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A longitudinal single-bunch instability in the damping rings at
the Stanford Linear Collider (SLC) is thought to contribute to
pulse-to-pulse orbit variations in downstream accelerator sec-
tions. To better understand this instability, we measured the
beam phase and bunch length under harmonic modulations of
the rf phase and rf voltage. For small phase-modulations the
measured response can be explained by interaction of the beam
with the cavity fundamental mode. For larger excitations, we
observed bifurcation and hysteresis e�ects. The response to an
rf voltage modulation revealed two peaks near the quadrupole-
mode frequency, one of which appears to be related to the lon-
gitudinal instability. In this paper we present the experimental
results.
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Abstract
A longitudinal single-bunch instability [1] in the damp-

ing rings at the Stanford Linear Collider (SLC) is thought
to contribute to pulse-to-pulse orbit variations in down-
stream accelerator sections. To better understand this in-
stability, we measured the beam phase and bunch length
under harmonic modulations of the rf phase and rf voltage.
For small phase-modulations the measured response can be
explained by interaction of the beam with the cavity funda-
mental mode. For larger excitations, we observed bifurca-
tion and hysteresis effects. The response to an rf voltage
modulation revealed two peaks near the quadrupole-mode
frequency, one of which appears to be related to the longitu-
dinal instability. In this paper we present the experimental
results.

1 INTRODUCTION

Beam-transfer functions measurements (BTFs) were first
suggested [2] as a technique by which to determine beam
stability limits and the coupling impedance of the beam en-
vironment. Since then, measurements have revealed a rich
spectrum of beam physics. For example, ring impedance
studies were carried out using coasting beams by at the ISR
in 1977 [3], and for bunched beams at SPEAR in 1990 [4].
In 1992, Byrd performed a comprehensive study of collec-
tive phenomena in CESR [5]. More recent measurements
from the IUCF [6] have used BTF's in the study of non-
linear effects including the creation of resonance islands,
beam splitting, chaos and bifurcations.

parameter symbol value
circumference C 35.27 m
momentum compaction � 0.015
beam energy E 1.19 GeV
rf frequency frf 714 MHz
harmonic number h 84
rf gap voltage Vc 800–860 kV
synchrotron frequency fs � 100 kHz
long. rad. damping time [7] �rad 1.55 ms
rms bunch length �z 5.3–6.8 mm
relative energy spread �� 9� 10�4

bunch population Nb 0–2.6�1010

number of klystrons/cavities Nk=Nc 1/2

Table 1: Damping ring parameters during measurement.

We here describe experimental studies at the SLC damp-
ing rings in which we externally modulated the phase or
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amplitude of the RF cavities. Typically, the beam was in-
jected and stored, with the modulation turned on. The re-
sponse was measured using a network analyzer (50 s sweep
time, 1 kHz rbw, 401 discrete frequency steps). The param-
eters of the SLC Damping Rings are shown in Table 1. All
measurements were performed with a single bunch.

2 PHASE MODULATION

Ignoring Landau damping, the synchrotron motion of the
beam centroid is described by the same type of differential
equation as the single-particle motion [8]. Representing an
rf phase modulation as a harmonic perturbation, including
the Robinson interaction, and linearizing the rf potential,
the equation of motion is

� + 2� _ + !2

s = �̂ �2me
j!t; (1)

where is the relative phase of the beam with respect to
the modulated RF phase (which, at low current, equals the
beam phase w.r.t. the cavity voltage); i.e.

 � �� �̂ sin(�m�+ �); (2)

In Eq. (1),� = 1=� is the Robinson damping rate,!s the
angular synchrotron frequency,̂� the modulation ampli-
tude,�mfrev the modulation frequency,� a constant phase
factor, and for simplicity the synchronous phase angle has
been set to zero. Defining1 the complex beam transfer func-
tion BTF as the ratio of the beam centroid phase and the rf
modulation amplitude �̂,

BTF(!m) �
��(!m)

�̂
; (3)

the amplitude of the BTF is a Lorentzian

ABTF (!m) = !2

m

�
1

(!2
s � !

2
m)2 + 4�2!2

m

�1=2

(4)

and its phase is

�BTF (!m) = tan�1(��=(!s � !m)): (5)

Shown in Fig. 1 is a BTF measured in the positron
damping ring (SDR) for a small phase-modulation depth
(�̂ � 0:006�) and low beam current (Nb � 7 � 109).
The data were acquired by modulating the phase of the 714
MHz drive using a network analyzer which output an ex-
citation of fixed amplitude and variable (swept) frequency
to a fast phase shifter located upstream of a klystron. The

1Note that this definition differs from that in Refs. ([4, 5], which both
define the BTF as_��=(�̂!2

m
).
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phase of the beam with respect to the cavities was mea-
sured using a detector which mixed the signals from a cav-
ity pickup and from a single stripline of a beam position
monitor. The detector output was normalized to the mod-
ulation output. Figure 1 demonstrates that the measured
response is well described by Eqs. (4) and (5) with a damp-
ing time1=� equal to the measured (coherent) oscillation
decay time of� 3500 turns.
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Figure 1: Comparison of measured BTF amplitude and
phase with Eqs. (4) and (5) for a single-bunch population
Nb � 7� 109 and small excitation,�rms � 0:004�.

We also calculated the beam phase response that would
be expected from Landau damping due to the nonlinearity
of the RF voltage, in this case ignoring the Robinson damp-
ing. The calculated response agreed poorly with measure-
ment which indicates that the single-bunch measurement
was dominated by the Robinson interaction.

Figure 2 illustrates the dependence of the BTF on the
excitation amplitude. For low excitation amplitudes the re-
sponse is Lorentzian as in Fig. 1. With increasing modu-
lation depth the response revealed an asymmetric behavior,
characteristic of a driven nonlinear oscillator. In particular,
a pronounced dip transition was observed at frequencies
somewhat below the peak-response frequency.

An oscillatory solution of thenonlinear equation of mo-
tion (i.e., for a sinusoidal rf potential) is [9] (�) =
� sin(�m�). The fixed-point amplitude� is approximately
described by a cubic equation, which bifurcates at a modu-
lation frequencyfm = frev�

0

m:
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�
3

8
21=3

�
; (6)

At the bifurcation point, one of two stable fixed points van-
ishes. In Eq. (6),frev is the revolution frequency and�s �
!s=(2�frev) the synchrotron tune. Fitting a straight line
to the measured data oflog��=�s versuslog �̂, we find a
slope of0:637 � 0:015 and an intercept of�0.875�0:08.
This is consistent with the expected slope (2

3
) and intercept

(�0.76) from Eq. (6), which supports the assertion that the
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Figure 2: SDR beam-phase transfer function for various ex-
citation amplitudes. The single-bunch population is about
Nb � 3–7�109.

dip is related to a transition between the two fixed points.
The origin of the dip has been studied in more detail re-
cently at the ALS [10].

Because the beam response is strongly reminiscent of a
driven nonlinear oscillator, we expect to see a different re-
sponse curve when the frequency is swept downward. This
is demonstrated in Fig. 3, which shows two beam-phase
transfer functions for up- and downward frequency sweeps.
At large excitation, we observe a clear hysteresis effect.

3 VOLTAGE MODULATION

Shown in Fig. 4 is the measured response of the beam peak
current to an rf amplitude modulation in the SDR. The data
were acquired by modulating the amplitude of the 714 MHz
drive using an rf attenutator. The detected peak current sig-
nal is inversely proportional to the bunch length. Asillus-
trated in Fig. 4, the response curve for the SDR revealed
two peaks. In contrast, only a single peak was detected
in the electron damping ring (NDR). Fig. 5 summarizes
the current dependence of the response peaks in the two
damping rings. The lower-frequency peak in the SDR and
the peak in the NDR show a current-dependent frequency
similar to that predicted for the longitudinal instability (7
kHz/1010 [11]). The higher-frequency peak of the SDR oc-
curs almost exactly at 2�s. In the SDR, the beam response
to a voltage modulation was largest when the two response
peaks came close to each other. This happened both for
large excitations (�V=V � 3%) and for low bunch intensi-
ties (Nb � 1010). The peculiar shape of the phase response
(bottom part of Fig. 4) may contain additional information
about the instability.
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Figure 3: Comparison of SDR beam-phase transfer func-
tions for upward and downward frequency sweeps at dif-
ferent excitation amplitudes.

4 OUTLOOK

The reasonably good agreement between the measured
beam response and Eq. (4) suggests that, at low current
and for low excitation, the response is dominated by the
Robinson interaction with the fundamental cavity mode. It
is difficult therefore to extract information about the beam
distribution and/or the broad-band impedance. A more di-
rect approach would be to excite anl 6= 0 multi-bunch
mode [5], since this would suppress the effect of the funda-
mental mode. A measurement of the broadband impedance
may improve our understanding of the longitudinal insta-
bility, and resolve the discrepancy between the inductive
impedance calculated with MAFIA and that required to re-
produce the observed instability in simulations [11].
Acknowledgements

We thank J. Byrd, R. Akre, M. Ross, R. Siemann,
B. Podobedov, D. Pritzkau, R. Stege, and J. Turner for
help with measurement setup and K. Bane, P. Krejcik, B.
Podobedov and M. Seidel for useful discussions and contri-
butions to the theoretical analysis. We are especially grate-
ful to D. McCormick and S. Horton-Smith for their help

0

–100

–40

–60

–80

B
T

F
 P

ha
se

  (
de

g)

4–97 8299A5

100

B
T

F
 A

m
pl

itu
de

  (
dB

)

150 170 190 210 250230
f  (kHz)

(a)

(b)

Figure 4: Voltage-modulation BTF in the SDR withNb =
1:6� 1010 and an rms gap voltage modulation of 2 kV.
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BTF as a function of current.

with data acquisition and data recovery.
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