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Abstract

Single-turn data from a symplectic tracking code can be used to construct a canonical gen-

erator for a full-turn symplectic map. This construction has been carried out numerically

in canonical polar coordinates, the generator being obtained as a Fourier series in angle

coordinates with coe�cients that are spline functions of action coordinates. Here we pro-

vide a mathematical basis for the procedure, �nding su�cient conditions for the existence

of the generator and convergence of the Fourier-spline expansion. The analysis gives insight

concerning analytic properties of the generator, showing that in general there are branch

points as a function of angle and inverse square root singularities at the origin as a function

of action.
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INTRODUCTION

Fast symplectic mapping is a powerful tool for study of long-term stability

in accelerators, especially in large hadron storage rings such as the LHC (1),(2).

Here we are concerned with a representation of the full-turn map in terms of

a canonical mixed-variable generator, which can be constructed using many

single-turn data from a symplectic tracking code (3). In numerical work to

date, the generator has been expanded in a Fourier series in angle variables,

with coe�cients given as spline functions of action variables. We wish to �nd

conditions so that this expansion converges (in the limit of in�nitely many

Fourier modes and spline interpolation points) to the exact generator of the

full-turn evolution de�ned by the tracking code. We adopt canonical polar

cooordinates (I;�), where I and � are n-component action and angle vectors,

respectively. These are usually action-angle coordinates of an underlying linear

system, but need not be such. The full-turn map M : (I;�) 7! (I 0;�0) as
de�ned by the tracking code is denoted as follows:

I 0 =I +R(I;�) ; (1)

�0 =� +�(I;�) : (2)

The existence of the inverse of the angular map (2) at �xed I is important in

our analysis. We write it as

� = �0 + F (I;�0) : (3)

The function F is 2�-periodic in each component of �0, as are R and � in each

component of �. We assume that the tracking code is symplectic, so that the
Jacobian matrix D satis�es

DJDT = J ; (4)

where T denotes transpose and

D =

�
@I 0=@I @I 0=@�

@�0=@I @�0=@�

�
; J =

�
0 �1
1 0

�
: (5)

If it exists the generator G(I;�0) de�nes the same map implicitly through the
equations

I 0 = I +G�0(I;�0) ; � = �0 +GI(I;�
0) ; (6)

where subscripts denote partial derivatives. By comparison of Eqs. (1) and

(2) with Eqs. (6) we see that G must satisfy the partial di�erential equations

G�0(I;�0) = R(I;�) ; GI(I;�
0) = ��(I;�) ; (7)
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or

G�0(I;�0) = f(I;�0) ; GI(I;�
0) = g(I;�0) ; (8)

where

f(I;�0) = R(I;�0 + F (I;�0)) ; g(I;�0) = F (I;�0) : (9)

Note that if G(1) and G(2) both satisfy Eqs. (8), then the two solutions

di�er by a constant at most. Since a constant does not a�ect the map de�ned

through Eqs. (6), we see that a generator, if any, is essentially unique if F

is unique. In Ref.(3) a formula for G was derived as a necessary condition

on any solution of Eqs.(8), but there was no proof that the formula actually

satis�ed all of the equations, and in fact no proof that G exists. One gets more

insight, as well as new ideas for computational methods, by �rst establishing
the existence of G.

EXISTENCE OF THE GENERATING FUNCTION

In this section we make minimal assumptions about the given functions R
and �; namely, that they are in class C1 (have a continuous �rst derivative
in each of the 2n variables), and that Eq.(2) has a unique solution � = �0 +

F (I;�0), where F is in C1 and is 2�-periodic in �0. We also suppose that the
Jacobian matrix of the angular map, 1+��, is nonsingular. These conditions
are to hold for I in some open, simply connected set 
. For the present

discussion the angular part of the map given by Eq.(2) is best regarded as a
map from R

n to Rn , although in computations one would usually de�ne angles

modulo 2�. In the following sections we shall impose more speci�c conditions
on R, �, and 
, those that arise naturally in an accelerator tracking code.
The conditions stated above will then hold automatically.

We seek a solution G 2 C2 of Eqs.(7) in the region D = 
 � R
n . Let us

de�ne the 2n-dimensional vector z = (I;�0) and write the equations in the

form

Gz(z) = (z) : (10)

An obvious necessary condition for Eq.(10) to have a solution G 2 C2 in
an open region is that @i=@zj = @j=@zi, all i; j; i.e., the tensor equation

curl  = 0 holds. If that region is also simply connected (as is the region D
in which we work) this condition is su�cient as well. Let ! be the 1-form
associated with , that is ! = 1dz1+ � � �+ 2ndz2n, and C be a suitably well-

behaved curve in D. Then since  2 C1, the curl condition gives d! = 0 and
the generalized Stokes theorem in 2n dimensions (Ref.(4),Theorem 6, p.478)
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gives
R
C
! = 0. It follows that the integral of ! between z0 and z is independent

of path and

G(z) =

Z z

z0

! : (11)

One sees that (11) satis�es (10) by di�erentiation, taking account of path in-

dependence. As was mentioned above, this solution is unique up to a constant

addend.

To complete the proof that G exists, we show that curl  = 0 follows from

the symplectic condition Eq.(4). In the notation of Eqs. (8), (9) the equations

to be veri�ed are

fI = g�0 ; f�0 = fT�0 ; gI = gTI ; (12)

which is to say

RI +R�FI = F T
�0 ; (13)

R�(1 + F�0) = (1 + F T
�0)RT

� ; (14)

FI = F T
I : (15)

In terms of R and � the symplectic conditions are

(1 + ��)(1 +RT
I )��IR

T
� = 1 ; (16)

R�(1 +RT
I )� (1 +RI)R

T
� = 0 ; (17)

�I(1 + �T
�)� (1 + ��)�

T
I = 0 : (18)

To get expressions for the derivatives of F , we invoke the de�nition of F ,

F (I;�0) = ��(I; F (I;�0) + �0) ; (19)

and di�erentiate and solve to get

FI = �(1 + ��)
�1�I ; (20)

F�0 = �(1 + ��)
�1�� : (21)

Now Eq.(15) follows from (20) and (18). To prove Eq.(13), write it with

F T
I replacing FI , and substitute the derivatives of F from (20) and (21). The

result is the same as (16). Finally, to prove Eq.(14), substitute RI from (13) in

(17), and again use the symmetry of FI . Thus, curl  = 0 has been established.

Even without invoking the argument based on Stokes's theorem, one can
derive an explicit formula for G, one that obviously satis�es all of the equations

(8). Integrate (8) with respect to one variable at a time, using the remaining
di�erential equations and relations (12) to determine the unknown functions
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of the variables that remain after each integration. For instance, in the case

of two degrees of freedom one formula from such a procedure is

G(I;�0) =

Z �0

1

0

f1(I1; I2; u;�
0
2)du+

Z �0

2

0

f2(I1; I2; 0; u)du+

Z I1

I10

g1(u; I2; 0; 0)du+

Z I2

I20

g2(I10; u; 0; 0)du : (22)

This is easily recognized as a path integral of the form (11).

Another formula for G, the one proposed in Ref.(3) and used in all numer-

ical work to date, is based on the Fourier expansion

G(I;�0) =
X
m

gm(I)e
im��0

: (23)

For all m with at least one non-zero component m�, the Fourier amplitude

may be expressed as

gm(I) =
1

im�(2�)n

Z
Tn

eim��0

R�(I;�
0 + F (I;�0))d�0

=
1

im�(2�)n

Z
Tn

eim�(�+�(I;�))R�(I;�) det [1 + ��(I;�)]d� ; (24)

where T n = [0; 2�]n is the n-torus. To obtain (24) we di�erentiate (23) with
respect to ��, make use of the �rst equation in (7), and compute im�gm by
orthogonality in the usual way. In the second expression for the integral, we

avoid having to know the function F explicitly by making a change of integra-
tion variable �0 7! �. This is advantageous in numerical computations of the
generator, and also convenient in the following analysis. The corresponding

expression for m = 0 is obtained by integrating di�erential equations from the
other equation of (7), namely

@g0

@I
= �

Z
Tn

�(I;�) det [1 + ��(I;�)]d� : (25)

In con�rmation of our general arguments one can show by direct computation

using Eqs.(12) that Fourier amplitudes of integrals such as (22) agree with gm
as expressed through (24) and (25). The choice of � is correlated with the

path, i.e., the order of integrations over single variables. In the course of the
calculation one also shows that (22) is 2�-periodic in �0.
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PROPERTIES OF THE MAP IN POLAR COORDINATES

We now describe more closely the map functions R and � that arise from

a tracking code built on a symplectic integrator. We �rst treat the case of

betatron motion (oscillations transverse to the beam direction) in one degree

of freedom, for which the map in Cartesian coordinates takes the form

x0 =cos (2��) x + � sin (2��) p+X(x; p) ;

p0 =�
1

�
sin (2��) x+ cos (2��) p+ P (x; p) ; (26)

where � and � are positive constants (tune, and beta function at the ring

position to which the map refers, respectively). Since the full-turn evolution

provided by a symplectic integrator amounts to a composition of a large num-

ber of polynomial maps, the functions X and P have the form

X(x; p) =

NX
q=2

Xq(x; p) ; P (x; p) =

NX
q=2

Pq(x; p) ; (27)

where Xq and Pq are homogeneous polynomials of degree q. The transforma-
tion to canonical polar coordinates (I;�) is given by

x+ i�p = (2�I)1=2e�i� : (28)

Since the map can be written as

x0 + i�p0 = e�2�i�(x+ i�p) +X + i�P ; (29)

it is easy to derive the following expressions for R and � of Eqs.(1) and (2):

R(I;�) =
�
I=2�

�1=2�
ei(2��+�)(X + i�P ) + e�i(2��+�)(X � i�P )

�
+

1

2�

�
X2 + �2P 2

�
; (30)

�(I;�) =2�� +
1

2i
ln

�
1 + e�i(2��+�)(X � i�P )(2�I)�1=2

1 + e i(2��+�)(X + i�P )(2�I)�1=2

�
: (31)

At real I and � the logarithm is purely imaginary. To be de�nite we choose
the branch to be such that �� 2�� 2 [��=2; �=2].

Because X and P are polynomials of second or higher order, the following

features are obvious from (28),(30), and (31):

{1{ R(I;�) is a polynomial in I1=2 and in exp (�i�).

{2{ �(I;�) is analytic in I1=2 and in exp (�i�) in any region in which
j exp (�i�)(X � i�P )(2�I)�1=2j < 1.
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Now we can discuss inversion of the transformation (2) on R at real I, an

issue in the previous section. Given �0 2 R we show that there is a unique

solution � 2 R of (2), provided that I is su�ciently small. We use a method

that works as well in the case of two degrees of freedom, even though a simpler

argument based on requiring that � + �(I;�) be monotonic can be used in

the present case. Let x = �0 � 2�� � � ; �(I;�) = 2�� + T (I;�) and write

Eq.(2) as a �xed point problem to be solved on R, namely

x = A(x) ; A(x) = T (I;�0 � 2�� � x) : (32)

One can see from (31) that T (I;�) and T�(I;�) are continuous, periodic

functions of � on R at su�ciently small I. Since (X � i�P )I�1=2 = O(I1=2),
the singularities of the logarithm in (31) are avoided if we choose �I so that

jX(I;�)� i�P (I;�)j(2�I)�1=2 � � < 1 ; (33)

for I < �I. (Here we have written X(I;�) for what was previously called
X(x; p), and similarly for P .) Moreover, T� has the form O(I1=2)=(1+O(I1=2)
as far as its I-dependence is concerned, and is small for small I, uniformly in �.
Let us then rede�ne �I, making it smaller if necessary, so that jT�(I;�)j � � <

1 ; � 2 R for I < �I. It then follows from the contraction mapping theorem that

the �xed point problem (32) has a unique solution if I < �I, since A : R ! R

and jA(x)�A(y)j � �jx�yj, all x; y 2 R, the latter by Taylor's theorem. The
corresponding solution � of (2) can be written as � = �0 + F (I;�0), where F

is periodic. This follows from (32) and the periodicity of T .
We now have existence and uniqueness of the function F of the previous

section, but we also need to know that F 2 C1. That may be established by
an implicit function argument applied to Eq.(2) written as H(�;�0; I) = 0.
We have already seen that this equation has a unique solution �(�0; I) if

I < �I. We can conclude, by an appropriate form of the implicit function
theorem (Ref.(5), Sections 10.2.2, 10.2.3), that the solution has continuous

derivatives in both variables if H has a continuous derivative in each of its
three arguments, in a neighborhood of the solution. We have already taken
care of @H=@� by requiring I < �I, and @H=@�0 = 1. For @H=@I we have to

add a new requirement on the region, namely that I > I > 0. This is required

since @T=@I involves a factor (X � i�P )I�3=2 which in general blows up at
I = 0. In the present case, the region 
 mentioned in the previous section is

fIj0 < I < I < �Ig.
Next consider betatron motion in two degrees of freedom, but with the two

motions uncoupled at the linear level. Then the map has the form

x0j =cos (2��j) xj + �j sin (2��j) pj +Xj(x; p) ;

p0j =�
1

�j
sin (2��j) xj + cos (2��j) pj + Pj(x; p) ;

j = 1; 2 ; (34)
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where now Xj and Pj are sums of homogenous polynomials of degree 2 and

greater in x1; p1; x2; p2. The corresponding map functions, R and �, are

given by expressions just like (30) and (31), except that all ingredients of the

formulas acquire a subscript j, for instance

�j(I;�) = 2��j +
1

2i
ln

�
1 + e�i(2��j+�j)(Xj � i�jPj)(2�jIj)

�1=2

1 + e i(2��j+�j)(Xj + i�jPj)(2�jIj)�1=2

�
: (35)

Now it is clear that claims totally analogous to ({1{) and ({2{) above are

valid in the present case; we have polynomial or analytic behavior in I
1=2
j and

exp (�i�j); j = 1; 2. An important di�erence arises, however, when we try to

verify the condition

j exp (�i�j)(Xj � i�jPj)(2�jIj)
�1=2j � � < 1 : (36)

Here the coe�cient of I
�1=2
j does not necessarily vanish as Ij ! 0. It may

contain terms like x2k; p
2
k; xkpk with k 6= j, which are proportional to Ik. In

general there is a pole in I
1=2
j at I

1=2
j = 0.

Let us see how to deal with this situation when we turn again to the solution
of Eq.(2), now in R

2 at real I. We must �rst �nd a su�cient condition for

inequality (36). For that we ask that I1 and I2 be not only small but also not
too dissimilar, for instance by requiring

I 2 K(�; �; �I) =
�
I
�� �I1 < I2 < �I1 ; k I k < �I

	
;

0 < � < 1 ; 1 < � <1 ; (37)

where k � k is the Euclidian norm. Then (36) certainly holds for �I su�ciently
small. Following the plan of the one-dimensional case, we again solve the
�xed point problem analogous to (32), taking some vector norm kxk and a

compatible matrix norm to bound the Jacobian matrix Ax. After a possible
downward adjustment of �I to a new value �I1, we guarantee that kAxk � � < 1
for all I 2 K, so that a unique solution x is implied by the contraction mapping

principle. Again, we have � = �0 + F (I;�0) with F periodic in �0. We can
again apply the implicit function theorem to show that F 2 C1, provided that

we bound kIk below to avoid the singularity of @T=@I, which can be more

severe by one power than in the one-dimensional case. Thus we require

I 2 L(�; �; I; �I1) =
�
I
�� �I1 < I2 < �I1 ; 0 < I < k I k < �I1

	
; (38)

where I can have any positive value less than �I1. Now L is the region 
 of the
previous section.
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CONVERGENCE OF THE FOURIER SERIES

Since R and � are analytic in �j, it is natural to use a complex variable

method to study the convergence of the series (23). Recall that if a function

f(�) is 2�-periodic and analytic in a strip jIm �j < �, and continuous on the

closure of the strip, jIm �j � �, then its Fourier coe�cients obey the bound

jfmj � kfk exp (�jmj�). This is seen by distorting the contour in the integral

that de�nes fm, and applying Cauchy's theorem. For m > 0, say, the interval

of integration [0; 2�] can be replaced by the straight line segment between �i�
and �i�+2�, since the contributions of vertical paths leading to and from the

displaced interval cancel by periodicity. Conversely, if fm is bounded as stated,

then f(�) is analytic in the strip, since its Fourier series converges uniformly

for jIm �j � � < �. The generalization to a function of several variables,

2�-periodic in each, is obvious.
We give the proof for a map of type (34). As we have already noted,

R(I;�) is a polynomial as a function of each I
1=2
j and each exp (�i�j). To

discuss analyticity of �, we �x � and suppose that

I 2 L(�; �; I; �I2) ; (39)

where �I2 is to be determined, and I can have any positive value less than �I2.
Then since Xj and Pj are sums of homogeneous polynomials of degree 2 or

greater, there is some M(�) so that��e�i�j

�
Xj(I;�)� �jPj(I;�)

���(2�jIj)�1=2 < M(�)I
1=2
j ;

jIm �j � � : (40)

(We write jIm �j � � to mean jIm �jj � � ; j = 1; 2). We then choose
�I2 � �M(�)�2, where � < 1. Then M(�)I

1=2
j � M(�)kIk1=2 < � < 1. By

(40) and (35) we are then assured that � and �� are analytic in each �j for
jIm �j < � and continuous on jIm �j � �.

Now to derive exponential decrease of the Fourier coe�cients, we work

with Eq. (24), which holds under condition (38). Imposing also condition (39),

we can now displace the contour of each integration variable �j in Eq.(24),

moving it into the lower (upper) half-plane a distance �, according as mj is

positive (negative). If any mj is zero, we need not move the corresponding
contour. Notice that we need not be concerned about hitting possible zeros of

det (1 + ��) at complex �. The formula (24) is correct with nonzero determi-

nant at real �, and moving the contour to complex � is justi�ed by Cauchy's
theorem, since the determinant and all other ingredients of the integrand are

analytic. To extract exponential decrease of gm at large mj, it is su�cient to
show existence of a � such that

jIm �j(I;�)j � � < � ; jIm �j � � ; (41)
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because then on the complex contour

Re
�
�imj

�
�j +�j(I;�)

��
� �jmjj(� � �) : (42)

To �nd a su�cient condition for (41) to hold, we note that

Im �j =
1

2

�
ln
��1 + ei(2��j+�j)(Xj + i�jPj)(2�jIj)

�1=2
��� (i! �i)

�
: (43)

Since ln (1 + x) is monotonic and less than x for x > 0, we have by Eq.(40)

that

��Im �j(I;�)
�� �M(�)I

1=2
j � � < � ; (44)

for I 2 L(�; �; I; �I) and jIm �j � �, for some su�ciently small �I. Let us take

� < 1, so that our previous condition (40) also holds, and denote the resulting
value of �I by �I2, thus possibly rede�ning the previous I2. Now all conditions

on I in this and the previous section are met if

I 2 L(�; �; I; �I) ; �I = min(�I1; �I2) : (45)

When (45) holds, we can be sure that gm decreases exponentially with

jmj = maxj jmjj, and that the same is true for all its I derivatives (modulo
powers of jmj). The latter is true because we can di�erentiate the second
integral in (24) any number of times, after displacement of the contour, each

time bringing down one power ofmj but retaining the exponentially decreasing

factor. Thus, under condition (45), all derivatives g
(i;j)
m = @gi+jm =@Ii@Ij are

continuous and bounded, and

jg(i;j)m (I)j � �ijjmj
i+j exp (�jmj(� � �) ; (46)

for some �ij independent of I, and i; j = 0; 1; : : : . It is not di�cult to specify

a region in which gm is analytic as a function of two complex variables I1; I2,
but we shall omit that discussion in this paper since it is not needed in our

applications. We have �nished the proof of

Theorem 1: For a system in two degrees of freedom, let the map be as
described in Eq.(34). For I in the region L(�; �; I; �I), with some su�ciently

small �I, the generator G(I;�0) exists and is unique up to a constant addend,

and its derivatives of any order are continuous and bounded. It is given by a

Fourier series (23) that converges absolutely and uniformly for jIm �0j � � and
I 2 L(�; �; I; �I(�)), for any � > 0 but with �I(�) tending to zero as � increases.

The same region of convergence occurs for the Fourier series of all derivatives

of G, although the convergence may be slower by powers of jmj. A suitable
�I can be computed from a knowledge of the map, following the steps of the
proof.
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A similar statement is of course true for one degree of freedom, in which

case L is replaced by the interval (I; �I) ; I > 0. Let us illustrate the choice

of �I for the H�enon Map in one degree of freedom, which describes the e�ect

of a thin sextupole magnet together with the rotation in phase space caused

by linear forces. The term in the Hamiltonian giving the impulsive sextupole

force (\kick") at location s = 0 in the ring is (�=3)x3�(s). The kick changes p

by �p = ��x2 while leaving x unchanged. The kick followed by the rotation

with tune � gives

X � i�P = ��ie2��ix2 ;

�(I;�) = 2�� +
1

2i
ln

�
1 + i�� cos2�e�i�(2�I)1=2

1� i�� cos2�e i�(2�I)1=2

�
: (47)

The equation (2) will have a unique solution in R if 1+�� is positive, and

we can guarantee that by requiring

������Re
�

@�(cos
2 �e�i�)(2�I)1=2

1 + i�� cos2�e�i�(2�I)1=2

����� � � < 1 : (48)

This inequality holds for I < �I1. Next, to ensure analyticity of � and �� for

jIm �j < � and continuity in jIm �j � �, note �rst that

����(2�I)1=2 cos2�e�i�j < M(�)I1=2 ;

jIm �j � � ; M(�) = �(�=2)3=2(3e� + e3�) : (49)

A nice choice for � is �� = 0:5100 : : : , the value that maximizes �=(3 exp� +
exp 3�). Choose �I2 so that M(��)(�I2)

1=2 = � < ��. Then with �I = min(�I1; �I2),

a generator G exists, unique up to a constant, and all of its derivatives are
continuous and bounded. The Fourier series for G and its derivatives will

converge, absolutely and uniformly for jIm �j � � < �� � � and I 2 (I; �I).

Although our su�cient condition for analyticity of � is hardly necessary,
one can show in the present example that � certainly has branch points at

su�ciently large Im �, regardless of the value of I. With � = u + iv and
�̂ = ��(�I=2)1=2, the logarithm of (47) has a branch point where

�̂[e�v sin u� e3v sin 3u� 2ev sinu] = 1 ;

e�v cos u+ e3v cos 3u+ 2ev cos u = 0 : (50)

With u = �=2 and � > 0 there is a solution where 4�̂ev sinh2 v = 1; for � < 0
take u = 3�=2.
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CONVERGENCE OF THE SPLINE APPROXIMATION

It remains to discuss the approximation of the Fourier coe�cients gm(I) by

spline functions of I, of course for I in the region L speci�ed in the previous

section. We need do this only for �nite m, say for jmj < M , since the various

Fourier series converge uniformly. We are mainly interested in the derivatives

of G, which occur in the equations (6) that de�ne the map induced by the

generator. For �xed � > 0 we choose M so large that

��G�0

j
(I;�0)�

X
jmj<M

imjgm(I)e
im��0

�� < �=2 ;

��GIj(I;�
0)�

X
jmj<M

@gm(I)=@Ije
im��0

�� < �=2 ; (51)

for j = 1; 2 and all (I;�0) 2 L � T 2.
Explicit error bounds for approximation of a univariate function and its

derivatives by interpolating cubic splines are known for the case of the Hermite

boundary conditions, which require that the derivative of the spline match the
derivative of the function at the �rst and last knots (6) . We assume this case,

partly to avoid a longer story concerning approximation theorems with more
general conditions (7). Numerical computations could be done with Hermite
conditions if automatic di�erentiation (8) (algebra of truncated power series)

were used to �nd �rst derivatives of the map de�ned by the tracking code. To
date, a di�erent spline de�nition without derivative data has been used (3, 1) ,

but it would be interesting to try the Hermite scheme as well.
Given an ascending sequence of spline knots, x0 < x1 < � � � < xn, de-

�ne h = max jxi+1 � xij, and kfk = supx2[x0;xn] jf(x)j. Let s(x) be the

unique piecewise cubic polynomial function such that s(xi) = f(xi); i =
0; 1; : : : n; s(1)(xi) = f (1)(xi); i = 0; n, and s 2 C2[x0; xn]. For f 2 C4[x0; xn],
Hall and Meyer (9) have proved that the following is true, irrespective of the

distribution of the knots:

kf (i) � s(i)k � �ih
4�ikf (4)k ; i = 0; 1; 2 ;

(�0; �1; �2) =
� 5

384
;
1

24
;
3

8

�
: (52)

For bivariate spline interpolation of a function f(x; y) we take two knot

sequences, x0 < x1 < � � � < xn and y0 < y1 < � � � < ym, and de�ne

hx = max jxi+1 � xij; hy = max jyi+1 � yij; R = [x0; xn] � [y0; ym]; kfk =
supR jf(x; y)j. De�ne the operator Px so that Pxg(x) is the cubic spline inter-

polant of g(x) with Hermite boundary conditions, and similarly for Py. Then

the bicubic spline interpolant of f(x; y) with Hermite boundary conditions

is de�ned to be s(x; y) = Py(Pxf(x; y)) = Px(Pyf(x; y)). That is, we �rst

11



interpolate in one variable, and then interpolate the resulting spline coe�-

cients in the other variable. This is equivalent to expressing s(x; y) in terms

of the tensor product basis formed from the cardinal spline basis functions for

the two dimensions (6). For f 2 C4[R], Carlson and Hall (10) showed that,

irrespective of knot distribution,

k(f � s)(i;j)k ��4�j;ih
4�i
x kf (4�j;j)k+ �2i�2jh

2�i
x h2�jy kf (2;2)k

+�4�i;jh
4�j
y kf (i;4�i)k ; 0 � i; j � 2 ; (53)

where g(i;j) = @i+jg=@xi@xj . Values of the �i;j are given in Table 1 of Ref.(10).

In our application we require only the following cases:

kf � sk �
5

384

�
h4xkf

(4;0)k+ h4ykf
(0;4)k

�
+

81

64
h2xh

2
ykf

(2;2)k ; (54)

k(f � s)(1;0)k �
9 +

p
3

216
h3xkf

(4;0)k+
9

2
hxh

2
ykf

(2;2)k+
71

216
h4ykf

(1;3)k : (55)

We wish to approximate gm(I1; I2) by bicubic spline interpolation, on some
rectangle R = [I10; I1n]� [I20; I2m] 2 L(�; �; I; �I). For notational convenience,
we suppose that the two mesh step bounds are equal and write hI1 = hI2 = h.
We denote the spline interpolation of a function f(I) by f s(I). In numeri-

cal construction and application of the generator we approximate gm(I) by
gsm(I), and then use @gsm(I)=@I, calculated analytically, as the approximation
to @gm(I)=@I. If we were to approximate gm(I) and @gm(I)=@I independently

by cubic splines, then the symplectic condition would not be maintained ex-
actly, and the whole rationale of the generating function method would be
undermined. Thus, we shall �nd an application for (55) as well as (54).

By applying Eqs. (46, 51, 54, 55), we bound the errors for the �nal approx-
imations to G�0 and GI as follows:��G�0

j
(I;�0)�

X
jmj<M

imjg
s
m(I)e

im��0
�� �

��G�0

j
(I;�0)�

X
jmj<M

imjgm(I)e
im��0

��+ �� X
jmj<M

imj

�
(gm(I)� gsm(I)

�
eim��0

�� �
�

2
+ h4

� 5

384
(�40 + �04) +

81

64
�22

� X
jmj<M

jmj5e�jmj(���) ; (56)

��GI1(I;�
0)�

X
jmj<M

gs (1;0)
m (I)eim��0

�� �
��GI1(I;�

0)�
X

jmj<M

g(1;0)m (I)eim��0
�� + �� X

jmj<M

�
(g(1;0)m (I)� gs (1;0)

m (I)
�
eim��0

�� �
�

2
+ h3

�9 +p3
216

�40 +
9

2
�22 +

71

216
h�13

� X
jmj<M

jmj4e�jmj(���) ; (57)
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and similarly for GI2. Each of the right hand sides can be made less than �,

by taking h = O(�1=3) su�ciently small. This completes the proof of

Theorem 2: Let G be the generating function for the map (34) with I 2 L,
as described in Theorem 1. The Fourier series for G can be approximated by

the series G(h;M), which is obtained by truncating the series for G at jmj =
M , then approximating the coe�cients by bicubic spline interpolation with

Hermite boundary conditions on a rectangle R 2 L, the parameter h being

the maximum mesh step in either direction. For su�ciently large M = M(�)

and su�ciently small h = O(�1=3), the series G
(h;M)

�0 and G
(h;M)

I approximate

G�0 and GI within an error �, uniformly for (I;�0) 2 R� T 2.

COMMENTS

We have seen that elementary arguments prove convergence of the Fourier-
spline representation of the generating function of a full turn map as de�ned

by a symplectic tracking code. As is usual in analyses of this sort, the speci�c
estimates for the region of validity of the Fourier-spline series are probably

somewhat pessimistic from a practical stand point. Nevertheless, the analysis
reveals the analytic structure of the generating function and gives rates of
convergence, results that should be useful in a search for improvements in

the practical realization of the method. One feature of the proof shows up
very clearly in numerical work (1), (3), namely the restriction to a region in
the I1; I2 plane that excludes neighborhoods of the coordinate axes. A high

priority for further work is to avoid this problem, which is really a question
of a coordinate singularity, by using Cartesian coordinates. One possibility

is a straightforward adaptation of the present method, replacing the Fourier
development by an expansion in Hermite polynomials.
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