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1 INTRODUCTION

In a sequence of recent papers, Tom Etter [6, 7, 8, 9, 10] has articulated the connection

between classical and quantum probabilities from a point of view that I will call

Etter’s link theory, or link theory for short. The technical development is rigorous,

but grounded in basic theories that are unfamiliar to most physicists, particularly

those actively using quantum mechanics in their daily research. In the paper that we

will from now on call Syst ems[l O] he employs the standard terminology of classical

probability theory. In Merology[8] he uses the science of parts and wholes. In Meta-

Law[9] he uses both classical set theory from the foundations of mathematics literature

and the data-base table language of contemporary computer science. The same theory

is being discussed in all cases, but this is not obvious to the practicing physicist who

is unfamiliar with these different scientific or technical languages. In this paper we

examine the simplest case of “linking” when only two states are involved using the

language of quantum scattering theory, but do not succeed in making a rigorous

mapping onto Etter’s theory. That problem will be re-examined in a subsequent

paper [25, 27].

It turns out that the easiest language in which to attempt our task is also un-

familiar to most physicists, although it’s starting point can be thought of as the

orthonormal and complete basis for a finite Hilbert space, often used in quantum

mechanics, defined by

< i[j >= a;j; Xgl\i >< il = 1 (1)

The conventional way in which quantum scattering theory is modeled is to use these

orthonormal and complete basis “vectors” as basis vectors in a linear algebra in which

X la > +Ylb > is a ray in Hilbert space for any complex, real values for X, Y. But

this immediately frustrates any simple attempt to base quantum discreteness direct-

ly on finite measurement accuracy. We have discussed elsewhere[20] why we believe

that the finite and discrete measurements on which experimental physics always rests

is a better starting point for modeling

uum mathematics of classical physics.

the quantum discontinuity than the contin-

Our theory[26] could be characterized as a
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neo-operationalist approach harking back to P.W. Bridgman[4, 5]. Our current pro-

gram, which grew out of earlier work on the combinatorial hierarchy [2, 3], is based

on the standard computer operation of XOR between ordered strings of O’s and 1‘s.

Although this program has, in our view, had considerable success in providing ap-

proximate quantitative calculations of the fundamental masses, coupling constants

and cosmological constants of particle physics and physical cosmology[21, 22, 23, 24],

this unfamiliar approach has stood in the way of acceptance by most of the physics

community.

We believe that Etter’s link theory may help build the needed bridge between

bit-string physics and conventional relativistic quantum mechanics. But in order to

make our case, we have found it useful to start with the bit-strings and then relate

them to Hilbert space rather than the other way around. Our next section will lay

out the formalism we need. Although we will not have time to discuss why in this

paper, this new work has allowed us to identify where the presentation of bit-string

geometry at ANPA WEST 11 turned awry [19]. We then apply this formalism to

describe the part of Etter’s more general link theory we believe relevant to S-matrix

scattering theory and exhibit the two-body one-channel scattering problem as an

example. Our final section makes a cursory connection between the formalism and

its physical interpretation.

2 BIT-STRING COORDINATES AND COMPO-

NENTS

2.1 Bit-Strings

Given positive definite integers m, W and their product rnW, we define a bit-string

a(a; rnW) with length mlt’ and llamrning measure or norm a (defined below, cf. Eq.2)

by its ml$’ ordered elements aW E O, 1. Here O, 1 are also integers, and we require

that rn~ 1 andw< 1,2 , ....mW ~ 2. This allows us to define the complement to

a, which is a with O’s and 1’s interchanged and which we call z(mW – a; rnW), by

its elements aW = (1 – aW)2 and compute the Hamming measure of any string or its
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complement by

(2)

where we have used the fact that a; = aW. Clearly the norm of any bit-string so

defined is a positive integer. We can also define the null, or colorless, string 0(0; nzW)

by OW= O and the anti-null, or white, string I(mW; mW) by IW = 1.

Since we wish to relate this model to quantum mechanics, we use the strings to

represent “vectors” in a finite Hilbert space with mW dimensions by defining bra’s

(< 1) and ket’s (/ >) in the Dirac notation with inner and outer products

(3)

Since we will eventually wish to distinguish “vectors” of integer norm in Hilbert space

from “vectors” of integer magnitude in Euclidean and Minkowski space, we will call

the entities used to define bras and kets b-vectors, and will try to avoid the ambiguous

term “vector” altogether. Note that in this notation the Hamming measure is given

by < ala >= a. If < alb >= O we say that a and b are orthogonal. Note also that

whatever the values of a, m, W’ the vectors z and a are always orthogonal because

< ala >= O. We also need the diagonal matrix 1 with matrix elements lWW)= 6WWJ.

Here 15WW1is the Kroeneker delta which is unity when the two indices are the same

and otherwise zero.

It is well to realize that if all we know about a string is its Hamming measure a

‘mW)! distinct strings with the the same Hamming measure. If wethen there are ~l(~w_~)l

pick any one of them and have some way to distinguish each of the a ordered positions

at which aW = 1, then there are still a! similar strings for which < ala >= a. For

future reference we note that the von Neumann density matrix is proportional to

la>< bl, and is what he and Etter [9, 10] call a pure state.

Two bit-strings a, b combine by “6”, called discrimination, to give a third hab =

a @ b which is defined by its elements as follows:

(hib)~= (a @ b)~ = (a~ – bw)’ (4)

Here this somewhat unconventional way of writing XOR works because aw, bw e 0,1

and we have specified “O” and “l” to be integers, so that a: = aw, b; = bw. The
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basic bit-string theorem which relates discrimination to the Dirac inner product for

bit-string rays follows immediately:

la@ bl+2<alb>=a+b (5)

where we have introduced yet another notation for the Hamming measure, namely

Ial s< ala>= a. Note that

la@ bl=a+be<alb>=O (6)

Thanks to our definitions, we have that

0630 = o

O(BI = I

160 = I (7)

I@ I = O

(8)

demonstrating that “fB” is isomorphic with XOR, symmetric difference, addition mod-

ulo 2, ..... Further, given any non-null string a which is not the anti-null string we

have that

Thus given any two of the three strings a, =, I discrimination creates the third.

However, using only discrimination, the system closes forming what John Amson

calls a discrimination system[l, 2], a concept we will articulate further below.

Define bit-string concatenation allb by

(allb)k - ak, k s 1,2,..., W.W.

- b;, i C 1,2,..., mbwb,k = m~w~ +i (lo)
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Where the lengths of the two strings are rn.W. and rn~W~ respectively. We emphasize

that this operation is obviously non-commutative. We can relate concatenation to the

ordinary addition of integers by the obvious result

Iallbllcll...l = a+ b+c+... (11)

It is also obvious that concatenation is equivalent to taking the tensor product of

states in the Dirac notation

I(a{lbllcll...) >= la> @lb> @c >... (12)

2.2 Orthogonal Coordinate Basis

In order to construct b-vectors whose Hamming measures are positive integers in

an m W-dimensional Hilbert space, we first define an orthogonal set

Wi(w; row), i 6 1,2, ..., m of Hamming measure W and length rnW

wi(w; nzw) = o([i– l]W)llI(VVllo([rn– ZIFV

Then, relative to this basis, we can define the bit-string coordinates

a(W; rnW) in the space spanned by this basis by

a~ ~< alw~ >

of basis strings

as follows:

(13)

a~ of any string

(14)

Note that O s ai < W and that for m 22, we can, independent of the values of W,

) ‘(a;, aj)) bym, define an alternative representation of these coordinates (a; (ai, aj , aij

a; = (a~ – aj) = <alw~ >– <alwj>= ~[la(l)wj l-la(lilwzl]

a~=ai+aj = < alw~ (3 wj > (15)

We can also define the bit-string components ai(aij W), which in the full Hilbert

space of rnW dimensions are to be interpreted by the construction

ai(a~; ~W) = O([i – l]W)lla;(a~; W)llO([m – i]W) (16)

Then in the full space of rnW dimensions, we have that

lai(ai;~~) @aj(aj;~Wl = ai +aj n a~; < ai(ai; ~W)laj(aj;~W) >== 0 (17)
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But the components ai(ai; ~) in the contracted space of only ~ dimensions can

still have meaning when they combine by discrimination. In the absence of further

information, all we know is that

(18)

Note that we must use Iaj I in specifying the lower end of the range because a; is a

signed integer which can be negative, whereas a: is always a positive integer. Our

next step is to supply a context in which this contracted space becomes meaningful.

2.3 Discriminate Closure and the Combinatorial Explosion

We say that n bit-strings ai(ai; ~) are discriminately independent if and only if for

all i,j, k, .. c 1,2,3, . ..n we have that

a~@aj # O

a~oajtf)a~ # O

(19)

It follows immediately that, given n discriminately independent bit-strings, one can

form from them 2“ – 1 non-null strings, because this is the number of ways one can

choose 1,2, ..., n distinct things taking them 1, 2, .... n at a time. Further, once one

has constructed all of these strings, the discrimination between any two of them will

necessarily produce another one of them. Thus they form a set which closes under

discrimination. This property of discriminate closure for any finite set of bit-strings

was discovered by John Amson[l, 2]. If none of the strings a; are the null string, we

can always construct from any discrimination system a related one which closes with

2n + 1 strings simply by including I in the set and requiring that

al @ a2 0... @a. = I(W) (20)
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An immediate consequence of this observation is that of all the 2WW! possible

bit-strings of length W where all the positions of the symbols in the string are as-

sumed known, only W of them can be discriminately independent. In particular the

ort honormal and complete basis often used in quantum mechanics, defined by

< i]j >= tiaj;z~lli ><21 = 1 (21)

also specifies W discriminately independent bit-strings. To see this, we define (i(l; W))W =

tiiW,which has the requisite orthonormalit y property, and see that at the same time

the property of discriminate independence is satisfied by these W strings.

As already noted, one conventional way in which Hilbert space is used to model

quantum mechanics is to use these orthonormal and complete basis “vectors” as basis

vectors in a Zinear algebra in which Xla > +Ylb > is a ray in Hilbert space for any

complex, real values for X, Y. We have chosen instead to introduce discrimination

and discriminate closure into our Hilbert space by introducing the operator “@”.

Thanks to the basic bit-string theorem given above (Eqn.7), we see that, if we confine

ourselves to b-vectors whose norms are integers and to bras and kets whose inner

products are always integers, any abstract relationship which can be written in the

Dirac notation can be mapped onto an expression which only requires discrimination

to compute all the relevant b-vectors. We claim [22, 23] that bit-strings of length

W = 256 then give us a system of sufficient richness and numerical flexibility to

describe relativistic quantum mechanics without going beyond integer arithmetic, yet

capable of modeling both the standard model of quarks and leptons and big-bang

cosmology to currently available empirical accuracy. The remainder of this paper

will be devoted to demonstrating how some of the first steps in this program can be

articulated.

3 BIT-STRING LINK THEORY

3.1 Discrimination as the Basic Interaction

Rather than employ the general link theory [8, 9, 10] we develop what we believe suf-

fices for our discrete physics program[26] in the firm belief that our version can be
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embedded in Etter’s broader context [27]. The reason we are so confident this can be

done is that the S-matrix theory operationalist point of view due to Heisenberg and

later workers clearly satisfies the requirements of link theory by cleanly separating

the classical observable in terms of which the “in” and “out” states are expressed

from the unobservable pieces of the remaining quantum mechanical formalism. For

methodological reasons such as Occam’s Razor these pieces of mathematical formal-

ism should be kept as parsimonious as possible. This radical Copenhagen approach,

which leaves us measuring only the velocities, momenta and energies of particles which

can be treated using classical physics, is quite consistent with actual practice in high

energy accelerator laboratories. Further, much of the work showing that bit-string

models are particularly convenient for describing the limitations of measurement ac-

curacy for these particulate observable at all currently accessible energies including

ultra-relativistic ones has already been done [17, 12, 13].

With this understood we can assume from the start that the observable we need

for the input and output states can be specified simply as bit-strings whose Hamming

measures are known to the nearest integer, and model scattering by the transition

from the state represented by bit-string a to the state represented by bit-string b.

Etter[lO] links these two states, considered as columns in a table, by keeping only

the rows where the entries agree, numbering < a lb >. If this is a link in a Markov

chain, when the link is cut this leaves one end with all the information and the

other only having white noise[7]. This illustrates the asymmetry between past and

future of statistically causal theories and allows a standard “case count” probability

calculation. In contrast, if this is a link in a quantum chain governed by the unitary

transition operator the pure quantum state is completely symmetric between past and

future. The cutting of this link leaves information on both sides of the cut, which still

has to be discussed. To make a long story short, if an uncut system is linked back on

itself, this part of the quantum world is completely cut off from the classical world.

If a branch is provided leading to the classical world and information is removed,

this information leaves the quantum world and participates in the irreversibility of

the classical world by joining the fixed past. In Etter’s treatment the probability

calculation can then involve “negative case count s“ or negative amplitudes, but only
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the positive quantity < al b >2 appears in the laboratory. Thus Born’s “amplitude

squared” rule is recovered. Barring new phenomena which can be tamed for scientific

study, the laboratory world remains statistically causal.

Our approach to the problem is different, partly for historical reasons. We believe

that for physics it will prove to be isomorphic to Etter’s link theory, but this work is

yet to be done. In the first published paper on the combinatorial hierarchy in which

I participated[2], I made heuristic use of the idea that the discrimination operation

a @ b connecting two states to form a third is a vertex in a Feynman diagram. After

18 years, I believe that this idea can now be given the precision requisite for believable

calculations. The basic idea is simply that we should form the link between a and b

by counting the cases where the 1‘s disagree rather than where they agree, that is by

using la @ bl rather than the < alb > which is the basic ingredient in Etter’s link.

Clearly one should be able to map one theory onto the other in this contezt because

by the basic bit-string theorem (Eqn. 7) la@ bl = a + b – 2< alb >.

Our choice of taking the disagreement — i.e. la@ b I— rather than the agreement

— i.e. < alb > — between strings as the fundamental positive scalar measure

for interaction can be made plausible by noting that when the discriminant of two

string vanishes they are identical and the whole idea of interaction looses meaning.

Consequently our proposal banishes from the outset the “self-energy diagrams” which

produce one class of infinities in relativistic quantum field theory. It also means that

when a vertex opens it cannot close on itself; one of the two entities must interact

with a third before any process can take place. This is one way of understanding how

Faddeev[l 1] succeeded in banishing the infinities from the quantum mechanical three

body problem which had made such serious problems for Weinberg[29, 30, 31].

3.2 Single Channel, Two Body Scattering

Once we have taken the step of representing interaction by “@” and we consider a

system with only two strings, the total number of cases to include is the number in

which they overlap (< alb >) plus the number in which they do not overlap (la@ bl).

The fundamental interpretive postulate of what might be called bit-string scattering
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theory is then that the probability of two strings interacting, called pab, is given by

la@bl _la@bl= a+6–2<alb>
Pab =

< alb> +la@bl – Nab a+ b–<alb>
(22)

Then 1 – pab is the probability of the pair not interacting with each other; the residual

a + b – N.b slots not participating in the specific scattering process are still available

for interaction with other strings if they occur in the problem. This will, hopefully,

become clearer when we work out the three-body

approach[28].

When a is orthogonal to b in the Dirac sense

interaction will occur. Eventually we will see that

problems already implied by our

we see that it is certain that an

this corresponds to a situation in

which all the possibilities we are considering are available. In conventional continuum

quantum mechanics there would be an infinite number of such possibilities; they

are the “vacuum fluctuations” allowed by the uncertainty principle, or second order

perturbation theory. Our theory has the tremendous advantage here that we need

only consider some finite number of explicitly known states, namely those generated

by discriminate closure from the discriminately independent strings in terms of which

the initial statement of the problem is posed.

At this point it becomes convenient to parametrize

string coniezi by defining what will become the quantum

6.b through its tangent.

tan(fab=
Iaobl _ $?zb

<alb>–l–pab

our problem in the two-

mechanical “phase shift”

(23)

which vanishes when the interaction vanishes and approaches infinity when the prob-

ability of scattering approaches unity. If pab is actually equal to unity, the two strings

keep on scattering until some interaction not so far included in the problem inter-

venes. This we call a two body bound state. We emphasize that up to this point we

have considered only classical probabilities despite the implied quantum mechanical

interpretation of our language.

As already noted, the classical situation differs from the quantum situation in that,

once the transition from the in to the out state has actually occured, the classical
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world becomes determinate and joins the fixed past. However, as also noted, the

quantum mechanical situation allows both transitions to keep on occurring so long as

probability is conserved. This property of unitarity is insured in conventional quantum

mechanics by relating the transitions to a unitary operator called the S-matrix which

is invertible, i.e. SS–l = 1 = S–l S, and define the inverse by St = S–l. Here “t”

stands for complex conjugate transposed. $ In the conventional elementary treatment

of the two body, one channel problem, taking S = 1 + it with t a complex scalar, the

unitarity condition becomes i(t – t“) = – [t12. This condition is automatically satisfied

“ ‘Jabsin bab, corresponding to S = e .by taking t = 22e 2isab Thus our parameterization

tells us immediately how to go from the real, classical parameter t.b to a unitary

transition operator. We have already noted that * is a classical probability. But

elementary scattering theory tells us that (see below for more details) the scattering

cross section is proportional to sin26 = w. and hence to la @ b12 rather than to

la@ bl. This makes sense from the Feynman diagram point of view because in the

quantum case we must first form the intermediate state from the in state and then

separate it into the appropriate two pieces of the out state, the probability of each

process being proportional to finding la@ b I cases in the appropriate context.

3.3 The Relation between Classical and Quantum Proba-

bilities

Returning to our bit-string model, having seen that sin26 is directly proportional

to the experimental probability of scattering, we have reached our goal of relating

classical to quantum probabilities

pQ respectively, we have that:

using the same parameter. Calling the two pc and

tan 6.b

* unfortunately, in his treatment Etter has used the symbol S for “state” and the symbol T for the

(sometimes invertible) operator which relates two states S, S’ by what he calls the “Schroedinger

Equation” S’ = T-l ST. In order not to hopelessly confuse physicists I have chosen not to use

his symbols and will use S and T for the “S-matrix” and “Transition-matrix”

explained in my text above.

with the meanings
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Q_ &Ln26ab
Pab –

—

1 + i!an26ab –
s~n26ab (24)

It was when Etter showed me this formula derived directly from link theory that I

was sure that we were closing in on a bit-string quantum mechanics and decided to

write this paper. On another occasion I will present the simple algebraic proof[22] of

this formula starting from Etter’s description of how to link two states in the classical

and the quantum cases.

4 PHYSICAL INTERPRETATION

4.1 Breaking Scale invariance

In the abstract problem so far discussed, we can see from Eq.23 that the critical pa-

rameter tan ~~bis a ratio of two integers, and hence remains the same when a ~ ma,

b -+ rnb whatever the unit. However, if we have some way to set the scale parameter

m, independent of our formalism, we can achieve an absolute quantization of prob-

abilities. One such quantization unit has been known for a long time, namely the

quantum of action h, which is also the discrete unit for changes in angular momen-

turn. A new proposal for the fundamental physical postulate lying at the foundations

of discrete physics is that mass is ~uantized, the unit of mass Am being in the same

ratio to some physical

where GN is Newton’s

[2!+,mass m as that mass is to the Planck mass Mpl~~Ck = ~~

gravitational constant. That is

MPAm = m2

GN ~
Am = m2[=]Z (25)

The testable hypothesis, which quantizes gravity, is then to identify the mass unit

Am with the finite (and indivisible) mass of the graviton.

4.2 The Handy-Dandy Formula

It is important to realize how easily this formalism can be related to scattering exper-

iments. As any elementary treatment of quantum mechanical scattering shows that
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for structureless “point” particles there can be no angular momentum transfer. In the

coordinate system where the two particles have equal and opposite momentum the

scattering is isotropic, the total cross section is 47r times the differential cross section

and the differential cross section o = ( &)2~Zn26.b. Here ~ = 27rh/p is the relativistic

deBroglie wavelength and p the momentum computed (in units where the velocity of

light c=l) from the energy E and the mass m using p2 = E2 – m2. We are starting

to approach our ideal of relating our theoretical parameters directly to experimental

numbers in simple, paradigmatic cases.

The next step is to define a parameter which represents the momentum of either

of particles of mass m. and mb which, in the coordinate system in which they have

equal and opposite momentum and energies e. and eb respectively, we call k.b. In

units such that h = 1 = c this parameter is given by

k~b = (ea + e~)2 – (ma+ mb)2 (26)

To introduce this dimensional unit into our formalism we define the dimensional

scattering amplitude T.b by

T.b =

Then this will diverge when

ei6absi?t ($ab 1

k.b = k.bctn /iab– ik.b
(27)

the relative momentum goes to zero unless we take

($.b= k.bLob + 0(k2). Here L.b is called the scattering length and we see that the total

cross section at low enough energy so that the energy dependence of the scattering

amplitude can be neglected is given by

(28)

That the low (kinetic) energy cross section approaches a constant value is one of the

characteristic features of a quantum mechanical system. Our final step in relating our

model to directly measurable experimental parameters is to assume that, in addition

to scattering, the two particles form a bound state with mass mab < ma + mb. Then

the four empirical parameters we need for our model are m., mb, m.b, Lab.

If we only have the four parameters cited,

theory[16] in which the scattering amplitude as

14
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takes on the value of L.b at elastic scattering threshold, e. + eb = m. + mb and has

a pole when the invariant energy (e~ + eb)2 — k~b takes on the value of m~~, i.e. the

invariant energy of the bound state at rest. Since the squared moment urn k~b defined

by Eq.26 is then negative and equal to k~(m., ~b, ~.b) = m~b– (m, + mb)z, this state

cannot be reached starting from a physical scattering state in a process conserving

both 3-momentum and energy without a third particle or quantum in the system

(called the spectator in the Faddeev three-body theory) to carry off the appropriate

momentum and the energy Ik. 1. As we noted in our discussion of Eq.23, the residual

bound state can be thought of as a system in which the probability of scattering is

unity, dab = ~ and the particles can never separate without the intervention of a third

particle to supply the requisite energy and momentum.

As we discuss in more detail in our paper on zero range scattering theory [16], in

this minimal model the inaccessibility of the bound state from the physical scattering

region is reflected by the fact that k: is negative, and corresponds to a “pole in the

S-matrix” when that is taken to be an analytic function of k2 continued to negative

values. Following Weinberg[30] we note that the fact that the model requires exactly

two particles to form the bound state then specifies the residue at the pole, fixing

the relation between the scattering length L.b and the binding energy –k: = (m. +

mb)2 – m~b. Using the definition of “coupling constant” which comes from the S-

matrix version of relativistic quantum mechanics, namely in our notation

T.b = 9:bmab
— ie

Sczb(k:b) — SO

Sab = k:b + (% + mb)2 (29)

so = k: + (m. + mb)2 = m$b

Then we can relate the coupling constant, or “residue at the bound state pole” to

the fourth experimental parameter by

2
Tmb(k~b= O) = L.b = ~m +g;:~b_ m2b

a a

This imposes a constraint on the experimental parameters which Weinberg uses

30)

for

example, to estimate how much of the bound state composed of a neutron and a

proton (i.e. the deuteron, or nucleus of heavy hydrogen) is composite and how much
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is “elementary”, i.e. arising from other constituents in the system not represented by

the degrees of freedom included in this model for an interacting neutron and proton.

We have already noted this connection between masses and coupling constants in

our treatment of the fine structure of the spectrum of the hydrogen atom[15] which is

first derived there by combinatorial arguments and then related to S-matrix theory in

a treatment that is essentially equivalent to that given here, so far as the underlying

physics goes. This connection, which we sometimes call the handy-dandy formula, is

(93md2 = (%+ m)’ – T?’& (31)

The equivalent equation (to order (e2/lic)2) was first written down by Bohr in his

1915 relativistic treatment of the hydrogen atom and forms the starting point for

Sommerfeld’s 1916 successful explanation of the fine structure of the spectrum of hy-

drogen. Sommerfeld’s formula survived the creation of the “new quantum mechanics”

and stood unchallenged until the measurement of the Lamb shift after World War II

provided much of the impetus for the creation of renormalizes quantum electrody-

namics. Now that we are assured of its generality, the application of this formula to

many problems in elementary particle physics will be vigorously pursued [28]..
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