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Abstract 

We consider five-dimensional black holes modeled by D-strings bound to D5-branes, 

with momentum along the D-strings. We study the greybody factors for the non-minimally 

coupled scalars which originate from the gravitons and R-R antisymmetric tensor particles 

polarized along the 5-brane, with one index along the string and the other transverse to 

the string. These scalars, which we call intermediate, couple to the black holes differently 

from the minimal and the fixed scalars which were studied previously. Analysis of their 

fluctuations around the black hole reveals a surprising mixing between these NS-NS and 

R-R scalars. We disentangle this mixing and obtain two decoupled scalar equations. These 

equations have some new features, and we are able to calculate the greybody factors only 

in certain limits. The results agree with corresponding calculations in the effective string 

model provided one of the intermediate scalars couples to an operator of dimension (1,2), 

while the other to an operator of dimension (2,l). Thus, the intermediate scalars are 

sensitive probes of the chiral operators in the effective string action. 
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1. Introduction 

There has been much progress recently in describing the microstates of black holes 

through D-brane physics. The Bekenstein-Hawking entropy of certain extremal and near- 

extremal black holes can be understood through the counting of D-brane microstates 

[1,2,3,4,5]. F ur th ermore, the Hawking radiation and the semi-classical absorption were 

shown in many cases to agree with the calculation of the corresponding process in the 

D-brane picture. This was demonstrated for the charged black holes in four and five di- 

_ mensions that are described by effective string models [6,7,8,9,10,11,12,13,14,15,16], as well 

as for the extremal threebranes that admit a direct D-brane description [17,18]. 

The results mentioned so far refer to minimally coupled scalar fields. Not all scalars, 

however, are minimally coupled. There are other scalars which couple to the non-trivial 

vector backgrounds. Examples of these are the ‘fixed’ scalars considered in [19,20], which 

have different cross-sections from the minimally coupled scalars. In the D = 5 black hole 

background there are two specific fixed scalars, which mix with each other and with the 

gravitational perturbations [20]. R ecently, the complexities of this mixing were disentan- 

gled in [21]. The greybody factors calculated from the diagonalized equations of motion 

were found to be of the form obtained earlier in [20]: in the effective string model such 

greybody factors are reproduced by operators of dimension (2,2). This poses a puzzle, 

since the effective string action derived in [20] a so 1 contains couplings to dimension (1,3) 

and (3,l) operators which produce greybody factors of a different form. Thus, it is of 

special interest to study other situations in which chiral operators appear in the effective 

. _ string couplings. This will be the subject of the present paper. 

We will be concerned with yet a third type of scalars, which we call intermediate, first 

considered in [20]. This type is different from both the minimally coupled and the fixed 

scalars. The intermediate scalars originate from the fields A; (denoted by hsi in [20]) and 

Bsa, i.e. the gravitons and the R-R 2-form particles polarized along the 5-brane, with one 

index pointing along the string and the other transversely to the string. In this paper, we 

will calculate the semi-classical absorption cross-sections of the intermediate scalars and 

compare them with the effective string model predictions. 

In Section 2, after presenting the setup, we derive the classical equations of motion 

for the intermediate scalars in the D = 5 black hole background (an alternative derivation 

based on the 6-dimensional theory will be presented in the Appendix). This turns out to be 

- quite nontrivial due to a mixing between Ai and Bsi. In Section 3 we propose a coupling 

for these scalars in the effective string model of the black hole. Part of this coupling term 
m - 

is not present in the standard Nambu-type D-string action. It turns out that requiring the 

scalars to couple to operators of a given dimension on the world sheet is a very restrictive 

guiding principle. We find that the necessary operators are of dimensions (1,2) and (2,l) 

and then calculate the resulting cross-sections as predicted by the effective string model. 



Finally, in Section 4 we compare the absorption cross-sections derived by semi-classical 

considerations to the cross-sections predicted by the string. The classical equations of 

motion are complicated and we are only able to solve for the cross-sections in various 

limits. In every case that we can treat analytically, there is exact agreement between the 

semi-classical gravity and the effective string. This is evidence that the effective string 

model reproduces the dynamics of the intermediate scalars. However, our inability to 

solve for the general semi-classical greybody factor leaves the question of the complete 

agreement open. 

2. Derivation of the Equations of Motion 

As in [20] we start with the action of the D = 10 type IIB supergravity reduced to 5 

dimensions. The relevant part of it is 

R- $%C)’ - ~GP’Gqn(~~G,q~‘G~n + &%$B,,PB~,) (2.1) 

where ~1, Y, . . . .= OJXV; p,q,... = 5,6,7,8,9. $5 is the 5-d dilaton and G,, is the 

metric of internal 5-torus, 

. _ 
$5 = $10 - ;G = & - IX , 

2 
G = det G,, , 

and Bpq are the internal components of the R-R 2-tensor. Fi, is the field strength of the 

Kaluza-Klein vectors A$. It will be crucial in what follows that HpvP and Hpy~ are given 

explicitly by (see, e.g., [22]) 

H ILVP - - qwp - BPqqv 7 Fp = dB, , F” = dA” , P-2) 

H /u/x = &J&x - ;A;F,h, - i B,, F;~ + cyclic permutations , 

where B,, and B,, differ from the D = 10 components of the R-R 2-form field by terms 

- proportional to A;. The ‘shifts’ in these field strengths vanish for the D = 5 black hole 

backgrounds which correspond to bound states of RR-charged 5-branes and strings with 

momentum flow. For such black holes, B pq = 0, the vector fields AP and BP have electric 

backgrounds, while Hpvx has a magnetic one (we shall assume that the electric charges 

&lcp and QP corresponding to the vectors AJ’ and BP have only the p = 5 component). 

However, in general the field strength shifts in (2.2) are important for the discussion of 



perturbations. We will argue, in fact, that while the shift in Hpvx does not contribute 

in the present case, the shift in Hpvp will lead to a mixing between perturbations of G,, 

and BPq for p = 5 and q = i (5 is the direction of the string and i = 6,7,8,9 label the 

directions of T5 orthogonal to the string). 

The 5-dimensional charged black hole metric is [23,24,4] 

ds; = g,,dxmdxn + dsi = -h’FIm2dt2 + he1?idr2 + r2?tdfk$ , 

6 h=l-TZ, 7-f E (HnHlH5)lj3 , Js = r3(HnH1H5)l13 , 

(2.3) 

0 
,. 

HI=~+~, Hs=1+$ 
6K 

Hn=l+F, 

where Q = 
4 

Q2 + $r$ - $ri, etc. The background values of the internal metric and the 

dilaton are (see [20] for more details) 

(ds&,)p = Gpqdxpdxq = e2vs dxg + e2”(dxi + dx: + dxi + dxi) , (2.4) 

v5 4 -2d5 E X , e2x - 
- (HIi&, ’ 

It is useful to choose the following parametrization for the full (background plus pertur- 

bation) internal metric 

G,, = e2v 
e2ii-2V + e2VA;A; 

Aj5 

A; 

> 6ij ’ 
JG = ex+4v , P-5) 

GPQ = e-2x 1 

-A’5 
> 

7 

For the present discussion of the ‘off-diagonal’ perturbations the fluctuations of 45, as well 

as those of a, can be ignored. Therefore, we concentrate on the dependence on A& and 

Bsi and do not keep track of other scalar perturbations which were already discussed in 

PO1 * 
The D = 5 scalars A& and B5a originate from the M = 5 components of the KK 

vector A&, and the vector component BM~ of the R-R 2-tensor in type IIB supergravity 

reduced to 6 dimensions. An alternative derivation of the equations for the Ai and B5i 

perturbations, which directly uses the D = 6 theory, will be presented in the Appendix. 

The relevant terms in the D = 5 action are’ 

-. 

’ The ,LL,V indices are always contracted using the curved 5-dimensional metric and assuming 

that F,,F,, G FpyFfiv, etc. The repeated i,j-indices are summed with &j with no extra factors 

(all factors in 5,i directions are given explicitly). 
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1 
- -e 

4 
~x+2v[F~vF~v + 2F~,F~,A; + F~vF~v(e2x-2v + AbAb)] 

1 
-- 

4e 
--$x+4v [Hpv5Hpv5 - 2H,viH,v5A; + HpviHpvj(e2X-2v6i’ + ABA{)] 1 , 

where 

H pv5 - - Fpv5 - B5iFLV 7 Hpvi = Fpvi + B5iFiv - 

Here only Fpv5 and FEv have background values, which we denote by p, 

e%x&j(~5)“r = 2QK , e-~x+4v,/$(fi5)Dr = 2Q , 

so that 

As a result, we may integrate out Fpvi or all of Hpvi easily. This gives2 

1 
-- 

4e 

-Q x+4v 
( - e-2x+2v~pv~~pv~A~A~) . 

To show this it is crucial that 8’iv has only the electric component and depends only on r, 

and that the scalar perturbations depend only on r and t. This is similar to what happens 

in the fixed scalar case [19,20]. 

The mixing that contributes a new term is Fpv5B5iFLv which comes from the Hzv5 

term.3 The relevant vector-scalar terms are 

1 
- -es e 2X 2v [Fi,, Fjv + 2fiiv FLU A; + ~~,8$AbA~ - 2e-2x+2v.Fpv5 Bgi FLuI . 

4 

It remains to integrate out FLY. One should actually integrate over the corresponding 

gauge potential, but since the background is electric and static, and the scalars depend 

only on r and t, this is equivalent to just solving for the field strength. 

2 The HiHihh term is of subleading order being quartic in the fluctuations. 

3 One way to see why the mixing terms inside H,,x in (2.1) and (2.2) do not contribute - 

is to dualize B,, into a vector, VP. The resulting terms in the action will have the following 

structure: Sd5~[-~~e-~~5G-1/2F~,(V) + tpVXuKVpFV~,F,PK]. The three vectors, V,, Ap5, Ai, 

- have electric backgrounds with charges P, Q, QK respectively. The trilinear Chern-Simons-type 

term produces a non-zero contribution in the gaussian approximation only if the two fluctuation 

fields have indices different from 0 and T, which are the directions of the electric background of 

the third field in the product. This means that the Chern-Simons-type term does not mix the 

‘electric’ perturbations of the fields, but it is the ‘electric’ perturbations of the vectors that couple 

to the off-diagonal scalars we discuss. 



Adding the AbAk term already obtained in (2.8), we get 

1 -zx+zv --e 3 - 
4 [ p;,A; - e-2X+2v&,SB5i]2 

+ ~~;J$A;A; -e -4X+4~&&y5~~~~ . 
> 

We can simplify this expression using (2.7): 

The novelty is the mixing term in the brackets 

-&ke- 2x+2v&B5i = -2- 

Q 
Q1cH1 A;B5i 
Q&z ’ 

which is thus present for arbitrary non-vanishing values of P, Q and Qrc. 

Remarkably, the full A;, Bgi scalar action with the kinetic terms included can be 

diagonalized in terms of the fields [i and ~a defined by 

vi = &(A; + B5i) , ta = $A; - Bsi) . 

. _ 
With these definitions, 

S5 = & 
5 s ( 

d’s& - ~em2A+2v[(a,Ei)2 + (a,~)“] 

(2.10) 

(2.11) 

+ ie QK -2x+2u -~x+6u~py5jTpv5 [(I + 5$em2A+2v)(f + (1 _ Qe 2 hl) a . 

Resealing the fields to eliminate the background-dependent factors e-2x+2y in the kinetic 

parts, we arrive at the following decoupled equations (we shall use the same notation, ti 

and vi, for the redefined fields, e-X+VJa and emx+‘qi) 

[ 
hr-3~(hr3-$ +u2HIH5Hn - Mt & = 0 , 1 (2.12) 

s - 
hr-3-&3$) +u2HIH5H, - ib&, vi = 0, 

I 

(2.13) 



I 
. . 

ikl~-, = he*-“r-3~(r3~~e-A+“) , 

M*=-$l*F)Iz. 
1 rz 

Somewhat surprisingly, all the dependence on P disappears from the “mass” terms since 

e-‘+‘= (H~/H,)~/~ , 

_ so that 

In the extremal limit, TO = 0, Q = Q, P = P, QK = QE~, the resulting “mass” terms are 

found to be 

M, = 8Q2Q2K + 8QQdQ + Qdr2 + (3Q2 + 2QQIc + 3Q&)r4 
r2(r2 + QR-)“(r” + Q)2 

, 

3(Q - Q1d2r2 
Mq = (r2 + Q~c-)~(r~ + Q)2 ' 

(2.14) 

They have the following asymptotics 

r+o: . _ q=-$ ikl,=o, 

r--)00: M, = 3Q2 + ~QQK + 3Qk M = 3(Q - Qd2 
r6 , 9 r6 * 

At-the horizon q behaves as the I = 0 partial wave of a minimally coupled scalar. ti, on the 

other hand, behaves as the I = 2 partial wave, which is the behavior previously encountered 

for the fixed scalars [20,21]. The expressions (2.14) can be simplified if Q > QK, 

~~ = Q2(8Q;< + g&v2 + 3r4) 

r2(r2 + QK)“(~” + Q>” ’ 
(2.15) -~ 

Note that, for QK = 0, s - 

3Q2r2 

Mq = (r2 + QK)2(r2 + Q)” ’ 

ikf,=ikl~= 
3Q2 

r2(r2 + Q)” ’ 
(2.16) 

Thus, as one switches on &I(, there is a remarkable jump from the I = 1 to the I = 0 or 

Z = 2 behaviors near the horizon. 

2 
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3. Absorption in the Effective String Model 

In the previous section we found a surprising mixing between the off-diagonal compo- 

nents of the Kaluza-Klein scalars Ai and the internal components B5a of the R-R 2-tensor. 

In this section we discuss this mixing from the effective string point of view, and show 

what it implies about the greybody factors. 

First, we have to write down the lowest-dimension couplings to the effective string for 

the fields in question. In [20] th e scalar fields A; were included, but the components B5a 

- of the R-R field were omitted. In fact, as the discussion of the gravitational perturbations 

shows, these two field mix and one should keep both of them. The simplest assumption 

that one usually makes is that the effective string action is the same as the D-string action 

with a resealed tension. The necessary terms in the action are then 

s=- ,T,ff Pa J (J-“i- So,) 

where 

Yab = G,,(xj&x%xV , gab = B,,(X)&Xp&Xv . 

The leading order couplings are found to be 

-?[&a+ + d-)X” + B5@+ - &>X”] = -%[&a_x” + Il;a,X”] , 

where the same mixtures of the fields naturally emerge as the ones needed in the effective . _ 
field theory (GR) calculation, (2.10). W e see that these mixtures couple to operators 

of dimension (0,l) and (1,0) respectively. Clearly, these couplings do not contribute to 

absorption. Expanding further we find the term 

-?A; [&X”(a,X)” + a,x”(&x)“] , 

whose natural supersymmetric completion is 

-?$ A; [ &Xi T” + 8+X” Ttot ] , 

- with Pot including the fermionic contribution as well. It is interesting that, using this 

coupling in the case QK = 0, we find the greybody factor which esactly agrees with the s - 
GR result. So, for QK = 0 (the non-chiral case) we may just use the coupling stated in 

[20] and arrive at complete agreement with the semi-classical calculation. 

The structure of the action is less clear for Qlc > 0. While we do not readily see 

a cubic coupling for B5i, we will add it by hand to enforce the principle that ti and ~a 



couple to operators of a given dimension. With this assumption, the terms that arise in 

the effective string action are 

(3.1) 

Using the action (3.1), 1 e us now derive the effective string absorption cross-section t 

for Q. The absorption cross-section is due to processes Q + L + L + R and qi + L + L + R 

_ (L and R stand for the left-moving and right-moving modes on the string). The matrix el- 

ement between properly normalized states, including the kinetic term normalization factor 

IQ,& for qi (see (2.11)), is found to be 

Adding up the absorption rates for the two processes gives (see [20] for details of analogous 

cross-section computations) 

3lgL,* 1 

r 2rTeff 1 -e-& --oo 
4wbaJ PI +p2 -; 

( > 
plea p2 a 

l-e TL 1-e-TL 

Kg Lff W (3.3) 

= 32rTeff l-e-* 
>( 

l-e-* 
> 

(w” + 167r2TZ) . 

. The values of the parameters in the effective string model have been fixed in [25,10,20], 

1 
Teff = - 

27&j ’ W) 

where 

rT--$, r2fP. 5 

Note that this effective string tension is the tension of the D-string divided by n5, the 

number of 5-branes. This value of the tension is necessary for agreement with the entropy 

of near-extremal5-branes [25], as well as for the agreement of the fixed-scalar cross-section 

for r1 = rg [20]. In this paper we will show that it also leads to agreement of the absorption 

cross-sections for the scalars qi and &. 

Using (3.3), (3.4), and the detailed balance, we find that the absorption cross-section 

for ?ji is 

7r3rfrij 
aq(w) = ~ 

w (ee - 1) 

4- (e* -1> (e~~l)(w2+16TzT~~- (34 



I 
: . 

After analogous steps, the absorption cross-section for [i is found to be 

7r3 r: rt 
q(w) = ~ 

w (ee - 1) 

4 (,* _ l) (,* _ 1)(w2 + 16T2Ta - 
P-6) 

In the next section we will check these greybody factors against semi-classical effective 

field theory calculations. We will need the following expressions for the temperatures [lo], 

TLT2!C-, 
--Q 2 

27rrl r5 
TR=%, -= 

27rrl r5 
L+L 

TH TL TR ' 
(3.7) 

where g is defined by 

rz = ri sinh2 g , 
,.. 

r”, E &I( . 

This may be solved with the result, 

e*2a = I + -$(‘: f Q> - 

Under QK + -&I(, we therefore find that CJ + -0, which implies that TL and TR axe 

interchanged. This transformation reverses the momentum flow along the string, so that 

the operators of dimension (1,2) and (2, l), and therefore ti and vi, are interchanged. The 

classical equations for [i and vi, (2.12), (2.13), are also interchanged under &I< + -QK. 

This is the first, and very important, consistency check between the effective string and 

. _ the semi-classical descriptions of the intermediate scalars. 

4. Comparison with Semiclassical Greybody Factors 

- In this section we carry out a number of calculations which indicate agreement, at 

least in various limits, between the semi-classical cross-sections and those in the effective 

string model. First we discuss the case QK = 0 where the classical calculation is the 

easiest. Then we address various limits of the QK > 0 case. 

4.1. QI< = 0 

Here we consider the case r: = 0 (i.e. Qlc = ) 0 , where vi and [i satisfy identical 

equations (2.12),(2.16). S ince here TL = TR, the two effective string greybody factors are 

also the same, and they will turn out to be identical to the semi-classical ones. 

The non-extremal equation satisfied by both vi and <i is (for ro < rl, rg) 

hre3d,(hr3.&) + f(r)u2 - 3h r;l 
r2(rf + r2)2 

th 
ro2rxr12 + Zr2) R = 0 

r4(rf + r2)2 I 
, P-1) 



where we set vi, [i = R(r)eiwt, and 

6 h(r) = 1 - 7 , f(r) = (I+ $)(I + 5) . 

In the near region (r < rl, r5) we find, in terms of the variable z = h(r), 

where 

&(&) + D + 
(1 :z, + (15)’ 1 R=O, (4.2) 

This may be reduced to a hypergeometric equation by a substitution of the form 

R = ~~(1 - z)pF(.z) . P-3) 

After some algebra we find that, if Q and ,B satisfy 

E + aia - 1) = 0 , a2+D+C+E=0, 

then the equation for F(z) becomes 

‘(I - ‘> &2 d2F + [(2o! + l)(l - z) - zg,]g - [(a + P)” + D]F = 0 , (4.4) 

which is the hypergeometric equation. In general, the solution to 

d2F 
4l - 4p +[C-(l+A+B)z]g-ABF=O, (4.5) 

which satisfies F(0) = 1, is the hypergeometric function F(A, B; C; z). Thus, the solution 

in the inner region is 

Rr=z”(l-z)BF(o+/3+i~,a+/?-i~;1+2cxz), (4.6) 

where 
.wrlr5 . w 

a! = --2 
-=-‘4=T’ 2r0 

_ In the last equation we used the fact that, for r, = 0, 

Using the asymptotics of the hypergeometric functions for z -+ 1, we find that, for large r, 

RI + YE, 
r0 



where 

In the middle region (ro << r << l/w) the approximate solution is 

r9 RI1 M E z(l+ -$-1’2 . 

In the outer region, the dominant solution, which matches to the asymptotic form in region 

II, is 

RIII = W-%(p) , p=wr. 

By matching we find that 

ACE?. 
r0 

The absorption cross-section may now be obtained using the method of fluxes (see, 

e.g., [10,20] and references therein). The flux per unit solid angle is 

.F = i(R*hr3&R - c.c.) . (4.7) 

The absorption probability is the ratio of the incoming flux at the horizon to the incoming 

flux at infinity, 

P= 
.F horizon 

FEOming 

= $rlrsro IAIF2 . 

. _ 
The absorption cross-section is related to the s-wave absorption probability by 

47r 
gabs = --P = 

2T2r3r 

W3 
rlo 5 IE(-2 . 

Thus, 
27r2 r3 r 

gabs = O 
rl 

where 
W wrlr5 

5 = GZ = 2ro * 

It follows that 
7r3 2 ,e*+l 

cabs = -rlr5 
4 

ec& _ y(w2 + 16x2T2) * (4.8) 

This ii in exact agreement with the cross-sections (3.5) and (3.6) derived in the effective 

string model ! In particular, the agreement of the overall normalization provides new 

evidence in favor of the effective string tension (3.4) being given by the D-string tension 

divided by n5 i 



4.2. The [i cross-section for Qlc > 0 

The scalar ti has the fluctuation equation (2.12) with the effective mass term MS = 

MA-, + M+. We will try to solve for the cross-section exactly in the regime where ro << 

r, << rl, rg, so that TR << TL. We will take W/TR to be of order 1. Hence we should be 

able to find the dependence of the cross-section on w/TR, which is a test of the greybody 

factor dependence. 

We will match the approximate solutions in several regions. First, consider the inner 

_ region, r << r,. Here the effective mass is approximately 9 , and the equation becomes 

hr-3~#.&)) + w2rf;:ri _ 8(rZr; 6) 1 R=O. 

In terms of the variable z = 1 - $, 

[ . 

&(a> + 
w2rTr,2rE 

4r4 
0 

- (1 Fzj2 R = 0 . 1 
This equation has the same form as (4.2) with 

D= 
w2rfri 

4rt ’ 
c=2, E=-2. 

We will again use the substitution (4.3)’ where now 

i?3 + p(p - 1) = 0 -..+ 
(p _ 2)(p + l) = o , 

a2 + D + C + E = 0 + a = -iWr;;irn . 
0 

For rg < rn, we have 

TR M 6 
47rrlrgr, 

Thus, 
. w 

N=-28rT~* 

We also choose p = -1. Hence, the solution is 

RI = ~“(1 - z)-lF(-1 + o + ifi, -1 +a-- 

Away from the horizon, i.e. as z + 1, 

(4.9) 

(4.10) -- 

r2 2 
RI + - 

r2 

$1-i& 
E IiT12 . 

r0 


