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I. INTRODUCTION

If we assume Standard Model unitarity there are two independent angles in the \unitarity

triangle", both of which are related to the underlying non-zero phases of CKM matrix

elements. We use the de�nition  = � � � � �, where

� � arg

"
� VtdV

�

tb

VudV
�

ub

#
; � � arg

"
�VcdV

�

cb

VtdV
�

tb

#
; (1.1)

have simple interpretations as phases of particular combinations of CKM matrix elements.

In B factory experiments we seek to measure quantities that, in the absence of physics

from beyond the Standard Model, are simply related to these angles. Ignoring for the

moment the e�ects of subleading amplitudes, CP violating asymmetries are proportional to

sin 2� where � is one of the angles of the triangle. In particular, the �rst two CP asymmetries

to be measured are likely to be in B !  KS which measures sin 2�, and in B ! �+��

which measures sin 2�. However, measurement of sin 2� can only determine the angle � up

to a four fold ambiguity: f�; �=2��; �+�; 3�=2��g with the angles de�ned by convention

to lie between 0 and 2�. Thus, with two independent angles, there can be a priori a total

16 fold ambiguity in their values as determined from CP asymmetry measurements. These

ambiguities can limit our ability to test the consistency between the measured value of these

angles and the range allowed by other measurements interpreted in terms of the Standard

Model CKM matrix elements [1].

In anymodel where the angles measured by the asymmetries inB !  KS and B ! �+��

are two angles of a triangle only 4 of the 16 choices are allowed, since the other combinations

are incompatible with this geometry [2]. Within the Standard Model, the present data on

the CKM matrix elements further reduce the allowed range, implying that 2� is in the �rst

quadrant (0 < � < �=4), that 0 < � < �, and that there is a correlation between the values

of � and � [3]. Thus, among the 16 possible solutions at most two, and probably only one,

will be found to be consistent with Standard Model results.

In the presence of physics beyond the Standard Model the values of the \would be" �

and � extracted from asymmetry measurements may not fall within their Standard Model
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allowed range. Such new physics cannot be detected if the values of the asymmetry angles

happen to be related via the ambiguities to values that do overlap the Standard Model range.

Clearly, the fewer ambiguous pairings that remain, the better our chance of recognizing non-

Standard Model physics should it occur.

One way to resolve these ambiguities is to measure asymmetries that depend on very

small angles [2, 4]: arg[�VcsV �

cb=VtsV
�

tb] or arg[�VcdV �

cs=VudV
�

us]. In this work we discuss other

ways to resolve the ambiguities by measuring asymmetries that relate to large angles only.

That is not to say we discuss only easy measurements. We will later briey discuss the

experimental di�culties, but �rst we review the issue from a theoretical perspective. In

addition to the values of sin 2�, only the signs of cos 2� and sin � for both � = � and � = �

need to be determined. These four signs resolve the ambiguities completely:

� sign(cos 2�) is used to resolve the �! �=2� � ambiguity.

� sign(sin�) is used to resolve the �! � + � ambiguity.

Several measurements which can determine sign(cos 2�) have been proposed [2, 5, 1, 6].

Uncertainties in calculation of hadronic e�ects do not a�ect the interpretations of these

measurements, although they do depend on the known value of hadronic quantities such

as the width and the mass of the �. The determination of sign(sin�), however, cannot be

achieved without some theoretical input on hadronic physics. Quantities that are indepen-

dent of hadronic e�ects always appear as the ratio of a product of CKM matrix elements

to the complex conjugate of the same product. Such pure phases are thus always twice the

di�erence of phases of the CKM elements. Any observable that directly involves a weak

phase di�erence of two CKM elements, �, (rather than 2�) also involves hadronic quantities

such as the ratio of magnitudes of matrix elements and the di�erence of their strong phases.

Thus, in order to determine the sign of sin� or sin � some knowledge about hadronic physics

is required.

We note that this is true even for our current knowledge of the Standard Model CP violat-

ing phase, sin � > 0 (where � is the single independent phase in the standard parametrization
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of the CKM matrix [7]). In order to determine sign(sin �) input on the sign of BK is used [2].

The quantity BK is a ratio of hadronic matrix elements. Its value is totally determined by

the strong interactions and thus, a-priori, is not reliably calculable. However, by now many

methods of determining BK, including lattice calculations, all �nd that BK > 0, though the

range of allowed values is still quite large. As a result, it is now widely accepted that the

sign of BK is reliable and thus that, in the Standard Model, sin � > 0.

Many weak decay amplitudes include two terms with di�erent weak phases. In this

work we show how the presence of a second term can be used to determine the sign of

sin� and sin�. The needed theoretical input is the sign of the real part of the ratio of

the two amplitude terms (excluding CKM elements). The focus of this paper is to examine

what input assumptions are needed to determine this sign, and discuss the status of these

assumptions. Our aim is to clarify what is the minimumunderstanding of strong interaction

e�ects that will be needed to resolve the angle ambiguities. Our current arguments alone

cannot stand as a convincing reason to exclude an angle consistent with the Standard Model

range in favor of a choice that is not consistent. However, were such a choice favored by

this argument, it would at least pose a serious challenge to theorists to understand better

the strong interaction e�ects involved. Eventually it may be that we have to piece together

many such puzzles to get a view of non-Standard Model physics from the low energy frontier

of B decays.

In section 2 we review the general formalism of CP asymmetries in B decays. In section

3 we review methods to determine sign(cos 2�). In section 4 we explain how to determine

sign(sin�), and what is the theoretical input that has to be supplied. Finally, section 5

contains discussions and conclusions.

II. GENERAL FORMALISM

In this section we present the general formalism of CP asymmetries in B decays. We

start by explaining how we group penguin and tree diagrams and then present the needed
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formalism.

A. Two-term weak decay amplitudes.

The terms \penguin" and \tree" amplitudes are standard in the �eld for weak decay

amplitudes, but are actually only meaningful at the short-distance, quark-diagram level.

Our argument here is quite general and is not in any way a�ected by the ambiguity inherent

in these short distance labels. We group amplitude terms together by weak phase, rather

than by individual diagrams. Then there is no need to attempt the unphysical distinction

between rescattering of a tree diagram and a long-distance cut of a penguin diagram. Further

we use CKM unitarity to eliminate one out of the up, charm and top penguin diagrams terms.

In this way any B decay amplitude, including all tree and penguin diagrams, can be written

as a sum of two terms, each with a de�nite weak phase related to particular CKM-matrix

elements. The most convenient choice of how to group terms depends on the �nal state

quarks.

For b! q�qs decays, for any �nal state f , it is convenient to choose the two terms as

As
f = VcbV

�

csA
ccs
f + VubV

�

usA
uus
f : (2.1)

The second term here is Cabbibo suppressed compared to the �rst and is negligible in most

cases. For b! c�cs decays (e.g., B !  KS) the second term gets further suppression since

the dominant term includes a tree level diagram while the CKM-suppressed term contains

only one loop (penguin) diagrams, namely,Accs
f � Auus

f . In b! u�us decays the tree diagram

contributes to the second term while the �rst term has only penguin contributions and hence

Accs
f � Auus

f , thus in this case there is no clear hierarchy among the two terms.

For b ! q�qd decays all the CKM coe�cients are of the same order of magnitude. It is

then convenient to express the amplitude as

Ad
f = VqbV

�

qdA
qqd
f + VtbV

�

tdA
ttd
f ; (2.2)
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where q = u or c is chosen so that the �rst term includes any tree diagram contribution

for the channel in question. (When there is no tree diagram the choice is arbitrary.) The

second term here has a weak phase predicted in the Standard Model to be half the weak

phase of the mixing amplitude. Thus, only one unknown weak phase di�erence enters the

analysis when the amplitude is written in this way.

For any given channel at most one of these two terms has a tree diagram contribution.

The tree diagram is generally expected to be the dominant contribution to any A
qqq0

f for

which it is non-zero, so we will call this the \tree-dominated" term to remind the reader

that it also contains a di�erence of loop (or penguin) contributions with the same weak

phase. We then refer to the other term, which has no tree diagram contribution, as the

\penguin-only" term.

We note, as an aside, that the two-term structure of decay amplitudes can also accommo-

date any beyond-Standard-Model physics contribution, since any additional term in a decay

amplitude, whatever its phase, can always be written as a sum of two terms of de�nite

phase with (possibly negative) real magnitudes. The di�erence between Standard Model

physics and non-Standard-Model physics then comes down to the expected relative sizes of

the two terms. These expected sizes are, in general, dependent on our understanding of

hadronic matrix elements. This just shows once again how di�cult it could be to recognize

the presence of non-Standard Model physics. The only reliable way to �nd new e�ect in

decay amplitudes is to examine cases in which a single term signi�cantly dominates the weak

decay amplitude in the Standard Model [8].

B. General formalism

Here we recall the general formalismof CP asymmetries inB decays. We use the standard

notations [9]. We assume the Standard Model all the way.

The time dependent CP asymmetry in B decays into a �nal CP eigenstate state f is

de�ned as [9]
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af(t) � �[B0(t)! f ]� �[ �B0(t)! f ]

�[B0(t)! f ] + �[ �B0(t)! f ]
; (2.3)

and is given by

af (t) = acosf cos(�Mt) + asinf sin(�Mt); (2.4)

with

acosf � 1 � j�j2
1 + j�j2 ; asinf � �2 Im�

1 + j�j2 ; � � q

p

�A

A
; (2.5)

where p and q are the components of the interaction eigenstates in the mass eigenstates,

jBL;Hi = pjB0i � qj �B0i, and A( �A) is the Bd( �Bd) ! f transition amplitude [9]. The time-

dependent measurement can separately determine acosf and asinf . We always consider decays

with a leading tree diagram amplitude. Then, we write the amplitude as

A = ATe
i�0
T ei�T +AP e

i�0
P ei�P ; �A = ATe

�i�0
T ei�T +AP e

�i�0
P ei�P (2.6)

where T and P stand for the tree-dominated and penguin-only terms respectively. The weak

phases of the decay amplitudes, �0T and �0P are convention dependent, as is arg(q=p) but the

di�erences �T = �0T � arg(q=p)=2 and �P = �0P � arg(q=p)=2 are convention independent

quantities that we seek to determine. Similarly, the strong phases are all subject to arbitrary

rede�nitions, only the relative strong phase of the two terms � � �P � �T is a physically

meaningful quantity. We have introduced strong phases for each term so that we can always

�x both AT and AP to be real quantities, independent of any phase convention choice. We

then de�ne the real quantity

r � AP

AT

: (2.7)

Note that we allow r < 0. The CP violation sensitive quantity � is then

� = �f
e�i�T + re�i�P ei�

ei�T + rei�P ei�
: (2.8)

Here �f is the CP parity of the �nal state. In particular, � Ks
= �1 and ��+�� = �D+D� = 1.
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For b ! c�cs decays, leading for example to the �nal state  KS , the penguin-only term

is Cabbibo suppressed and can be safely neglected. Thus r = 0 should be an excellent

approximation and we get the well known result [9]

acosf = 0; asinf = �f sin 2�T : (2.9)

We next consider b ! q�qd decays, leading for example to the �nal states B ! �+�� or

B ! D+D�. Here, by de�nition, �P = 0 since the penguin contributions with a di�erent

weak phase are subsumed in AT . Then

acosf =
2r sin �T sin �

1 + r2 + 2r cos�T cos �
; asinf = �f

sin 2�T + 2r sin�T cos �

1 + r2 + 2r cos�T cos �
: (2.10)

III. DETERMINING sign(cos 2�)

In this section we review measurements that can be used to extract sign(cos 2�) and

sign(cos 2�). These signs resolve the �! �=2� � ambiguities.

A. B ! ��

All the three decays B ! �+��, B ! ���+ and B ! �0�0 can lead to a �+���0 �nal

state. Due to interferences between these channels su�cient information is encoded in the

B ! �� decays to distinguish between the � and �=2 � � choices. This was shown in Ref.

[5], where it was explained how both sin 2� and cos 2� can be measured using a full Dalitz

plot distribution analysis. To resolve the ambiguity one needs only to �x the sign of cos 2�,

which should be relatively easy to achieve.

We do not repeat here the detailed explanations of Ref. [5]. In that work it was shown

that there are several observables that, in the absence of penguins, directly measure cos 2�.

(These observables all involve the imaginary part of an overlap between two di�erent Breit-

Wigner functions describing two di�erent charges of � meson.) The presence of penguins

spoils the simple relationship between these quantities and cos 2�. However, even when
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penguin terms are present, there is enough information in the interference regions to deter-

mine the sign of cos 2�. A multiparameter �t can obtain a preferred choice between � and

�=2� �, even allowing for arbitrarily large penguin contributions.

Here, and throughout this paper, we neglect the e�ects of electroweak penguins. These

give a correction to isospin-based treatments for isolating certain CKM factors. The isospin

structure of the amplitudes contributing to �� decays is used to isolate terms with isospin

two, because they receive no contribution from QCD penguin graphs, and hence show pure

sin 2� and/or cos 2� dependence. Electroweak penguin graphs can give isospin two parts

but the relevant contributions here are expected to be quite small and hence unlikely to

confuse the extraction of the sign of cos 2�.

Experimentally, the cos 2� determination involves �tting parameters to the contributions

of a broad resonance. Under these resonances there are non-resonant B decay contributions

which must also be �t in order to extract the relevant resonant e�ects. The question of how

best to parameterize these non-resonant contributions is under study [10]. It will have to be

resolved to extract useful results from these channels.

B. B ! DD��

The idea of using overlapping decays to add information on cos 2� can be in principle

applied to B decays to higher D resonances [6]. In that case, a full Dalitz plot distribution

of D(�)D(�)� �nal states can be used to determine the sign of cos 2�. Since the D� are rather

narrow the interference e�ects are probably too small to be detected in B ! DD� since

there is essentially no overlap kinematic region between di�erent D�'s. The B ! D(�)D��

decays are better candidates. The D�� widths are larger and the e�ect may be measurable.

More details are expected to be given in Ref. [6]. Once again, it may be a problem to

parameterize non-resonant D(�)D(�)� that contribute in the same region as the resonances

and could potentially destroy the analysis.
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C. B�
! DK�

The angle  satis�es the condition

� + � +  = � (mod 2�): (3.1)

Since  is de�ned modulo 2�, the 16 possibilities for � and � result in an eightfold ambiguity

in . These eight values give two di�erent values for cos 2 and four di�erent values for sin 2.

Thus, by measuring cos 2 or sin 2 some of the ambiguities can be resolved. Here we focus

on cos 2 and in the next subsection we discuss sin 2.

The value of cos 2 can be used to resolve some combination of the � ! �=2 � �

ambiguities. The trigonometric identity

cos 2 = cos 2� cos 2�� sin 2� sin 2�; (3.2)

implies that the transformations � ! �=2 � � or � ! �=2 � � (but not both) change

the value of cos 2. As we assume that sin 2� and sin 2� are known, cos 2 can distinguish

between the two cases f�; �g; f�=2� �; �=2 � �g or f�=2 � �; �g; f�; �=2� �g. Thus, for
example, if cos 2� in known from the B ! �� analysis, the sign of cos 2� can be determined

from the measurement of cos 2.

Several methods to extract sin2  (or equivalently cos 2) using B� ! DK� decays

[11, 12] or Bs decays [13] have been proposed [14]. For the purpose of illustration, below

we concentrate on the method of [11]. This method uses measurements of six B� ! DK�

decay rates to extract cos 2 up to a two fold ambiguity. This two-fold ambiguity is due to

an unknown strong phase. In general, this ambiguity can be removed by applying the same

analysis for several �nal states [11] with the same avor quantum numbers as DK�. All

these modes have the same weak phase but, in general, di�erent strong phases. Thus, only

one solution of cos 2 is consistent in all the modes while the second (incorrect) one should

be di�erent in the di�erent modes, since strong phases di�er from one mode to another.

We note that even if we have a two-fold ambiguity in cos 2 because we have studied

only a single �nal state system, the incorrect value of cos 2 should not be the same as that
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obtained using the incorrect value of � or �. In that case there are going to be two possible

solutions for cos 2 from the B� ! DK� measurement, and two predictions arising from

the measurements of sin 2� and sin 2�. In general, only one of the solutions will coincide

and the other not. Choosing the one that coincides is su�cient to resolve the ambiguity in

the cos 2 measurement and at the same time to �x the relative sign of cos 2� and cos 2�.

D. Bs ! �KS

The time dependent CP asymmetry in certain Bs decays (e.g., Bs ! �KS) directly

measures sin 2 if the penguin-only term in the decay amplitude is neglected. A measurement

of sin 2 would determine the signs of cos 2� and cos 2� [2], assuming their magnitudes are

known. The trigonometric identity

sin 2 = �(cos 2� sin 2� + cos 2� sin 2�); (3.3)

implies that either or both of the transformations � ! �=2 � � and � ! �=2 � �, change

the value of sin 2. Thus, the signs of both cos 2� and cos 2� can be determined, once sin 2

is known.

Experimentally, it will be very hard, if at all possible, to measure this asymmetry. In

addition, the penguin-only term is expected to be signi�cant in b ! u�ud decays, making

the relationship between the asymmetry and the angle  more complicated [14]. These

problems imply that the methods we mentioned before are better than the time dependent

CP asymmetry in Bs ! �KS decay for determining  [14]. However, all these other methods

determine cos 2. The justi�cation to study the time dependent CP asymmetry inBs ! �KS

is that it probes a di�erent functional dependence of , namely, sin 2.

As we need only to choose between few discrete choices of  the problems mentioned

before may not be so severe in our case. By the time measurement of the CP asymmetry in

Bs ! �KS is feasible we will probably already know the rough value of the penguin contri-

bution, from its relationship to similar e�ects in B ! ��, extracted via isospin analysis, and
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those determined from �ts to Bd ! ��. If cos 2 is already measured as discussed above,

then we need this measurement only to distinguish between the two values of the sign of

sin 2. In general only one sign will be consistent with the allowed range for the ratio of

penguin-only to tree-dominated terms, so the ambiguity will be resolved even though an

a-priori measurement of sin 2 cannot be achieved.

IV. DETERMINING sign(sin�)

In this section we discuss how sign(sin�) and sign(sin �) can be determined. These signs

resolve the �! �+� ambiguity. As we already explained, this ambiguity cannot be resolved

in any theoretically clean way. Some knowledge of hadronic physics is always needed. In

the following we describe several methods that can be used to resolve the ambiguity, and

explain what is the needed theoretical input.

In order to get sensitivity to sign(sin �) we focus on cases where two terms with di�erent

weak phases are involved in the decay amplitude. Then, in principle, the relative phase

between these two terms can be determined. However, there is also a relative strong phase

between these two terms. Therefore, theoretical input is required in order to disentangle

the strong and the weak phases. The relevant hadronic quantity is found to be the sign of

r cos �, that is the sign of the real part of the ratio of the two amplitude terms (excluding

weak phases).

A. B !  KS vs B ! D+D�

In the case of the angle � we have one class of measurements, from b ! c�cs processes

such as B !  KS, that have very small r. For these channels Eq. (2.9) with �T = � is

valid and the asymmetry measurement determines � up to the usual four-fold ambiguity [9]

asin KS
= � sin 2�: (4.1)

The other class of measurements is from b ! c�cd decays such as B ! D+D�. In this
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case we expect r to be signi�cantly larger and Eq. (2.10) with �T = � is valid. For simplicity

we will here give results valid only to leading order in r, however we have checked that the

full expression contains enough information to avoid this approximation if needed. We get

asinD+D� = sin 2� � 2rDD cos 2� sin� cos �DD: (4.2)

where �DD is the strong phase di�erence between the tree-dominated and penguin-only

B ! D+D� amplitudes, and rDD is the signed ratio of their magnitudes. Comparing Eqs.

(4.2) and (4.1) we �nd

asin KS
+ asinD+D� = �2rDD cos �DD(cos 2� sin�): (4.3)

It is clear from this expression that we can �x the sign of sin � only if we know the sign of

cos 2� and, in addition, the sign of rDD cos �DD. We assume the �rst of these is given by the

methods discussed in the previous section.

Currently, there is no reliable way to determine the sign of the real part of the ratio of

hadronic matrix elements (rDD cos �DD). In order to proceed, we assume factorization. (We

will discuss the reliability of this and subsequent assumptions later.) Assuming factorization

and that the top penguin is dominant, we can infer from the results of Ref. [15], rDD < 0.

Within the factorization approximation the relevant strong phases (almost) vanish, so that

�DD ' 0, and hence the sign of rDD cos �DD is given by the sign of rDD.

Assuming rDD cos �DD < 0 as given by the factorization calculation we get

sign(asin KS
+ asinD+D�) = sign(cos 2� sin�): (4.4)

Note, in particular, that the Standard Model predicts cos 2� sin � > 0, and therefore also

that the asymmetry in D+D� is smaller in magnitude than the asymmetry in  KS (and

opposite in sign).

We need only measure the sign of the sum of the two asymmetries to resolve the ambi-

guity. Even this may not be an easy task if rDD is small, however a recent estimate found

that in the Standard Model 3% <� rDD <� 30% [16], and certainly in the upper end of this

range the required sign should be measurable.
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B. B ! �� vs B ! �+��

We �rst explain how to get sin 2� uniquely out of the B ! �� decays without uncertain-

ties due to penguin only terms. Then, the comparison with the asymmetry in B ! �+��

can be used to determined sign(sin�) using a similar approach to that discussed for � above.

While the experiment may well proceed to determine all the various amplitudes and

phases simultaneously by a maximumlikelihood �t, it is instructive to inspect the expressions

analytically to see what combination of terms actually enters into the measurement of sin 2�.

We follow the treatment of [5] and write

A3 = A(B0 ! �+��) = T3 + P1 + P0 ; �A3 = A( �B0 ! ���+) = �T3 + �P1 + �P0 ; (4.5)

A4 = A(B0 ! ���+) = T4 � P1 + P0 ; �A4 = A( �B0 ! �+��) = �T4 � �P1 + �P0 ;

A5 = A(B0 ! �0�0) = T5 � P0 ; �A5 = A( �B0 ! �0�0) = �T5 � �P0 ;

where Ti is the tree-dominated amplitude and P1 and P0 are the (suitably rescaled) penguin-

only contribution for isospin one and isospin zero respectively. The CP conjugate amplitudes

�Ai, �Ti and �Pi di�er from the original amplitudes, Ai, Ti and Pi only in the sign of the weak

phase of each term. We further de�ne

Asum � A3 +A4 + 2A5 =
�
jT3jei�3 + jT4jei�4 + 2jT5jei�5

�
ei�

0

T ; (4.6)

�Asum � �A3 + �A4 + 2 �A5 =
�
jT3jei�3 + jT4jei�4 + 2jT5jei�5

�
e�i�

0

T :

Here, �i is the strong phase of Ti, and �0T is the common weak phase of the tree-dominated

terms. We see that �Asum = Asume
�2i�0

T . From Table I of Ref. [5] we see that both AsumA
�

sum

and Im
�
q �Asum p

�A�
sum

�
are observables. (Note that q as de�ned in Ref. [5] is equal to

p
2qp�

in our standard notation.) In particular, we see that from the data we can extract

aDalitz�� � �Im
 
q

p

�Asum

Asum

!
= � sin 2�; (4.7)

where for the last equation we used jq=pj = 1 and �T = � � �. Eq. (4.7) shows that sin 2�

can be extracted using B ! �� decays without penguin pollution. We emphasize that in
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order to obtain this result we did not have to assume that the top penguin is dominant. All

penguin terms are included, either as a subdominant part in the tree-dominated amplitudes,

or in the penguin-only term.

Alternately, B ! �� decay modes can also be used to extract sin 2� without hadronic

uncertainties using isospin analysis. The needed measurements are the time-dependent rate

for B ! �+�� together with the time-integrated rates of B0 ! �0�0, B+ ! �+�� and

their conjugate decays [17], and a geometrical construction then allows extraction of sin 2�.

However, discrete ambiguities in this construction imply that sin 2� can only be extracted

up to certain discrete choices, which correspond also to di�erences in the relative phase and

the ratio of magnitudes of certain tree-dominated and penguin-only terms (but not the same

combinations as we identify below). The determination from �� does not su�er from this

problem. (These ambiguities could in principle be removed by a precise measurement of the

time dependent asymmetry in B ! �0�0 [17], but this measurement is unlikely.)

Now, assuming we have determined sin 2�, we look again at the B ! �+�� decay, here

using the interference of the two terms in the amplitude to determine the sign of sin�, just

as we did in the D+D� case for �. Here, �T = � � � and �P = 0, and Eq. (2.10) gives the

asymmetry. Once again, for simplicity, we work to leading order in r, but this approximation

can be avoided if needed. We get

asin�+�� = � sin 2� � 2r�� cos 2� sin� cos ���; (4.8)

where ��� is the strong phase di�erence between the tree-dominated and penguin-only B !
�+�� amplitudes, and r�� is the signed ratio of their magnitudes. Comparing Eqs. (4.7)

and (4.8) we get

asin�+�� � aDalitz�� = �2r�� cos ���(cos 2� sin�) (4.9)

Thus, once sign(r�� cos ���) is known, the measurements will determine sign(cos 2� sin�).

If the sign(cos 2�) is known from the treatments discussed above, sign(sin�) is then deter-

mined; if not, at least the fourfold ambiguity of fsign(cos 2�); sign(sin�)g is reduced to a

two-fold ambiguity.
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Again, there is as yet no reliable way to calculate the sign of r�� cos ���. Therefore, we

turn to the short-distance calculation with factorization to determine [15] that r�� < 0 and

that ��� is very small. This then gives

sign(asin�+�� � aDalitz�� ) = sign(cos 2� sin�): (4.10)

With the knowledge of cos 2� this di�erence can be used to �x the sign of sin�.

C. CP asymmetries in inclusive decays

In the above, the main obstacle in getting theoretically clean predictions is that we do

not have a reliable way to calculate the ratio of the relevant hadronic matrix elements.

An alternative way, which does not su�er from this problem, is to measure asymmetries

in semi-inclusive decays, e.g. to all states with a given avor content [18]. Here matrix

elements are not needed. However a crucial assumption in this case is that the semi-inclusive

measurements are described by the quark level calculations, which are needed to determine �:

the fraction of CP-odd �nal states. The quantity 1�2� is referred to as the \dilution factor".
The assumption, called local quark-hadron duality, that the quark-diagram kinematics are

unaltered by hadronization, is essential to this calculation and is not well justi�ed. In

addition, we are convinced that full semi-inclusive measurements are not experimentally

feasible, some data cuts will be needed. The e�ect of such cuts on the ratio of CP-even to

CP-odd contributions is di�cult to calculate and likely to be evenmore sensitively dependent

on the local quark-hadron duality assumption.

However, our game here is to determine signs, so we can possibly use these methods

despite large uncertainties in the calculation of the relevant dilution factors, as long as

the sign of (1 � 2�) is reliably determined. The hope is that by the time the inclusive

measurements will be carried out, we will have consistency checks that will either support

or rule out local duality. For example, the inclusive asymmetry calculations are similar to

that of the Bs width di�erence [19]. If future measurements of the Bs width di�erence agree

with this calculation, it would support the local duality assumption.
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A potentially useful measurement is the asymmetry in the Bd ! DX where X is multi

pion state with no K meson contributions. Such decays are governed by the b ! c�ud and

b! u�cd transitions. The inclusive calculation gives [18]

asinc�ud �d = �(1 � 2�)
����VcdVubVudVcb

���� sin(�� �): (4.11)

On the practical side, we note that the large inclusive rate may help compensate the CKM

suppression of the asymmetry. We see that the � ! � + � or � ! � + � transformations

(but not both) will change the sign of the result. The quantity (1 � 2�) is calculated to be

about 0.21 [18], but the range of uncertainty on this quantity, and its dependence on the

necessary experimental cuts remains to be explored. If we can convince ourselves that we

know the sign of this quantity, as calculated for the speci�c data sample used to determine

the asymmetry, we can use such a measurement to reduce the set of ambiguous choices for

the two angles. Perhaps one way to proceed will be to explore, both in the theory and in

the data, the sensitivity of the signs to changes in the selected sample.

Another measurement that can be useful is that of Bs decays governed by the b ! c�us

and b! u�cs transitions. For this case Ref. [18] found

asinc�us�s � (1� 2�)
����VcsVubVusVcb

���� sin(�+ �); (4.12)

where here 1 � 2� � 0:28 [18]. Again, the � ! � + � or � ! � + � transformations (but

not both) will change the sign of the result. Note that unlike the previous case, here the

CKM suppression is not very small. However, asymmetries in Bs decays are expected to be

harder to measure. Once again the dilution factor calculation needs to be further explored

to determine whether the sign of this quantity can reliably be calculated.

D. Remarks about the theoretical assumptions

We here examine the points at which it is important to clarify our theoretical under-

standing if we are to use the results of B factory experiments to look for indications of
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non-Standard Model physics. Our arguments can be strengthened by a combination of im-

proved calculational methods (such as lattice calculations of matrix elements) and by testing

the implications of similar arguments in a variety of channels, in addition to those studied

for the CP studies. It is to be hoped that, by the time we have su�cient data to perform

the measurements described above, both of these avenues will have been explored and our

arguments, e.g. on the sign of the r cos � terms, either discredited or more �rmly established.

The point of this paper is that we need to pursue this further understanding to resolve the

ambiguous choices.

We will discuss here the exclusive �nal states. There, we use factorization to calculate

the sign of r cos �. Here we discuss why it is plausible that this sign is correctly predicted by

the factorization calculation. Our calculation uses the operator product expansion approach,

which is rigorous, but adds to it the less rigorous ingredients of a model to calculate matrix

elements. We apply this model only in color-allowed decays where the outcome is insensitive

to the variation of the parameter governing the relative contribution of color-suppressed

terms.

The factorization approximation treats each quark-antiquark combination separately,

the only strong phase, in this approximation, is a small e�ect that arises from cuts of the

short-distance penguin diagrams involving u or c quarks. Thus, � � 0. To go beyond

the factorization approximation we consider a two step picture in which the decay and

hadronization occurs as calculated in the factorization approximation but (elastic and in-

elastic) �nal state rescattering are allowed. While here we present only the D+D� �nal

state, similar treatment apply also to the �+�� �nal state with similar conclusions. The

way to proceed is to work in the isospin basis. Each of the terms ATe
i�P and AP e

i�P has

two isospin contributions (labeled by the �nal state isospin If = 0; 1). These terms acquire

strong phases through rescattering e�ects. We emphasize that the rescattering phases for

the same isospin channel can be di�erent in the penguin-only and tree-dominated terms.

These amplitudes have di�erent overlap between the D+D� state and the other hadronic

states with the same charm-quark content and isospin. Because the light quark content in
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D+D� is d �d we know that in both the tree-dominated and penguin-only terms separately

the two isospin contributions are equal in magnitude. Thus, the e�ect of rescattering can

be taken into account by writing the tree-dominated and penguin-only amplitudes as

ATe
i�T cos �01T ; AP e

i�P cos �01P : (4.13)

Here the phases are given by

�X = (�0X + �1X)=2; �01X = (�0X � �1X)=2; (4.14)

where �iX is the phase shift of the isospin i term in the X = T; P amplitude. Thus, after

rescattering, we �nd

rDD = r
fact
DD

cos �01P
cos �01T

; cos �DD = cos(�T � �P ); (4.15)

where rfactDD is rDD as calculated using factorization. Thus, the sign of rDD cos �DD is un-

changed by rescattering if the relevant phase shifts are all su�ciently small that the cosines

in Eqs. (4.15) are all positive.

It seems to be a reasonable assumption that all the relevant strong phases are small.

There are no known nearby resonances with isospin 0 or 1 in the spin zero partial wave in

the D+D� system at the B mass. Furthermore, some cross checks on this argument are

available. The rates of D+D� and D0 �D0 productions are given by

�(B ! D+D�) =
���AT cos �

01
T e

i�T ei�
0

T +AP cos �
01
P e

i�P ei�
0

P

���2 : (4.16)

�(B ! D0 �D0) =
���AT sin �

01
T e

i�T ei�
0

T +AP sin �
01
P e

i�P ei�
0

P

���2 :
If the D0 �D0 rate is small compared to the D+D� rate it provides some con�rmation that

the rescattering phases �01T and �01P are small.

Direct CP violation e�ects in these channels depend on the same rescattering phases and

can be predicted in terms of the same parameterization. Such e�ects are proportional to

sin � and so are small if all rescattering e�ects are small. Large direct CP violations in the

D+D� or �+�� channels would be a reason to mistrust our argument for the sign of r cos �.
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However, small direct CP violations are consistent with, but not a convincing argument for

small �. An interesting example would be if sin � is found to be small in several channels

with the same quark content (e.g. DD, DD� and D�D�). Then, we would have to conclude

that either � � 0 or � � � in each of these channels. There is no reason to believe that any

rescattering strong phases should be close to � and it is even less likely that several at once

have this value. However, due to the arguments for factorization, it is quite plausible that

all of them are small at the same time.

To conclude: the needed theoretical input is the sign of r cos �. Here, we argue that it is

plausible that the correct sign can be predicted by factorization in color-allowed channels.

Moreover, some cross-check can be done. However, we emphasize again that we believe that

there is currently no reliable way to determine this sign.

V. FINAL REMARKS AND CONCLUSIONS

Our goal is to �nd physics beyond the Standard Model. While in this paper we present

our results as a way to resolve the discrete ambiguities in the values of � and �, it should be

remembered that in the context of the Standard Model, because of constraints from other

measurements, there is only two fold ambiguity in � and no ambiguity in �. The importance

of resolving the ambiguities is to expose a possible inconsistency with the Standard Model

values. This will then indicate new physics.

When looking for new physics, one should try to assume as little as possible about its

nature. Here, we allowed any kind of new physics. This new physics can be (any combination

of) new contribution to B � �B, Bs � �Bs or K � �K mixing, violation of the three generation

CKM unitarity, or a new contribution to decay amplitudes. Once some inconsistency within

the Standard Model is found, then the pattern it exhibits can perhaps be used to get some

insight about the kind of the new physics responsible for it.

The ideas presented here should be, of course, additional to other methods of looking for

new physics [20]. New physics can be found in several other ways: if the values of � and �
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are outside the Standard Model allowed range; if the asymmetry in Bs decay mediated by

b! c�cs it signi�cant; or, if asymmetries that should be the same in the Standard Model are

found to be di�erent [8]. Because any discrepancy can be an indication of physics beyond

the Standard Model, it is important to try to have as many independent tests as possible.

If some of the above hints for new physics were found, the ideas we presented have to be

modi�ed. For example, if aCP (B ! �KS) 6= aCP (B !  KS) which would indicate a new

contribution to the b! s transition [8, 21], we will not be able to determine sign(sin�) by

comparing aCP (B !  KS) to aCP (B ! D+D�). The underlying assumption in this analysis

is that the former measures sin 2� to very high accuracy. A new signi�cant contribution to

the b! s transition would invalidate this assumption.

However, in some situations of new physics, the methods we discuss can still be useful.

For example, in models where the only signi�cant new physics e�ects are signi�cant contri-

bution to the B � �B or K � �K mixing amplitude the unitarity triangle can, in principle, be

reconstructed. However, the combination of discrete ambiguities and hadronic uncertainties

make it impractical [22]. Reduction of the ambiguities, in a manner discussed here, may

help in making this program feasible [22].

In our analysis we always care only about a sign of a speci�c quantity. Usually, the

sign of a speci�c quantity can be determined more easily than its magnitude. For example,

the determination of cos 2 from B� ! DK� decays is experimentally very challenging.

However, even a measurement with large errors may be su�cient for our purpose. Of course,

if no choice is found to be consistent across the set of measurements we have an immediate

indication for non-Standard Model physics.

While the methods we describe work in generic points of the parameter space, there are

some values of the angles where they will not work. This is the case where some of the

quantities we need to determine are (very close to) zero. For example, when � = �=4 we

have cos 2� = 0. Then, the ambiguity in the value of � is only two fold, but it cannot be

removed by the methods we presented. We used the ratio cos 2� sin�= cos 2� to determine

sign(sin�). However, when cos 2� � 0 we will not be able to measure this ratio.
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From the experimental point of view, since many of the channels we have discussed have

yet to be reliably observed it is not clear how feasible the comparisons we discuss will be. All

these studies are certainly at least second generation B factory work, not feasible until large

data samples have been accumulated. For example, the determinations of sign(sin�) using

exclusive decays involve comparisons of measured asymmetries in two di�erent channels.

Determining the sign of a di�erence of two measured quantities, each of which will have

signi�cant errors, is certainly not going to be easy, and will be harder if the actual values of

the asymmetries are small (e.g. if j�j is close to �=2).
To conclude: we explain how the determination of sign(cos 2�) and sign(sin �) (for � =

�; �) fully resolve the 16 fold ambiguity in the values of � and � as can be extracted

from CP asymmetries in B decays. The determinations of sign(cos 2�) and sign(cos 2�) are

theoretically clean. The determination of sign(sin�) and sign(sin�), however, are plagued

with some theoretical input, which, at present, is not reliable. The hope is that by the

time the measurements will be carried out, our theoretical toolkit will be improved and we

will be able to calculate more reliably the sign of the relevant hadronic e�ects. From the

experimental side, none of the methods we described is easy to carry out. Hopefully, some

of them will turn out to be useful.
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