the cross sections. 
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Figure 20: Simulation of the observation of supersymmetric particle production at the 

LHC, from [42], at a point in parameter space with m(s) = 1 TeV. The observable Meff 

‘a 
is given by the sum of the missing ET and the sum of the ET values for the four hardest 

Jets. The supersymmetry signal is shown as the open circles. Among the backgrounds, the 

squares are due to QCD processes, and the other points shown are due to W, 2, and t 

production. 

what extent these experimental measurements are actually feasible using accelerators that 

we can foresee. 

In discussing this question, I will assume, pessimistically, that the scale of super- 

symmetry is relatively high, and so I will concentrate on experiments for the high-energy 

colliders of the next generation, the LHC and the e+e- linear collider discussed in the 

introduction. As a byproduct, this approach will illustrate the deep analytic power that 

both of these machines can bring to bear on new physical phenomena. 

4.7 Superspectroscopy at e+e- colliders 

I-will start this discussion of supersymmetry measurements from the side of e+e- 

colliders. It is intuitively clear that, if we had an e+e- collider operating in the energy 

region appropriate to supersymmetric particle production, some precision measurements 

could be made. But I have stressed that the soft supersymmetry-breaking Lagrangian 

can contain a very large number of parameters which become intertwined in the mass 

spectrum. Thus, it is important to ask, is there a set of measurements which extracts and 
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Figure 21: Schematic energy distribution in a slepton or squark decay, allowing a precision 

supersymmetry mass measurement at an e+e- collider. 

- disentangles these parameters? I will explain now how to do that. 

I do not wish to imply, with this approach, that precision supersymmetry mea- 

surements are possible only at e+e- colliders. In fact, the next section will be devoted to 

precision information that can be obtained from hadron collider experiments. And, indeed, 

to justify the construction of an e + - linear collider, it is necessary to show that the e+e- e 

machine adds significantly to the results that will be available from the LHC. Neverthe- 

less, it has pedagogical virtue to begin from the e+e- side, because the e+e- experiments 

allow a completely systematic approach to the issues of parameter determination. I will 

return to the question of comparing e+e- and pp colliders in Section 4.9. 

To begin, let me review some of the parameters of future e+e- colliders. Cross 

sections for e+e- annihilation decreases with the center-of-mass energy as 1/E2,,. Thus, 

to be effective, a future collider must provide a data sample of 20-50 fb-i/year at an 

center of mass energy of 500 GeV, and a data sample increasing from this value as E2CM 

at higher energies. The necessary luminosities are envisioned in the machine designs [43]. 

Though new sources of machine-related background appear, the experimental environment 

is anticipated to be similar to that of LEP [44]. A n important feature of the experimental 
* 

arrangement not available at LEP is an expected SO-SO% polarization of the electron 

beam. We will see in a moment that this polarization provides a powerful physics analysis 

tool. 

The simplest supersymmetry analyses at e+e- colliders involve e+e- annihilation 

to slepton pairs. Let @R denote the second-generation g;. This particle has a simple decay 

FR -+ PX~, so pair-production of @R results in a final state with p+p”- plus missing energy. 

The production process is simple s-channel annihilation through a vitual y and 2’; thus, 

the cross section and polarization asymmetry are characteristic of the standard model 

quantum numbers of the FR and are independent of the soft supersymmetry-breaking 

parameters. 

It is straightforward to measure the mass of the @R, and the method of this analysis 

_ can be applied to many other examples. Because the @R is a scalar, it decays isotropically 

to its two decay products. When we transform to the lab frame, the distribution of p 

energiesisflat between the kinematic endpoints, as indicated in Figure 21. The endpoints 

occur at 

4 = (1 f PW 7 (160) 

with p = (1 - 4m(@)2/E2CM)1/2, ,y = E cM/2m(ji), and 

E = mm2 - mc?32 
2m(p2) ’ (161) 
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Figure 22: Simulation of the FR mass measurement at an e+e- linear collider, from [45]. 

The left-hand graph gives the event distribution in the decay muon energy. The right-hand 

graph shows the x2 contours as a function of the masses of the parent Jim and the daughter 
-0 
x1* 

Given the measured values of E*, one can solve algebraically for the mass of the parent 

FR and the mass of the missing particle x1. -’ Since many particles have two-body decays to 

the Xy, this mass can be determined redundantly. For heavy supersymmetric particles, the 

lower endpoint may sometimes be obscured by background from cascade decays through 

heavier charginos and neutralinos. So it is also interesting to note that, once the mass of 

the 27 is known, the mass of the parent particle can be determined from the measurement 

of the higher endpoint only. 

A simulation of the j!iR mass measurement done by the JLC group [45] is shown in 

’ Figure 22. The simulation assumes 95% right-handed electron polarization, which essen- 

tially eliminates the dominant background e+e- --+ W+ W-, but even with 80% polariza- 

tion the endpoint discontinuities are clearly visible. The measurement gives the masses of 

FR and 2: to about 1% accuracy. As another example of this technique, Figure 23 shows 

a simulation by the NLC group [44] of th e mass measurement of the V in 5 --+ e-2:. 

To go beyond the simple mass determinations, we can look at processes in which 

the production reactions are more complex. Consider, for example, the pair-production of 

the first-generation Es. The production goes through two Feynman diagrams, which are 

shown in Figure 24. Because the 2: is typically light compared to other superparticles, it is 

the second diagram that is dominant, especially at small angles. By measuring the forward 

peak in the cross section, we obtain an additional measurement of the lightest neutralino 

mass, and a measurement of its coupling to the electron. We have seen in (119) that the 

coupling of X to e+&j is proportional to the standard model U(1) coupling g’. Thus, this 

information can be used to determine one of the neutralino mixing angles. Alternatively, if * - 
we have other diagnostics that indicate that the neutralino parameters are in the gaugino 

region, this experiment can check the supersymmmetry relation of couplings. For a 200 

GeV Zi, with a 100 fb-’ d a a sample at 500 GeV, the ratio of couplings can be determined t 

to 1% accuracy [46]. 

Notice that the neutralino exchange diagram in Figure 24 is present only for eke; + 

-EkEi, since E;I is the superpartner of the right-handed electron. On the other hand, with 
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Figure 23: Simulation of the V mass measurement at an e+e- linear collider, from [44]. 

The bottom graph gives the event distribution in the decay electron energy. The top graph 

shows the x2 contours as a function of the masses of the parent C and the daughter 2:. 

the initial state clef;, we have the analogous diagram producing the superpartner of 

the left-handed electron I-. In the gaugino region, the process eLe& -+ z-z+ has large 

c_ontributions both from 2: (i) exchange and from 2; (6”) exchange. The reaction eie; + 

L-E; is also mediated by neutralino exchange and contains additional useful information. 

Along with the sleptons, the chargino zf is expected to be a relatively light particle 

which is available for precision measurements at an e+e- collider. The dominant decays of 

the chargino are j$ + CJ@$ and 2: + e+vzy, leading to events with quark jets, leptons, 

and missing energy. In mixed hadron-lepton events, one chargino decay can be analyzed 

as a two-body decay into the observed qq system plus the unseen neutral particle 2:; then 

the ma& measurement technique of Figure 21 can be applied. The simulation of a sample 

measurement, using jet pairs restricted to an interval around 30 GeV in mass, is shown 

in Figure 25 [44]. The full data sample (50 fb-’ at 500 GeV) gives the 2: mass to an 

accuracy of 1% [47]. 

The diagrams for chargino pair production are shown in Figure 26. The cross section 

.depends strongly on the initial-state polarization. If the V is very heavy, it is permissible 
.- 
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Figure 24: Feynman diagrams for the process of selectron pair production. 

to ignore the second diagram; then the first diagram leads to a cross section roughly ten 

times larger for e; than for ek. If the V is light, this diagram interferes destructively to 

lower the cross section. 

For a right-handed electron beam, the second diagram vanishes. Then there is 

an interesting connection between the chargino production amplitude and the values of 

the chargino mixing angles [45]. C onsider first the limit of very high energy, E2cM >> 

mi. In this limit, we can ignore the 2’ mass and consider the virtual gauge bosons 

in the first diagram to be the U(1) and the neutral SU(2) bosons. But the ek does 

not couple to the SU(2) gauge b osons. On the other hand, the IV+ and W+ have zero 

hypercharge and so do not couple to the U(1) b oson. Thus, at high energy, the amplitude 

for e,e+ + X:X, is nonzero only if the charginos have a Higgsino component and is, 
. in fact, proportional to the chargino mixing angles. Even if we do not go to asymptotic 

energies, this polarized cross section is large in the Higgsino region and small in the gaugino 

region, as shown in Figure 27. This information can be combined with the measurement 

of the forward-backward asymmetry to determine both of the chargino mixing angles in 

a manner independent of the other supersymmetry parameters [48]. 

If the study with ejj indicates that the chargino parameters are in the gaugino 

region, measurement of the differential cross section for e,e+ --+ X;‘X, can be used to 

determine the magnitude of the second diagram in Figure 26. The value of this diagram 

can be used to estimate the V mass or to test another of the coupling constant relations 

predicted by supersymmetry. With a 100 fb-i data sample, the ratio between the G+Ge, 

coupling and the W+ve; coupling can be determined to 25% accuracy if m(G) must also 

be determined by the fit, and to 5% if m(P) is known from another measurement. 

These examples demonstrate how the e+e- collider experiments can determine 

superpartner masses and the mixing angle of the charginos and neutralinos. The exper- 

imental*prbgram is systematic and does not depend on assumptions about the values of 

other supersymmetry parameters. It only demands the basic requirement that the color- 

singlet superpartners are available for’study at the energy at which the collider can run. If 

squarks can be pair-produced at these energies, they can also be studied in this systematic 

way. Not only can their masses be measured, but polarization observables can be used to 

measure the small mass differences predicted by (144) and (145) [49]. 
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. Figure 25: Simulation of the -2;’ mass measurement at an e+e- linear collider, from [44]. 

The bottom graph gives the event distribution in the energy of the aq pair emitted in a 

2;’ hadronic decay. The hadronic system is restricted to a bin in mass around 30 GeV. 

The bottom graph shows the x2 contours as a function of the masses of the parent 2: 

and the daughter 2:. 

4.8 Superspectroscopy at hadron colliders 

At the end of Section 4.6, I explained that it should be relatively straightforward to 

identify the signatures of supersymmetry at the LHC. However, it is a challenging problem 

there to extract precision information about the underlying supersymmetry parameters. 

For a long time, it was thought that this information would have to come from cross 

sections for specific signatures whose origin is complex and model-dependent. However, 

it has been realized more recently that the LHC can, in certain situations, offer ways to 

determme supersymmetry mass parameters kinematically. 

Let me briefly describe the parameters of the LHC [50]. This is a pp collider with 

14 TeV in the center of mass. The design luminosity corresponds to a data sample, per 

experiment, of 100 fb-r per year:A simpler experimental environment, without multiplet 

hadronic collisions per proton bunch crossing, is obtained by running at a lower luminosity 

of 10 fb-r per year, and this is probably what will be done initially. If the supersymmetric 
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Figure 26: Feynman diagrams for the process of chargino pair production. 

partners of Standard Model particles indeed lie in the region defined by our estimates 

(157)-(159), th’ 1 is ow luminosity should already be sufficient to begin detailed exploration 

of the supersymmetry mass spectrum. 

Before we discuss methods for direct mass measurement, I should point out that the 

many signatures available at the LHC which do not give explicit kinematic reconstructions 

do offer a significant amount of information. For example, the ATLAS collaboration [28, 

511 has suggested comparing the cross-sections for like-sign dilepton events with &+1+ 

versus e-e-. The excess of events with two positive leptons comes from the process in which 

two u quarks exchange a gluino and convert to U, making use of the fact that the proton 

contains more u than d quarks. The contribution of this process peaks when the squarks 

and gluinos have roughly equal masses, as shown in Figure 28. Thus, this measurement 

allows one to estimate the ration of the squark and gluino masses. Presumably, if the 

values of p, ml, and m2 were known from the e+e- collider experiments, it should be 

. possible to make a precise theory of multi-lepton production and to use the rates of these 

processes to determine m(s) and m(G). 

In some circumstances, however, the LHC provides direct information on the su- 

perparticle spectrum. Consider, for example, decay chains which end with the decay 

2: + l+!-j?&’ discussed in Section 4.5. The dilepton mass distribution has a disconti- 

nuity at the kinematic endpoint where 

m(l+l-) = rn(xi) - rn(iy) . (162) 

The sharpness of this kinematic edge is shown in Figure 29, taken from a study of the 

process qij t X:X; [52]. Under th e assumptions of gaugino unification plus the gaugino 

region of parameter space, the mass difference in (162) equals 0.5m2. Thus, if we have 

some independent evidence for these assumptions, the position of this edge can be used 

to give the overall scale of superparticle masses. Also, if the gluino mass can be measured, 

the ratio of that mass to the mass difference (162) provides a test of these assumptions. 

it a point in parameter space studied for the ATLAS Collaboration in [42], it is 

possible to go much further. We need not discuss why this particular point in the ‘minimal 

SUGRA’ parameter space was chosen’for special study, but it turned out to have a number 

of advantageous properties. The value of the gluino mass was taken to be 300 GeV, leading 

to a very large gluino production cross section, equal to 1 nb, at the LHC. The effect of 

.Yukawa couplings discussed in Section 3.7 lowers the masses of the superpartners of TV 
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Figure 27: Contours of constant cross section, in fb, for the reaction e,e+ --+ j$il at 

I? CM = 500 GeV, f rom [48]. The plot shows how the value of this cross section maps to 

the position in the (p, m2) plane. The boundaries of the indicated regions are the curves 

on which the 2: mass equals 50 GeV and 250 GeV. 

and bL, in particular, making & the lightest squark. Then a major decay chain for the G 

would be 

(163) 

r which could be followed by the dilepton decay of the 2:. 

Since the number of events expected at this point is very large, we can select events 

in which the e+e- pair falls close to its kinematic endpoint. For these events, the dilepton 

pair and the daughter 2: are both at rest with respect to the parent 2:. Then, if we are 

also given the mass of the j$, the energy-momentum 4-vector of the 2; is determined. This 

mass might be obtained from the assumptions listed below (162), from a more general 

fit of the LHC supersymmetry data to a model of the supersymmetry mass spectrum, or 

from a direct measurement at an e+e- collider. In any event, once the momentum vector 

of the 2; is determined, there is no more missing momentum in the decay chain. It is now 

possible to successively add b jets to reconstruct the & and then the 5. The mass peaks 

for these states obtained from the simulation results of [42] are shown in Figure 30. For a 

fixed m( Xy), the masses of bL and 5 are determined to 1% accuracy. 

It may seem that this example uses many special features of the particular point in 

parameter space which was chosen for the analysis. At another point, the spectrum might 

be diffeient in a way that would compromise parts of this analysis. For example, the 2; 

might be allowed to decay to an on-shell Z”, or the gluino might lie below the by. On 

the other hand, the method just described can be extended to any superpartner with a 

three-body becay involving one unobserved neutral. In [42], other examples are discussed 

which apply these ideas to decay chains that end with 5 t gyhOq and t--+ j$V+b. 

To properly evaluate the capability of the LHC to perform precision supersymmetry 
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Figure 28: The asymmetry between the cross sections for dilepton events with &+l+ and 

those with a-& expected at the LHC, plotted as a function of the ratio of the gluino to 

the squark mass, from [28]. The th ree curves refer to the idicated values of the lighter of 

the squark and gluino masses. 

measurements, we must remember that Nature has chosen (at most) one point in the 

supersymmetry parameter space, and that every point in parameter space is special in its 

own way. It is not likely that we will know, in advance, which particular trick that will be 

most effective. However, we have now only begun the study of strategies to determine the 

* superparticle spectrum from the kinematics of LHC reactions. There are certainly many 

more tricks to be discovered. 

4.9 Recapitulation 

If physics beyond the Standard Model is supersymmetric, I am optimistic about 

the future prospects for experimental particle physics. At the LHC, if not before, we will 

discover the superparticle spectrum. This spectrum encodes information about physics at 

the energy scale of supersymmetry breaking, which might be as high as the grand unifica- 

tion or even the superstring scale. If we can measure the basic parameters that determine 

this spectrum, we can uncover the patterns that will let us decode this information and 

see much more deeply into fundamental physics. 

It is not clear how much of this program can already be done at the LHC and how 

much must be left to the experimental program of an e + - linear collider. For adherents of e 

the linear collider, the worst case would be that Nature has chosen a minimal parameter * - 
set and also some special mass relations that allow the relevant three or four parameters to 

be determined at the LHC. Even in this case, the linear collider would have a profoundly 

interesting experimental program. In this simple scenario, the LHC experimenters will be 

able to fit -their data to a small nu-mber of parameters, but the hadron collider experiments 

cannot verify that this is the whole story. To give one example, it is not known how, at a 

hadron collider, to measure the mass of the Xy, the particle that provides the basic quan- 
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Figure 29: Distribution of the dilepton mass in the process pp t 2:X; + X, with the j$ 

decaying to PPgy, from [52]. 

turn of missing energy-momentum used to build up the supersymmetry mass spectrum. 

The LHC experiments may give indirect determinations of m(jT$). The linear collider can 

provide a direct precision measurement of this particle mass. If the predicted value were 

found, that would be an intellectual triumph comparable to the direct discovery of the 

W boson in pp collisions. 

I must also emphasize that there is an important difference between the study of 

the supersymmetry spectrum and that of the spectrum of weak vector bosons. In the latter 

. case, the spectrum was predicted by a coherent theoretical model, the SU(2) x U( 1) gauge 

theory. In the case of supersymmetry, as I have emphasized in Section 4.3, the minimal 

parametrization is just a guess-and one guess among many. Thus, it is a more likely 

outcome that a simple parametrization of the supersymmetry spectrum would omit crucial 

details. To discover these features, one would need the model-independent approach to 

supersymmetry parameter measurements that the e+e- experiments can provide. 

In this more general arena for the construction and testing of supersymmetry model, 

the most striking feature of the comparison of colliders is how much each facility adds 

to the results obtainable at the other. From the e+e- side, we will obtain a precision 

understanding of the color-singlet portion of the supersymmetry spectrum. We will mea- 

sure parameters which determine what decay chains the colored superparticles will follow. 

From the pp side, we will observe some of these decay chains directly and obtain precise 

- inclusive cross sections for the decay products. This should allow us to analyze these de- 

cay chains back to their origin and to measure the superspectrum parameters of heavy 

colored superparticles. Thus, if the problem that Nature poses for us is supersymmetry, 

these two colliders together can solve that problem experimentally. 

5. Technicolor 

In the previous two sections, I have given a lengthy discussion of the theoretical 

structure of models of new physics based on supersymmetry. I have explained how super- 
.- 
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Figure 30: Reconstruction of the mass of the 8 and the 5 at the LHC, at a point in 

supersymmetry parameter space studied in [42]. In the plot on the left, the peak near 

300 GeV shows the reconstructed x. The plot on the right shows the event distribution in 

the variable m(ij) - m(i). The dashed distribution shows the values for the events lying 

between 230 GeV and 330 GeV in the left-hand figure. 

symmetry leads to a solution to the problem of electroweak symmetry breaking. I have 

explained that the ramifications of supersymmetry are quite complex and lead to a rich 

variety of phenomena that can be studied experimentally at colliders. 

. This discussion illustrated one of the major points that I made at the beginning 

of these lectures. In seeking an explanation for electroweak symmetry breaking, we could 

just write down the minimal Lagrangian available. However, for me, it is much more 

attractive to look for a theory in which electroweak symmetry breaking emerges from a 

definite physical idea. If the idea is a profound one, it will naturally lead to new phenomena 

that we can discover in experiments. 

Supersymmetry is an idea that illustrates this picture, but it might not be the right 

idea. You might worry that this example was a very special one. Therefore, if I am to 

provide an overview of ideas on physics beyond the Standard Model, I should give at least 

one more example of a physical idea that leads to electroweak symmetry breaking, and 

one assumptions of a very different kind. Therefore, in this section, I will discuss models of 

electroweak symmetry breaking based on the postulate of new strong interactions at the 

- electroweak scale. We will see that this idea leads to a different set of physical predictions 

but nevertheless implies a rich and intriguing experimental program. 
* - 

5.1 The structure of technicolor models 

The basic structure of a model of electroweak symmetry breaking by new strong 

interactions is that of the Weinberg-Susskind model discussed at the end of Section 2.2. 

This model was based on a strong-interaction model that was essentially a scaled up 

version of QCD. From here on, I will refer to the new strong interaction gauge symmetry 
.- 
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Figure 31: Contributions to the vacuum polarization of the W boson from technicolor 

states. 

as ‘technicolor’. In this section, I will discuss more details of this model, and also add 

features that are necessary to provide for quark and lepton mass generation. 

In Section 2.2, I pointed out that the Weinberg-Susskind model leads to a vacuum 

- expectation value which breaks SU(2) x U( 1). T o understand this model better, we should 

first try to compute the W and 2 boson mass matrix that comes from this symmetry 

breaking. 

QCD with two massless flavors has the global symmetry SU(2) x SU(2); indepen- 

dent sU(2) symmetries can rotate the doublets qL = (UL, dL) and qR = (UR, dR). When 

the operator ijq obtains vacuum expectation values as in (16), the two SU(2) groups are 

locked together by the pairing of quarks with antiquarks in the vacuum. Then the overall 

SU(2) is unbroken; this is the manifest isospin symmetry of QCD. The second SU(2) is 

that associated with the axial vector currents 

This symmetry is spontaneously broken. By Goldstone’s theorem, the symmetry break- 

ing leads to a massless boson for each spontaneously broken symmetry, one created or 

annihilated by each broken symmetry current. These three particles are identified with 

the pions of QCD. The matrix element between the axial SU(2) currents and the pions 

can be parametrized as 
‘a 

(OIJP5”1rb(p)) = ifTpP”Sab . (165) 

By recognizing that Jp5a is a part of the weak interaction current, we can identify fn 

as the pion decay constant, fn = 93 MeV. The assumption of Weinberg and Susskind is 

that the same story is repeated in technicolor. However, since the technicolor quarks are 

assumed to be massless, the pions remain precisely massless at this stage of the argument. 

If the system with spontaneously broken symmetry and massless pions is coupled 

to gauge fields, the gauge boson should obtain mass through the Higgs mechanism. To 

compute the mass term, consider the gauge boson vacuum polarization diagram shown in 

Figure 31. 

Let us assume first that we couple only the weak interaction SU(2) bosons to the 

techniquarks. The coupling is 

AL = gA;J& . (166) 

Then the matrix element (165) a 11 ows a pion to be annihilated and a gauge boson created, 

with the amplitude 

ig .,(-I). ifTp,Pb ; (167) 

the second factor comes from J&, ‘= i( J; - J:5). Using th is amplitude, we can evaluate the 

amplitude for a.process in which a gauge boson converts to a Goldstone boson and then 

converts back. This corresponds to the diagram contributing to the vacuum polarization 
.- 
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shown as the second term on the right-hand side of Figure 31. The value of this diagram 

is 

(?L$yL(-+), (168) 

The full vacuum polarization amplitude ZI$,(;o) consists of this term plus more compli- 

cated terms with massive particles or multiple particles exchanged. These are indicated as 

the shaded blob in Figure 31. If there are no massless particles in the symmetry-breaking 

sector other than the pions, (168) is the only term with a l/p2 singularity near p = 0. 

Now recognize that the gauge current JiP is conserved, and so the vacuum polarization 

_ must satisfy 

pw rI$(p) = 0 . (169) 

These two requirements are compatible only if the vacuum polarization behaves near p = 0 

as 

(170) 

This is a mass term for the vector boson, giving 

?-l-l~=-CJ~ 
2 ’ 

with 2) = f= . (171) 

This is the result that I promised above (18). 

Now add to this structure the U(1) gauge boson B, coupling to hypercharge. Re- 

peating the same arguments, we find the mass matrix 

m2 = A2 g2 
2 

()( 

g2 
g2 -99’ ’ 
-gd (g’J2 1 

W-2) 

acting on (AE,Az,AE,B,). This has just the form of (21). The eigenvalues of this matrix 

give the vector boson masses (7), with u = 246 GeV = f=. This is the result promised 

above (18). M ore generally, in a model with No technicolor doublets, we require, 

v2 = N~f,2 . (173) 

Thus, a larger technicolor sector lies lower in energy and is closer to the scale of present 

experiments. 

In my discussion of (21), I p ointed out that this equation calls for the presence 

of an unbroken SU(2) global symmetry of the new strong interactions, called custodial 

- SU(2), in addition to the spontaneously broken weak interaction SU(2) symmetry. This 

global sU[2) y s mmetry requires that the first three diagonal entries in (172) are equal, 

giving the mass relation mw/rnz = cos0,. Custodial SU(2) symmetry also acts on the 

heavier states of the new strong interaction theory and will play an important role in our 

analysis of the experimental probes of this sector. 

The model I have just described gives mass the the W and 2 bosons, but it does 

not yet give mass to quarks and leptons. In order to accomplish this, we must couple the 

quarks and leptons to the techniquarks. This is done by introducing further gauge bosons 

_ 
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Figure 32: ETC generation of quark and lepton masses. 

-called Extended Technicolor (ETC) bosons [53, 541. If we imagine that the ETC bosons 

connect light fermions to techniquarks, and that they are very heavy, a typical coupling 

induced by these bosons would have the form 

= (174) 

Now replace ULVR by its vacuum expectation value due to dynamical techniquark mass 

generation: 

(D’L&) = - f @u) = iA, (175) 

where rnE and gE are the ETC mass and coupling, A is as in (16) and the unit matrix is 

in the space of Dirac indices. Inserting (175) into (174), we find a fermion mass term 

m =&A 21 (176) 
‘a mI& 

The origin of this term is shown diagrammatically in Figure 32. In principle, masses could 

be generated in this way for all of the quarks and leptons. 

From (176), we can infer the mass scale required for the ETC interactions. Es- 

timating with $fE M 1, and A N 4nfz (which gives (UU) = (300 MeV)3 in QCD), we 

find 

(177) 

using the s and t quark masses as reference points in the fermion mass spectrum. 

The detailed structure of the ETC exchanges must be paired with a suitable struc- 

ture of the techiquark sector. We might call ‘minimal technicolor’ the theory with precisely 

one weak interaction SU(2) doublet of techniquarks. In this case, all of the flavor structure 

must appear in the ETC group. In particular, some ETC bosons must be color triplets 

to give mass to the quarks through the mechanism of Figure 32. Another possibility is 

that thi technicolor sector could contain techniquarks with the SU(3) x SU(2) x U(1) 

quantum numbers of a generation of quarks and leptons [55]. Then the ETC bosons could 

all be color singlets, though they would still carry generation quantum numbers. In this 

case also, (173) would apply with No = 4, putting fX = 123 GeV. More complex cases 

in which ETC b&sons can be doublets of SU(2) h ave also been discussed in the literature 
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5.2 Experimental constraints on technicolor 

The model that I have just described makes a number of characteristic physical 

predictions that can be checked in experiments at energies currently available. Unfortu- 

nately, none of these predictions checks experimentally. Many theorists view this as a 

repudiation of the technicolor program. However, others point to the fact that we have 

built up the technicolor model assuming that the dynamics of the technicolor interactions 

exactly copies that of QCD. By modifying the pattern or the explicit energy scale of chiral 

symmetry breaking, it is possible to evade these difficulties. Nevertheless, it is important 

to be aware of what the problems are. In this section, I will review the three major ex- 

perimental problems with technicolor models and then briefly examine how they may be 

avoided through specific assumptions about the strong interaction dynamics. 

The first two problems are not specifically associated with technicolor but rather 

with the ETC interactions that couple techniquarks to the Standard Model quarks and 

leptons. If two matrices of the ETC group link quarks with techniquarks, the commutator 

of these matrices should link quarks with quarks. This implies that there should be ETC 

bosons which create new four-quark interactions with coefficients of order gi/m‘&. In the 

Standard Model, there are no flavor-changing neutral current couplings at the tree level. 

Such couplings are generated by weak interaction box diagrams and other loop effects, 

but the flavor-changing part of these interactions is suppressed to the level observed 

experimentally by the GIM cancellation among intermediate flavors [57]. This cancellation 

follows from the fact that the couplings of the various flavors of quarks and leptons to 

the W and 2 depend only on their SU(2) x U(1) q uantum numbers. For ETC, however, 

either the couplings or the boson masses must depend strongly on flavor in order to 

generate the observed pattern of quark and lepton masses. Thus, generically, one expects 

large flavor-changing neutral current effects. It is possible to suppress these couplings to a 

level at which they do not contribute excessively to the K~-li’s mass difference, but only 
. 

by raising the ETC mass scale to mE > 1000 TeV. In a similar way, ETC interactions 

generically give excessive contributions to h” --+ ,w+e- and to ~1 + ey unless ??2E 2 100 

TeV [58, 591. Th ese estimates contradict the value of the ETC boson masses required in 

(177). There are schemes for natural flavor conservation in technicolor theories, but they 

require a very large amount of new structure just above 1 TeV [60, 61, 621. 

The second problem comes in the value of the top quark mass. If ETC is weakly 

coupled, the value of any quark mass should be bounded by approximately 

(178) 

where A is the techniquark bilinear expectation value. Estimating as above, this bounds 

the quark masses at about 70 GeV [63]. T o see this problem from another point of view, 

- look back at the mass of the ETC boson associated with the top quark, as given in (177). 

This is comparable to the mass of the technicolor p meson, which we would estimate from * - 
(18) to have a value of about 2 TeV. So apparently the top quark’s ETC boson must be a 

particle with technicolor strong interactions. This means that the model described above 

is not self-consistent. Since this new ‘strongly-interacting particle generates mass for the 

t but not- the b, it has the potential to give large contributions to other relations that 

violate weak-interaction isospin. In particular, it can give an unwanted large correction 

to the relation rnw = rnz cos 8, in (20). 
.- 
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The third problem relates directly to the technicolor sector itself. This issue arises 

from the precision electroweak measurments. In principle, the -agreement of precision 

electroweak measurements with the Standard Model is a strong constraint on any type of 

new physics. The constraint turns out to be especially powerful for technicolor. To explain 

this point, I would like to present some general formalism and then specialize it to the 

case of technicolor. 

At first sight, new physics can affect the observables of precision electroweak physics 

through radiative corrections to the SU(2) x U(1) b oson propagators, to the gauge boson 

vertices, and to 4-fermion box diagrams. Typically, though, the largest effects are those 

from vacuum polarization diagrams. To see this, recall that almost all precision elec- 

- troweak observables involve 4-fermion reactions with light fermions only. (An exception 

is the 2 + bb vertex, whose discussion I will postpone to Section 5.7.) In this case, the 

vertex and box diagrams involve only those new particles that couple directly to the light 

generations. If the new particles are somehow connected to the mechanism of SU(2) x U( 1) 

breaking and fermion mass generation, these couplings are necessarily small. The vacuum 

polarization diagrams, on the other hand, can involve all new particles which couple to 

577(2) x U(l), and can even be enhanced by color or flavor sums over these particles. 

The vacuum polarization corrections also can be accounted in a very simple way. 

It is useful, first, to write the W and 2 vacuum polarization amplitudes in terms of 

current-current expectation values for the SU(2) and electromagnetic currents. Use the 

relation 

Jz = J3 - s2JQ , (179) 

where JQ is the electromagnetic current, and s2 = sin2 8,, c2 = cos2 19,. Write the weak 

coupling constants explicitly in terms of e, s2 and c2. Then the vacuum polarization 

amplitudes of y, IV, and 2 and the yZ mixing amplitude take the form 

. II Y-7 = e211QQ 

nww = ET” 
s2 QQ 

Hz, = 9n,, - S2HQQ) - 

The current-current amplitudes II;j are functions of (q2/M2), where A4 is the mass of the 

new particles whose loops contribute to the vacuum polarizations. 

If these new particles are too heavy to be found at the 2’ or in the early stages 

of LEP 2, the ratio q2/iV2 is bounded for q2 = rni. Then it is reasonable to expand 

the current-current expectation values a power series. In making this expansion, it is 

important to take into account that any amplitude involving an electromagnetic current 

will van+h at q2 = 0 by the standard QED Ward identity. Thus, to order q2, we have six 

coefficients, 

HQQ = q”nbQ(0) + . ” 

n 11 = &l(O) + q”nl,,(o> + - * * 

n3Q = q”n;Q(o) + . . . 

n33 = n,,(o) + q2n;,p> + * *. (181) .- 
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Figure 33: Schematic determination of S and T from precision electroweak measurements. 

For each observable, the width of the band corresponds to the experimental error in its 

determination. 

To specify the coupling constants g, g’ and the scale v of the electroweak theory, we must 

measure three parameters. The most accurate reference values come from a, GF, and mz. 

Three of the coefficients in (181) are absorbed into these parameters. This leaves three 

independent coefficients which can in principle be extracted from experimental measure- 

ments. These are conventionally defined 1641 as 

s = 167r[IIL3(0) - n;,(o)] 

T= 47r [~ll(O> - JJ33(0>] 
s2c2m2 Z 

U = 167r[IIk3(0) - II;,(O)] (182) 

. I include in these parameters only the contributions from new physics. From the defini- 

tions, you can see that S measures the overall magnitude of q2/M2 effects, and T measures 

the magnitude of effects that violate the custodial SU(2) symmetry of the new particles. 

The third parameter U requires both q2-dependence and SU(2) violation and typically is 

small in explicit models. 

By inserting the new physics contributions to the intermediate boson propagators 

in weak interaction diagrams, we generate shifts from the Standard Model predictions 

which are linear in S, T, and U. For example, the effective value of sin2 8, governing 

the forward-backward and polarization asymmetries at the 2’ is shifted from its value 

(s2) sM, in the Minimal Standard Model, by 

(S2) eff - (s2) SM = -&is -s2c2T] . (183) 

All of the standard observables except for mw and IW are independent of U, and since * - 
U is in any event expected to be small, I will ignore it from here on. In that case, any 

precision weak interaction measurement restricts us to the vicinity of the line in the S- 

T plane. The constraints that come from the measurements of (s~)~E, mw, and Iz are 

sketched in Figure 33. If these lines meet, they indicate particular values of S and T which 

fit the deviations from the Standard Model in the whole corpus of weak interaction data. 

Figure 34 shows such an S-T fit to the data available in the summer of 1996 [ll]. The 
.- 
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Figure 34: Current determination of S and T by a fit to the corpus of precision electroweak 

data, from [ll]. Th e various ellipses show fits to a subset of the data, including the values 
. 

of Q, GF, and mz plus those.of one or several additional observables. 

various curves show fits to (Y, GF, mz plus a specific subset of the other observables; the 

varying slopes of these constraints illustrate the behavior shown in Figure 33. 

There is one important subtlety in the interpretation of the final values of S and 

T. In determining the Minimal Standard Model reference values for the fit, it is necessary 

to specify the value of the top quark mass and also a value for the mass of the Minimal 

Standard Model Higgs boson. Raising mt gives the same physical effect as increasing 

T; raising mH increases S while slightly decreasing T. Though mt is known from direct 

measurements, ?nH is not. The analysis of Figure 34 assumed mt = 175 GeV, m,IJ = 

300 GeV. In comparing S and T to the predictions of technicolor models, it is most 

_ straightforward to compute the difference between the technicolor contribution to the 

vacuum polarization and that of a 1 TeV Higgs boson. Shifting to this reference value, we 

have the experimental constraint 

S = -0.26 f 0.16 . (184) 

The negative sign indicates that there should be a smaller contribution to the W and 2 

vacuum polarizations than that predicted by a 1 TeV Standard Model Higgs boson. This 

.is in accord with the fact that a lower value of the Higgs boson mass gives the best fit to 
.- 
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the Minimal Standard Model, as I have indicated in (63). 

In many models of new physics, the contributions to S become small as the mass 

scale 1M increases, with the behavior S N mi/M2. This is the case, for example, in 

supersymmetry. For example, charginos of mass about 60 GeV can contribute to S at 

the level of of a few tenths of a unit, but heavier charginos have a negligible effect on 

this parameter. In technicolor models, however, there is a new strong interaction sector 

with resonances that can appear directly in the W and 2 vacuum polarizations. There 

is a concrete formula which describes these effects. Consider a technicolor theory with 

SU(2) isospin global symmetry. In such a theory, we can think about producing hadronic 

resonances through e+e- annihilation. In the standard parametrization, the cross section 

- for e+e- annihilation to hadrons through a virtual photon is given by the point cross 

section for e+e- + p + - p times a factor R(s), equal asymptotically to the sum of the 

squares of the quark charges. Let Rv( s) be th e analogous factor for a photon which 

couples to the isospin current Jp3 and so creates 1 = 1 vector resonances only, and let 

RA(s) be the factor for a photon which couples to the axial isospin current Jfi53. Then 

s = & J1sm 4 [&(s) - RA(S) - H(s)] , (185) 

where H(s) z 4 %)(s - mi) is th e contribution of the Standard Model Higgs boson used 

to compute the reference value in (183). I n p ractice, this H(s) gives a small correction. 

If one evaluates Rv and RA using the spectrum of &CD, scaled up appropriately by the 

factor (18), one finds [64] 
NTC 

S = +0.3NDT , (186) 

where No is the number of weak doublets and N TC is the number of technicolors. Even 

for ND = 1 and NTC = 3, thi s is a substantial positive value, one inconsistent with (184) 
, at the 3 0 level. Models with several technicolor weak doublets are in much more serious 

conflict with the data. 

These phenomenological problems of technicolor are challenging for the theory, but 

they do not necessarily rule it out. Holdom [65] h as suggested a specific dynamical scheme 

which solves the first of these three problems. In estimating the scale of ETC interactions, 

we assumed that the techniquark condensate falls off rapidly at high momentum, as the 

quark condensate does in QCD. If the techniquark mass term fell only slowly at high 

momentum, ETC would have a larger influence at larger values of mE. Then the flavor- 

changing direct effect of ETC on light quark physics would be reduced. It is possible 

that such a difference between technicolor and QCD would also ameliorate the other two 

problems I have discussed [66]. In particular, if the J = 1 spectrum of technicolor models 

is not dominated by the low-lying p and al mesons, as is the case in QCD, there is a 

chance that the vector and axial vector contributions to (185) would cancel to a greater 

extent. 

fi is disappointing that theorists are unclear about the precise predictions of techni- 

color models, but it is not surprising. Technicolor relies on the presence of a new strongly- 

coupled gauge theory. Though the properties of QCD at strong coupling now seem to be 

well understood through numerical lattice gauge theory computations, our understand- 

ing of strongly coupled field theories is quite incomplete. There is room for quantiatively 

-and even qualitatively different behavior, especially in theories with a large number of 
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Figure 35: The Goldstone Boson Equivalence Theorem. 

fermion flavors. What the arguments in this section show is that technicolor cannot be 

simply a scaled-up version of QCD. It is a challenge to theorists, though, to find the 

strong-interaction theory whose different dynamical behavior fixes the problems that ex- 

trapolation from QCD would lead us to expect. 

5.3 Direct probes of new strong interactions 

If the model-dependent constraints on technicolor have led us into a murky theo- 

retical situation, we should look for experiments that have a directly, model-independent 

interpretation. The guiding principle of technicolor is that SU(2) x U( 1) symmetry break- 

ing is caused by new strong interactions. We should be able to test this idea by directly 

observing elementary particle reactions involving these new interactions. In the next few 

sections, I will explain how these experiments can be done. 

In order to design experiments on new strong interactions, there are two problems 

that we must discuss. First, the natural energy scale for technicolor, and also for alter- 

r - native theories with new strong interactions, is of the order of 1 TeV. Thus, to feel these 

interactions, we will need to set up parton colllisions with energies of order 1 TeV in 

the center of mass. This energy range is well beyond the capabilities of LEP 2 and the 

Tevatron, but it should be available at the LHC and the e+e- linear collider. Even for 

these facilities, the experiments are challenging. For the LHC, we will see that it requires 

the full design luminosity. For the linear collider, it requires a center-of-mass energy of 

1.5 TeV, at the top of the energy range now under consideration. 

Second, we need to understand which parton collisions we should study. Among the 

particles that interact in high-energy collisions, do any carry the new strong interactions? 

At first it seems that all of the elementary particles of collider physics are weakly cou- 

pled. But remember that, in the models we are discussing, the W and 2 bosons acquire 

their mass through their coupling to the new strong interactions. As a part of the Higgs 

mechanism, these bosons, which are massless and transversely polarized before symme- 

try breaking, pick up longitudinal polarization states by combining with the Goldstone * - 
bosons of the symmetry-breaking sector. It is suggestive, then, that at very high energy, 

the longitudinal polarization states of the W and 2 bosons should show their origin and 

interact like the pions of the strong interaction theory. In fact, this correspondence can 

be proved; it is called the Goldstone Boson Equivalence Theorem [67, 68, 69, 701. The 

statement of the theorem is shown in Figure 35. 

It is complicated to give a completely general proof of this theorem, but it is not 
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Figure 36: Ward identity used in the proof of the Goldstone Boson Equivalence Theorem. 

difficult to demonstate the simplest case. Consider a process in which one W boson is 

emitted. Since the W couples to a conserved gauge current, the emission amplitude obeys 

-a Ward identity, shown in Figure 36. We can analyze this Ward identity as we did the 

analogous diagrammatic identity in Figure 31. The current which creates the W destroys 

a state of the strong interaction theory; this is either a massive state or a massless state 

consisting of one pion. Call the vertex from which the W is created directly Iw, and call 

the vertex for the creation of a pion ir,. Then the Ward identity shown in Figure 36 reads 

gfdf i . QcLrbv(Q) + QP y-- ( 1 -p&) = 0 . (187) 

Using (171), this simplifies to 

qprb = mwrT . (188) 
To apply this equation, look at the explicit polarization vector representing a n 

vector boson of longitudinal polarization. For a W boson moving in the 3 direction, 

qcL = (E, O,O, q) with E2 - q2 = m2w, the longitudinal polarization vector is 

p III ( 
E -+o,o, - 

mw > mw * 
(189) 

This vector satisfies E . q = 0. At the same time, it becomes increasingly close to qp/rnw 

as E -+ co. Because of this, the contraction of &‘ with the first term in the vertex shown 

in Figure 36 is well approximated by (q,/m,)l?; in this limit, while at the same time the 

contraction of &‘ with the pion diagram gives zero. Thus, Iw is the complete amplitude 

for emission of a physical W boson. According to (188), it satisfies 

dh -r fiw- r (190) 

for E >> mw. This is the precise statement of Goldstone boson equivalence. 

The Goldstone boson equivalence theorem tells us that the longitudinal polarization 

states of IV+, IV-, and Z”, studied in very high energy reactions, are precisely the pions of 

the new strong interactions. In the simplest technicolor models, these particles would have 

the scattering amplitudes of QCD pions. However, we can also broaden our description 

to include more general models. To do this, we simply write the most general theory of 

pion i&r-actions at energies low compared to the new strong-interaction scale, and then 

reinterpret the initial and final particles are longitudinally polarized weak bosons. 

This analysis is dramatically simplified by the observation we made below (21) 

that the new strong interactions should contain a global SU(2) symmetry which remains 

exact when the .weak interaction SU(2) is spontaneously broken. I explained there that 

this symmetry is required to obtain the relation mw = mz cos ow, which is a regularity of 
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the weak boson mass spectrum. This unbroken symmetry shows up in technicolor models 

as the manifest SU(2) isospin symmetry of the techniquarks. 

From here on, I will treat the pions of the new strong interactions as massless 

particles with an exact isospin SU(2) symmetry. The pions form a triplet with I = 1. 

Then a two-pion state has isospin 0, 1, or 2. Using Bose statistics, we see that the three 

scattering channels of lowest angular momentum are 

I=0 J=O 

I=1 J=l 

I=2 J=O (191) 

From here on, I will refer to these channels by their isospin value. Using the analogy to 

the conventional strong interactions, it is conventional to call a resonance in the I = 0 

channel a 0 and a resonance in the I = 1 channel a p or techni-p. 

Now we can describe the pion interactions by old-fashioned pion scattering phe- 

nomenology [71]. A s on we are at energies sufficiently low that the process 7r7r --+ 47r is 1 g 

not yet important, unitarity requires the scattering amplitude in the channel I to have 

the form 

MI = 32ae i61 sin SI . 
1 

1 J=O 

3~0~0 J=l ’ 
(192) 

where SI is the phase shift in the channel I. Since the pions are massless, these can be 

expanded at low energy as 

(193) 

where AI is the relativistic generalization of the scattering length and n/irl similarly rep- 

resents the effective range. The parameter MI is given this name because it estimates the 
. 

position of the leading resonance in the channel I. The limit MI + 00 is called the Low 

Energy Theorem (LET) model. 

Because the pions are Goldstone bosons, it turns our that their scattering lengths 

can be predicted in terms of the amplitude (165) [72]. Thus, 

i 

16nfz = (1.7 TeV)2 1 = 0 

AZ = 96nf: = (4.3 TeV)2 1= 1 . (194) 
-327r f,2 I=2 

Experiments which involve WW scattering at very high energy should give us the chance 

to observe these values of AZ and to measure the corresponding values of MI. 

The values of AZ given in (194) re p resent the basic assumptions about manifest and 

spontaneously broken symmetry which are built into our analysis. The values of MI, on 

the other hand, depend on the details of the particular set of new strong interactions that 

Nature has provided. For example, in a technicolor model, the quark model of techicolor 

interac$ons predicts that the strongest low-lying resonance should be a p (I = l), as we 

see in &CD. In a model with strongly coupled spin-0 particles, the strongest resonance 

would probably be a 0, an I = 0 scalar bound state. More generally, if we can learn which 

channels have low-lying resonances and what the masses of these resonances are, we will 

have a direct experimental window into the nature of the new interactions which break 

SU(2) x U(1). 
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Figure 37: Kinematics for the radiation of a longitudinal W parton. 

5.4 New strong interactions in WW scattering 

How, then, can we create collisions of longitudinal W bosons at TeV center-of-mass 

energies? The most straightforward method to create high-energy W bosons is to radiate 

them from incident colliding particles, either quarks at the LHC or electrons and positrons 

at the linear collider. 

The flux of W bosons associated with a proton or electron beam can be computed 

by methods similar to those used to discuss parton evolution in QCD [5, 731. We imagine 

that the W bosons are emitted from the incident fermion lines and come together in a 

collision process with momentum transfer Q. The kinematics of the emission process is 

shown in Figure 37. The emitted bosons are produced with a spectrum in longitudinal 

momentum, parametrized by the quantity 2, the longitudinal fraction. They also have a 

spectrum in transverse momentum pl. The emitted W boson is off-shell, but this can be 

ignored to a first approximation if Q is much larger than (m& + pt)‘l”. In this limit, the 

distribution of the emitted W bosons is described by relatively simple formulae. Note that 

an incident dL or eL can radiate a W-, while an incident UL or ei can radiate a W+. 
* The distribution of transversely polarized W- bosons emitted from an incident dL 

or eL is given by 

where, as before, s2 = sin2 8,. The integral over transverse momenta gives an enhancement 

factor of log Q2/mb, analogous to the factor log s/m, which appears in the formula for 

radiation of photons in electron scattering processes. The distribution of longitudinally 

polarized W- bosons has a somewhat different structure, 

J dx a l-x 
= --- 

x 27r.9 x . (196) 

This formula does not show the logarithmic distribution in pl seen in (195); instead, it 

produces longitudinally polarized W bosons at a characteristic pl value of order mw. 

When both beams radiate longitudinally polarized W bosons, we can study boson- 

boson scattering through the reactions shown in Figure 38. In pp reactions one can in 

principle study all modes of WW scattering, though the most complete simulations have 
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Figure 38: Collider processes which involve WW scattering. 

been done for the especially clean 1 = 2 channel, W+W+ + W+W+. In e+e- collisions, 

one is restricted to the channels W+W- -+ W+W- and W+W- + 2’2’. The diagrams 

in which a longitudinal 2’ appears in the initial state are suppressed by the small 2’ 

coupling to the electron 

g2(eL -+ eZZ”) 

g2(ei + VW-) (197) 

The I = 2 process W-W- + W-W- could be studied in a dedicated e-e- collision 

experiment. 

I will now briefly discuss the experimental strategies for observing these reactions 

in the LHC and linear collider environments and present some simulation results. In the 

pp reactions, the most important background processes come from the important high 

transverse momentum QCD processes which, with some probability, give final states that 

mimic W boson pairs. For example, in the process gg + gg with a momentum transfer of 
, 1 TeV, each final gluon typically radiates gluons and quarks before final hadronization, to 

produce a system of hadrons with of order 100 GeV. When the mass of this system happens 

to be close to the mass of the W, the process has the characteristics of Wv[/ scattering. 

Because of the overwhelming rate for gg t gg, all st u d ies of WW scattering at hadron 

colliders have restricted themselves to detection of one or both weak bosons in leptonic 

decay modes. Even with this restriction, the process gg + t? provides a background of 

isolated lepton pairs at high transverse momentum. This background and a similar one 

from q?j + W+ jets, with jets faking leptons, are controlled by requiring some further 

evidence that the initial W bosons are color-singlet systems radiated from quark lines. To 

achieve this, one could require a forward jet associated with the quark from which the W 

was radiated, or a low hadronic activity in the central rapidity region, characteristic of 

the collision of color-singlet species. 

Figure 39 shows a simulation by the ATLAS collaboration of a search for new 

strong interactions in W+W+ scattering [28]. In th is study, both W bosons were assumed 

to be observed in their leptonic decays to e or p, and a forward jet tag was required. The 

signal corresponds to a model with a 1 TeV Higgs boson, or, in our more general termi- 

nology, a 1 TeV I = 0 resonance. The size of the signal is a few tens of events in a year 

of running at the LHC at high luminosity. Note that the experiment admits a substantial 

background from various sources of tranversely polarized weak bosons. Though there is a 

significant excess above the Standard Model expectation, the signal is not distinguished 
.- 
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Figure 39: Expected numbers of W+W+ + (ev)(&) events due to signal and background 

processes, after all cuts, for a 100 fb-i event sample at the LHC, from [28]. The signal 

corresponds to a Higgs boson of mass 1 TeV. 

by a resonance peak, and so it will be important to find experimental checks that the back- 

’ grounds are correctly estimated. An illuminating study of the other important reaction 

pp t Z”Zo + X is given in [74]. 

The WW scattering experiment is also difficult at an e+e- linear collider. A center 

of mass energy well above 1 TeV must be used, and again the event rate is a few tens 

per year at high luminosity. The systematic problems of the measurement are different, 

however, so that the e+e- results might provide important new evidence even if a small 

effect is first seen at the LHC. In the efe- environment, it is possible to identify the weak 

bosons in their hadronic decay modes, and in fact this is necessary to provide sufficient 

rate. Since the hadronic decay captures the full energy-momentum of the weak boson, 

the total momentum vector of the boson pair can be measured. This, again, is fortunate, 

because the dominant backgrounds to WW scattering through new strong interactions 

come from the photon-induced processes yy t W+W- and ye -+ ZWY. The first of these 

- backgrounds can be dramatically reduced by insisting that the final two-boson system 

has a transverse momentum between 50 and 300 GeV, corresponding to the phenomenon 

we notid fn (196) that longitudinally polarized weak bosons are typically emitted with a 

transverse momentum of order mw. This cut should be accompanied by a forward electron 

and positron veto to remove processes with an initial photon which has been radiated from 

one of the fermion lines. 

The expected signal and background after cuts, in e+e- --+ VVW+W- and e+e- + 

.vvZ~Z~, at a center-of-mass energy of 1.5 TeV, are shown in Figure 40 [75]. The signal 
.- 
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Figure 40: Expected numbers of W+W- and 22 t 4 jet events due to signal and back- 

- ground processes, after all cuts, for a 200 fb-l event sample at an e+e- linear collider 

at 1.5 TeV in the center of mass, from [75]. Th ree different models for the signal are 

compared to the Standard Model background. 
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Figure 41: Collider processes which involve vector boson pair-production. 

is shown for a number of different models and is compared to the Standard Model ex- 

pectation for transversely polarized boson pair production. In the most favorable cases of 

1 TeV resonances in the I = 0 or I = 1 channel, resonance structure is apparent in the 

signal, but in models with higher resonance masses one must again rely on observing an 

enhancement over the predicted Standard Model backgrounds. At an e+e- collider, one 

has the small advantage that these backgrounds come from electroweak processes and can 

therefore be precisely estimated. 

Recently, it has been shown that the process WW + tZ can be observed at an e+e- 

linear collider at 1.5 TeV [76]. Th is reaction probes the involvement of the top quark in 

the new strong interactions. If the W and top quark masses have a common origin, the 

same resonances which appear in WW scattering should also appear in this reaction. 

However, some models, for example, Hill’s topcolor [77], attribute the top quark mass 

to interactions specific to the third generation which lead to top pair condensation. The 

study of WW + tf can directly address this issue experimentally. 

* 5.5 New strong interactions in W pair-production 

In addition to providing direct WW scattering processes, new strong interactions 

can affect collider processes by creating a resonant enhancement of fermion pair annihila- 

tion in to weak bosons. The most important reactions for studying this effect are shown 

in Figure 41. As with the processes studied in Section 5.4, these occur both in the pp and 

ese- collider environment. 

The effect is easy to understand by a comparison to the familiar strong interactions. 

In the same way that the boson-boson scattering processes described in the previous sec- 

tion were analogous to pion-pion scattering, the strong interaction enhancement of W pair 

production is analogous to the behavior of the pion form factor. We might parametrize 

the enhancement of the amplitude for fermion pair annihilation into longitudinally po- 

larized W bosons by a form factor FT(q2). In QCD, the pion form factor receives a large 

enhancement from the p resonance. Similarly, if the new strong interactions contain a 

strong l = 1 resonance, the amplitude for longitudinally polarized W pair production 

should be multiplied by the factor 

(198) 

where Mi and l?i are the mass and width of the resonance. If there is no strong resonance, 

the new strong interactions still have an effect on this channel, but it may be subtle and 
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Figure 42: Reconstructed masses at the LHC for new strong interaction resonances de- 

caying into gauge boson pairs, from [28]: (a) a 1 TeV techni-p resonance decaying into 

WZ and observed in the 3-lepton final state; (b) a 1.46 TeV techni-w decaying into yZ 
. and observed in the yW- final state. 

difficult to detect. A benchmark is that the phase of the new pion form factor is related 

to the pion-pion scattering phase shift in the I = 1 channel, 

argR(s) = &(s) ; (199) 

this result is true for any strong-interaction model as long as 7~ --+ 47r processes are not 

important at the given value of s [78]. 

At the LHC, an I = 1 resonance in the new strong interactions can be observed 

as an enhancement in pp + WZ + X, with both W and 2 decaying to leptons, as long 

as the resonance is sufficiently low in mass that its peak occurs before the q?j luminosity 

- spectrum cuts off. The ATLAS co a 11 b oration has demonstrated a sensitivity up to masses 

of 1.6 TeV [79]. The signal for a 1 TeV resonance is quite dramatic, as demonstrated in 

Figure 42. - 

Also shown in this figure is an estimate of a related effect that appears in some 

but not all models, the production of an 1 = 0, J = 1 resonance analogous to the w in 

QCD, which then decays to 3 new pions or to ny. Though the first of these modes is not 

easily detected at the LHC, the latter corresponds to the final state 2’7, which can be 

completely reconstructed if the 2’ decays to !+P. 
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Figure 43: Technirho resonance effect on the differential cross section for e+e- --+ W+W- 

at cos0 = -0.5. The figure shows the effect on the various W polarization states. 

At an e+e- collider, the study of the new pion form factor can be carried a bit 

farther. The process e+e- --+ W+W- is the most important single process in high-energy 

e+e- annihilation, with a cross section greater than that for all annihilation processes to 

quark pairs. If one observes this reaction in the topology in which one W decays hadron- 

ically and the other leptonically, the complete event can be reconstructed including the 

signs of the W bosons. The W decay angles contain information on the boson polar- 

izations. So it is possible to measure the pair production cross section to an accuracy 
* of a few percent, and also to extract the contribution from W bosons with longitudinal 

polarization. The experimental techniques for this analysis have been reviewed in [80]. 

Because an I = 1 resonance appears specifically in the pair-production of longitu- 

dinally polarized W bosons, the resonance peak in the cross section has associated with it 

an effect in the W polarizations which is significant even well below the peak. This effect 

is seen in Figure 43, which shows the differential cross section for W pair production at 

a fixed angle as a function of center-of-mass energy, in a minimal technicolor model with 

the 1 = 1 technirho resonance at 1.8 TeV. By measuring the amplitude for longitudinal 

W pair production accurately, then, it is possible to look for 1 = 1 resonances which are 

well above threshold. In addition, measurement of the interference between the transverse 

and longitudinal W pair production amplitudes allows one to determine the phase of the 

new pion form factor [80]. Th is effect is present even in models with no resonant behavior, 

- simply by virtue of the relation (199) and the model-independent leading term in (193). 

Figure 44 shows the behavior of the new pion form factor as an amplitude in the complex 

plane ai a-function of the center-of-mass energy in the nonresonant and resonant cases. 

The expectations for the measurement of the new pion form factor at a 1.5 TeV 

linear collider, from simulation results of Barklow [80], are show in Figure 45. The es- 

timated sensitivity of. the measurement is compared to the expectations from a model 

incorporating the physics I have just described [Sl]. A nonresonant model with scattering 

-in the 1 = 1 channel given only by the scattering length term in (193) is already distin- 
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Figure 44: Dependence of F,(s) on energy, in models without and with a new strong 

interaction resonance in the I = J = 1 channel. 

guished from a model with no new strong interactions at the 4.6 g level, mainly by the 

measurement of the imaginary part of F,. In addition, the measurement of the resonance 

effect (198) in the real part of F, can distinguish the positions of I = 1 resonances more 

than a factor two above the collider center-of-mass energy. 

5.6 Overview of WW scattering experiments 

It is interesting to collect together and summarize the various probes for resonances 

in the new strong interactions that I have described in the previous two sections. I have 

described both direct studies of WW scattering processes and indirect searches for reso- 

nances through their effect on fermion annihilation to boson pairs. With the LHC and the 

a e+e- linear collider, these reactions would be studied in a number of channels spanning 

all of the cases listed in (191). Of course, with fixed energy and luminosity, we can only 

probe so far into each channel. It is useful to express this reach quantitatively and to ask 

whether it should give a sufficient picture of the resonance structure that might be found. 

There is a well-defined way to estimate how far one must reach to have interesting 

sensitivity to new resonances. The model-independent lowest order expressions for the 7rrr 

scattering amplitudes 

iti1 S 
MI=32re -. 

1 J=O 

AI 3~0~8 J=l ’ 

violate unitarity when s becomes sufficiently large, and this gives a criterion for the value of 

s by which new resonances must appear [69]. Th e unitarity violation begins for s = AI/~; 

with the values of the Al given in (194), we find the bounds 

* - 
I=O: & < 1.3 TeV , I=1 : fi < 3.0 TeV . PW 

For comparison, if we scale up the QCD resonance masses by the factor (18), we find a 

techni-p mass of 2.0 TeV, well below the the I = 1 unitarity bound given in (201). It 

is interesting to. compare these goals to the reach expected for the experiments we have 

-described. 
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Figure 45: Determination of the new pion form factor an an e+e- linear collider at 1.5 

TeV with an unpolarized data sample of 200 fb-‘, from [80]. The simulation results 

are compared to model with a high-mass I = 1 resonance and the model-independent 

contribution to pion-pion scattering. The contour about the light Higgs point (with no 

new strong interactions) is a 95% confidence contour; that about the point M = 4 TeV 

is a 68% confidence contour. 

One of the working groups at the recent Snowmass summer study addressed the 

question of estimating the sensitivity to new strong interaction resonances in each of 

r the boson-boson scattering channels that will be probed by the high-energy colliders [82]. 

Their results are reproduced in Table 1. Results are given for experiments at the LHC and 

at a 1.5 TeV e+e- linear collider, with luminosity samples of 100 fb-r per experiment. 

The method of the study was to use simulation data from the literature to estimate 

the sensitivity to the parameters MI in (193), 11 a owing just this one degree of freedom 

per channel. Situations with multiple resonances with coherent or cancelling effects were 

not considered. Nevertheless, the determination of these basic parameters should give a 

general qualitative picture of the new strong interactions. The estimates of the sensitivity 

to these parameters go well beyond the goals set in (201). 

If new strong interactions are found, further experiments at higher energy will be 

necessary to characterize them precisely. Eventually, we will need to work out the detailed 

hadron spectroscopy of these new interactions, as was done a generation ago for QCD. 

Some techniques for measuring this spectrum seem straightforward if the high energy 

accelerators will be available. For example, one could measure the spectrum of J = 1 * - 
resonances from the cross section for e+e- or p”+pu- annihilation to multiple longitudinal 

W and 2 bosons. I presume that there are also elegant spectroscopy experiments that 

can be done in high-energy pp collisions, though these have not yet been worked out. It 

may be interesting to think about this question. If the colliders of the next generation 

do discover these new strong interactions, the new spectroscopy will be a central issue of 

.particle physics twenty years from now. 
.- 
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Table 1: LHC and linear collider (‘NLC’) sensitivity to resonances in the new strong in- 

teractions, from [82]. ‘R each’ gives the value of the resonance mass corresponding to an 

enhancement of the cross section for boson-boson scattering at the 95% confidence level 

obtained in Section VIB2. ‘Sample’ gives a representative set of errors for the determi- 

nation of a resonance mass from this enhancement. ‘Eff. t Reach’ gives the estimate of 

the resonance mass for a 95% confidence level enhancement. All of these estimates are 

based on simple parametrizations in which a single resonance dominates the scattering 

cross section. 

Machine Parton Level Process I Reach Sample Eff. Lc Reach 

LHC PI’ -+ W’ZZ 0 1600 1500fio0 70 1500 

LHC qij+ wz 1 1600 1550f50 50 

LHC qq’ -+ qq/w+w+ 2 1950 2000f250 200 

NLC e+e- t ui7ZZ 0 1800 1600f;;; 

NLC e+e- -+ utit? 0 1600 1500f450 160 

NLC e+e- + w+w- 1 4000 3ooo+1so 150 

2000 

* 5.7 Observable effects of extended technicolor 

Beyond these general methods for observing new strong interactions, which apply 

to any model in which electroweak symmetry breaking has a strong-coupling origin, each 

specific model leads to its own model-dependent predictions. Typically, these predictions 

can be tested at energies below the TeV scale, so they provide phenomena that can 

be explored before the colliders of the next generation reach their ultimate energy and 

luminosity. On the other hand, these predictions are specific to their context. Excluding 

one such phenomenon rules out a particular model but not necessarily the whole class of 

strong-coupled theories. We have seen an example of this already in Section 5.2, where the 

strong constraints on technicolor models from precision electroweak physics force viable 

models to have particular dynamical behavior but do not exclude these models completely. 

In this section, I would like to highlight three such predictions specifically associated 

with technicolor theories. These three phenomena illustrate the range of possible effects 

that might be found. A systematic survey of the model-dependent predictions of models 

of strongly-coupled electroweak symmetry breaking is given in [82]. 

All three of these predictions are associated with the extended technicolor mech- 

anism of quark and lepton mass generation described at the end of Section 5.1 and in 

Figure 32.. To see the first prediction, note from the figure that the Standard Model quan- 

tum numbers of the external fermion must be carried either by the techniquark or by 

the ETC gauge boson. The simplest possibility is to assign the techniquarks the quan- 
.- 

86 



turn numbers of a generation of quarks and leptons [553. Call these fermions (U, D, N, E). 

The pions of the technicolor theory, the Goldstone bosons of spontaneously broken chiral 

SU(2), have the quantum numbers 

But the theory contains many more pseudoscalar mesons. In fact, in the absence of the 

coupling to SU(3) x SU(2) x U(l), th e model has the global symmetry SU(8) x SU(8) 

(counting each techniquark as three species), which would be spontaneously broken to a 

vector SU(8) y s mmetry by dynamical techniquark mass generation. This would produce 

-an SU(8) p re resentation of Goldstone bosons, 63 in all. Of these, three are the Goldstone 

bosons eaten by the W* and Z” in the Higgs mechanism. The others comprise four color 

singlet bosons, for example, 

(203) 

four color triplets, for example, 

and four color octets, for example, 

ps+ N Uy5t”D , (205) 

where t” is a 3 x 3 SU(3) g enerator. These additional particles are known as pseudo- 

Goldstone bosons or, more simply, technipions. 

Phenomenologically, the technipions resemble Higgs bosons with the same Standard 

Model quantum numbers. They are produced in e+e- annihilation at the same rate as 
. for pointlike charged bosons; The idea of Higgs bosons with nontrivial color is usually 

dismissed in studies of the Higgs sector because this structure is not ‘minimal’; however, 

we see that these objects appear naturally from the idea of technicolor. The colored objects 

are readily pair-produced at proton colliders, and the neutral isosinglet color-octet state 

can also be singly produced through gluon-gluon fusion [83]. 

The masses of the technipions arise from Standard Model radiative corrections and 

from ETC interactions; these are expected to be of the order of a few hundred GeV. 

Technipions decay by a process in which the techniquarks exchange an ETC boson and 

convert to ordinary quarks and leptons. This decay process favors decays to heavy flavors, 

for example, Ps+ --+ tb. In this respect, too, the technipions resemble Higgs bosons of a 

highly nonminimal Higgs sector resulting from an underlying composite structure. 

If ETC bosons are needed to generate mass in technicolor models, it is interesting 

to ask whether these bosons can be observed directly. In (177), I showed that the ETC 

boson associated with the top quark should have a mass of about 1 TeV, putting it within * - 
the mass range accessible to the LHC. Arnold and Wendt considered a particular signature 

of ETC boson pair production at hadron colliders [84]. They assumed (in contrast to the 

assumptions of the previous few paragraphs) that the ETC bosons carry color; this allows 

these bosons to be pair-produced in gluon-gluon collisions. Because ETC bosons carry 

technicolor, they will not be produced as free particles; rather, the ETC boson pair will 

form a technihadron EE. These hadrons will decay when the ETC boson emits a top 
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Figure 46: Cross section for the production of ETC boson pair states in pp collisions, from 

[84]. The ZE states are observed as t?Z” systems of definite invariant mass. The two sets 

of curves correspond to signal and Standard Model background (with the requirement 

Ip&>l > 50 GeV) f or pp center-of-mass energies of 10 and 20 TeV. 

quark and turns into a techniquark, E + T?. When both ETC bosons have decayed, we 

are left with a technicolor pion, which is observed as a longitudinally polarized Z”. The 

full reaction is 

gg+EE+ET+t+Z’+t+t, (206) , 
in which the tZ” system and the Z’tt systems both form definite mass combinations 

corresponding to technihadrons. The cross section for this reaction is shown in Figure 46. 

Note that the multiple peaks in the signal show contributions from both the J = 0 and 

the J = 2 bound states of ETC bosons. 

A second manifestation of ETC dynamics is less direct, but it is visible at lower 

eneriges. To understand this effect, go back to the elementary ETC gauge boson coupling 

that produces the top quark mass, 

AC = g,&&W, , (207) 

where &L = (t,b) L and TL = (U, D)L. If we put this interaction together with a corre- 

sponding coupling to the right-handed quarks, we obtain the term (174) which leads to 

- the fermion masses. On the other hand, we could contract the vertex (207) with its own 

Hermitian conjugate. This gives the vertex 

By a Fierz transformation [5], th is expression can be rearranged into 

(208) 

- 
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Figure 47: Modification of the Z”b& and Z”tl vertices by ETC interactions. 

where ra are the weak isospin matrices. The last factor gives just the technicolor currents 

which couple to the weak interaction vector bosons. Thus, we can replace this factor by 

Then this term has the interpretation of a technicolor modification of the Z --+ b& and 

Z -+ tt vertices 1851. 

It is not difficult to estimate the size of this effect. Writing the new contribution 

to the Z” vertex together with the Standard Model contributions, we have 

For the left-handed b, r3 = -i, and so the quantity in brackets is 

(212) 

where in the last line I have used (177) t o estimate gE/?nE. The value of the correction, 

when squared, is about 6% and would tend to decrease the branching ratio for Z” + bb. 

The effect that we have estimated is that of the first diagram in Figure 47. In more 

complicated models of ETC [56, 86, 871, ff t e ec s corresponding to both of the diagrams 

shown in the figure contribute, and can also have either sign. Typically, the two types 

of diagrams cancel in the Z’bb coupling and add in the Z’t? coupling [SS]. Thus, it 

is interesting to study this effect experimentally in e+e- experiments both at the Z” 

resonance and at the tf threshold. 

5.8 tie&apitulation 

In this section, I have discussed the future experimental program of particle physics 

for the case in which electroweak symmetry breaking has its origin in new strong interac- 

tions. We-have discussed model-independent probes of the new strong interaction sector 

and experiments which probe specific aspects of technicolor models. In this case, as op- 

posed to the case of supersymmetry, some of the most important experiments can only 

_ 
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be done at very high energies and luminosities, corresponding to the highest values being 

considered for the next generation of colliders. Nevertheless, I have argued that, if plans 

now proposed can be realized, these experiments form a rich program which provides a 

broad experimental view of the new interactions. 

Two sets of contrasting viewpoints appeared in our analysis. The first was the con- 

trast between experiments that test model-dependent as opposed to model-independent 

conclusions. The search for technipions, for corrections to the Zt? vertex, and for other 

specific manifestations of technicolor theories can be carried out at energies well below 

the 1 TeV scale. In fact, the precision electroweak experiments and the current precision 

determination of the Z” -+ bb branching ratio already strongly constrain technicolor the- 

- ories. However, such constraints can be evaded by clever model-building. If an anomaly 

predicted by technicolor is found, it will be important and remarkable. But in either case, 

we will need to carry out the TeV-energy experiments to see the new interactions directly 

and to clearly establish their properties. 

The second set of contrasts, which we saw also in our study of supersymmetry, 

comes from the different viewpoints offered by pp and e+e- colliders. In the search for 

anomalies, the use of both types of experiments clearly offers a broader field for discovery. 

But these two types of facilities also bring different information to the more systematic 

program of study of the new strong interactions summarized in Table 1. The table makes 

quantitative the powerful capabilities of the LHC to explore the new strong interaction 

sector. But it also shows that an e + - e linear collider adds to the LHC an exceptional 

sensitivity in the I = 1 channel, reaching well past the unitarity bound, and sensitivity to 

the process W+W- + t?, which tests the connection between the new strong interactions 

and the top quark mass generation. Again in this example, we see how the LHC and the 

linear collider, taken together, provide the information for a broad and coherent picture 

of physics beyond the standard model. 

6. Conclusions 

This concludes our grand tour of theoretical ideas about what physics waits for 

us at this and the next generation of high-energy colliders. I have structured my pre- 

sentation around two specific concrete models of new physics-supersymmetry and tech- 

nicolor. These models contrast greatly in their details and call for completely different 

experimental programs. Nevertheless, they have some common features that I would like 

to emphasize. 

First of all, these models give examples of solutions to the problem I have argued is 

the highest-priority problem in elementary particle physics, the mechanism of electroweak 

symmetry breaking. Much work has been devoted to ‘minimal’ solutions to this problem, 

in which the future experimental program should be devoted to finding a few, or even just 

one, Higgs scalar bosons. It is possible that Nature works in this way. But, for myself, I 

do not believe it. Through these examples, I have tried to explain a very different view 

of electioieak symmetry breaking, that this phenomenon arises from a new principle of 

physics, and that its essential simplicity is found not by counting the number of particles 

in the model but by understanding that the model is built around a coherent physical 

mechanism. New principles have deep implications, and we have seen in our two examples 

that these can lead to a broad and fascinating experimental program. 

If my viewpoint is right, these new phenomena are waiting for us, perhaps already 
.- 
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at the LEP 2 and Tevatron experiments of the next few years, and at the latest at the LHC 

and the e+e- linear collider. If the new physical principle that we -are seeking explains the 

origin of Z and W masses, it cannot be too far away. In each of the models that I have 

discussed, I have given a quantitative estimate of the energy reach required. At the next 

generation of colliders, we will be there. 

For those of you who are now students of elementary particle physics, this conclu- 

sion comes with both discouraging and encouraging messages. The discouragement comes 

from the long time scale required to construct new accelerator facilities and to carry out 

the large-scale experiments that are now required on the frontier. Some of your teachers 

can remember a time when a high-energy physics experiment could be done in one year. 

- Today, the time scale is of order ten years, or longer if the whole process of designing and 

constructing the accelerator is considered. 

The experiments that I have described put a premium not only on high energy 

but also high luminosity. This means that not only the experiments but also the accel- 

erator designs required for these studies will require careful thinking and brilliant new 

ideas. During the school, Alain Blonde1 was fond of repeating, ‘Inverse picobarns must be 

earned!’ The price of inverse femtobarns is even higher. Thus, I strongly encourage you to 

become involved in the problems of accelerator design and the interaction of accelerators 

with experiments, to search for solutions to the challenging problems that must be solve 

to carry out experiments at 1 TeV and above. 

The other side of the message is filled with promise. If we can have the patience 

to wait over the long time intervals that our experiments require, and to solve the tech- 

nical problems that they pose, we will eventually arrive at the physics responsible for 

electroweak symmetry breaking. If the conception that I have argued for in these lec- 

tures is correct, this will be genuinely a new fundamental scale in physics, with new 

interactions and a rich phenomenological structure. Though the experimental discovery 
, 

and clarification of this structure will be complex, the accelerators planned for the next 

generation-the LHC and the e+e- linear collider-will provide the powerful tools and 

analysis methods that we will require. This is the next frontier in elementary particle 

physics, and it is waiting for you. Enjoy it when it arrives! 
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