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The Measurement Object Expansion and Contraction Problem
Over the last decade, industrial metrology has experienced a tremendous improvement in

measurement sensors. First, optical tooling was made obsolete by theodolite systems, which in turn are now
being displaced by laser trackers. Furthermore, there are already first indications that laser trackers, as far as
static measurements are concerned, will have to compete very hard with the next generation of motorized
total stations. These technological advances have made it possible to measure even large objects with high
resolution. Now, as it turns out, the factor limiting the achievable accuracy is not equipment related but is
imposed by atmospheric effects. These effects are refraction, scintillation, and temperature related object
expansion and contraction. Due to temperature changes, large objects, like an airplane’s fuselage or wing,
will significantly expand or contract during the course of a laser tracker or theodolite system measurement.
Typical data analysis software does not model these changes and hence, will absorb them in the least
squares process. This leads to inaccuracies in the individual target point coordinates and their
corresponding standard deviations, as well as to a warping of the coordinate system. This paper will
propose a method for dealing with measurement object expansion and contraction effects.

Traditional Mitigation Approach
Traditionally, when it is not possible to avoid the expansion/contraction problem by keeping the

ambient temperature stable, the mitigation approach calls for reducing the model size and limiting the
measurement time per station. This scheme subdivides the total measurement project into smaller slices,

with only acceptable temperature excursions
within each slice. These slices need to overlap
in order to generate identical points for the
subsequent coordinate transformation. While
this approach reduces the temperature related
noise in each slice, it creates a significant
burden for the data analysis. First, each slice
has to be analyzed individually, only then can
all the slices be transformed with a conformal
projection into a common coordinate system.
Not only is this approach very time
consuming, it more importantly also weakens
the global geometry and results in the loss of
a rigorous error propagation.2

                                                          
1 Work supported by the Department of Energy contract DE-AC03-76SF00515; presented at the Boeing Laser Tracker Workshop,

Renton, WA, Jan. 14, 15, 1997
2 None of the commercially available software packages provides the tool (S-Transformation) to also transform the standard

deviations of estimated parameters from each slice into the global frame.

Fig. 1   Breaking measurement object into slices



The Relocation Approach
With relocation we introduce an extension to the mathematical model of the geodetic/bundle

adjustment to filter temperature related effects. The filter information is derived from the grouping of points
into lumps and observations into epochs. Lumps are clouds of points on the measurement object or in the
space surrounding the object which are expected to react to temperature changes in a similar manner. The
first lump or world space combines all points which are not part of the object and serve as tie points or
network reference stations. Epochs are defined as periods of time during which the measurement conditions
have not changed beyond a set threshold. The relocation process will first extract all points related to the
world space and then sort the remaining points into lump groups. These groups are subsequently further
divided by epochs into lump-epoch subgroups. The individual behavior of the lump-epoch observation
groups with respect to the world space is expressed as an extension to the traditional mathematical model of
the geodetic/bundle adjustment. As a result we obtain coordinates from which the bias caused by object
expansion or contraction is, to a large extent, removed.

Since all observations are fitted in one block, one obtains a totally integrated least squares
estimation of all observations from all stations. This also ensures a rigorous stochastic treatment of
uncertainties and errors, allowing a meaningful chi-square test to validate the goodness of the least squares
fit. And most importantly, allows the computation of realistic standard deviations for all point coordinates
as well as for all observations. Since all the data is treated in one block, this approach also significantly
reduces the time required for the data analysis.



The Mathematical Formulation
The expansion/contraction3 of an object is completely described by the displacement of each point

in the object. The study of the displacement of a point may be conducted in any reference system. Given
one reference system called the global system, let X and X’ be respectively the position vector of the point
before and after expansion. Then the displacement vector δ of the point during expansion is simply:

δ = X’ - X

This relationship δ is a function of the initial position X and the time dependent motion. Because we are
primarily interested in eliminating thermal effects during a measuring session and not in modeling them, we
may simply adopt an instantaneous geometric seven parameter transformation to express the change
between X and X’:

X’ = k  M  X + t

where

k  is the instantaneous scale factor ,
t   = (t1, t2, t3) 

t  is the instantaneous translation vector ,
M  = (mi j)  is the instantaneous rotation matrix corresponding to 3 successive elementary 
rotations r3  , r2  and  r1  :

m11 = cos r2 cos r3
m12 = cos r2 sin r3
m13 = -sin r2
m21 = sin r1 sin r2 cos r3  - cos r1 sin r3
m22 = sin r1 sin r2 sin r3 + cos r1 cos r3
m23 = sin r1 cos r2
m31 = cos r1 sin r2 cos r3 + sin r1 sin r3
m32 = cos r1 sin r2 sin r3  - sin r1 cos r3
m33 = cos r1 cos r2

All the points in the object (or lump with our notations) have the same set of parameters for a
given expansion. These seven parameters may be grouped into a vector c representative of our model of
expansion:

c = (k, t1, t2, t3, r1, r2, r3) 
t

In general, the mathematical model for a geodetic observation l between an instrument I and a point P is
given by a function f. The parameters of this function can be grouped into three categories: the coordinates
of the target P (XP), the coordinates of the instrument I (X I) and some instrument parameters, specific of the
type of observation (pI):

l = f ( XP, X I , pI )

If we neglect expansion effects, all these parameters are time independent. When expansion is
considered, the same formalism stands true but everything has to be referred to the actual time of the
observation. Since it is fair to assume that the expansion motion encountered in metrology is slow and
regular, the observation time span can be divided into periods. referred to as epochs. Although, there may
be expansion within the time frame of an epoch, it is assumed to be small enough to be neglected.

                                                          
3 Subsequently in this paper, the motion caused by thermal expansion or contraction is only referred to as expansion. From

a mathematical modeling point of view there is no difference between expansion and contraction.



At a given epoch, a general observation has two end points belonging to possibly two different
lumps. To model this observation, we must first analyze whether or not each of the two lumps is active, i.e.
experiences expansion. An active lump is, by our definition, a lump surveyed during at least two different
epochs. The first epoch is defined as the reference epoch of a lump. A series of seven parameter
transformations is used to express the change between subsequent epochs and the reference epoch.
Observing a lump at different epochs does not necessarily imply that each point on the lump has been
observed at each individual epoch. However, because of analytical constraints, each epoch must include at
least three points. The described formalism effectively projects points in subsequent epochs back into the
reference frame of the first epoch.

Naming A and B the lumps of point P and of instrument I, respectively, an observation l at epoch e
may be represented by:

l = f ( XP 
refA

 , X I 
refB, pI 

e
 , cA

 e, cB 
e )

where

refA is the reference epoch of lump A,
XP 

refA  is the position vector of point P at epoch refA,
cA

 e  is the vector of the expansion parameters for lump A, corresponding of the change between
epochs e and refA, and allowing the computation of XP 

e (position vector of the point P at the
time of the observation). If the epochs are identical, then the expansion parameter vector is the
null vector and XP 

e = XP 
refA, otherwise

cA
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1, t A
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2, t A
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t  and
XP 
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 e M A

 e XP 
refA + tA

e,
pI 

e
 is the vector of the instrument parameters at epoch e,

refB, X I 
refB

 and cB 
e are the equivalent of refA, XP 

refA
 and cA 

e for instrument I on the lump B.

The mathematical formulation is simplified when a survey project lay-out permits set-up of the
instrument on lump1 (the by definition stable world space) versus on an active lump.

Field Test
Measurement data was used to test the relocation approach and

to validate the algorithms. Since no large measurement object was
available which would have produced significant thermal expansion, a test
set-up was conceived. The set-up consisted of two aluminum plates, 4’
and 2’ square, respectively. Both plates were fitted with fiducial points on
three rings at 45º radial spacing (see fig. 3). Tooling ball bushings were
used to establish the fiducial points. The three points on each radius
simulate expansion; the “original” point on the inner position “moves”
because of expansion to the more outwards positions. In the context of the
above explained formalism, the three points an a radius simulate three
epochs. Because of the overall dimensions and the minimum spacing
possible between points, the test represented a 1000ºC temperature
change for aluminum. While this temperature differential is certainly
extreme and exaggerates realistic measurement conditions 20 fold, it will also exaggerate any problem that
the relocation algorithm has to deal with. It is therefore believed, that, if the procedure and algorithm can
deal with these extreme temperature changes, they will be able to handle every days measurement
conditions.

Fig. 3   Point lay-out on plate



The plates were measured with a CMS3000
laser tracker from four stations. To avoid any
possible residual systematic effects, the tracker was
calibrated before and after the measurements, and
the observations were taken in the front and reverse
face positions. The distance and angle data from the
four stations were combined and analyzed in one
relocation enabled Bundle adjustment. The sequence of observations is documented in the following table
(see Table 1).

Lump 2 (large plate) Lump 3 (small plate)
Station Epoch Station Epoch

1 1 2 1
2 2 3 2
3 3 4 3

Table 1    Measurement sequence

Data Analysis
The measurement data was adjusted in two ways. First, the baseline run did not consider possible

motion, i.e. the three points on one radius were given the same point number. Since these points have a
significant physical spacing, considerable residuals and standard deviations were expected. Then secondly,
the same data set was fitted with a relocation enabled adjustment. The data interpretation followed the
traditional sequence. A first adjustment was performed, and the observation residuals were analyzed for
possible outliers. After necessary corrections, the adjustment was re-run, and a chi-square test was
calculated to check the adjustment’s integrity.

The validity of the relocation approach was judged by examining the standard deviations of the coordinates
and the residuals of the observations. As pointed out earlier, the statistics were calculated in a rigorous way
directly from the inverted normal matrix. Tables 2, 4 and 6 show the standard deviations of the X, Y, and Z
coordinates from the first traditional run, and Tables 3, 5, and 7 show the same coordinates from the
relocation enabled adjustment. A similar comparison of the residuals of the horizontal angles, vertical
angles and distances, respectively, is presented in Tables 8 through 13.

Fig. 4    Measurement Lay-out
Lump 1 World Space
Lump 2 Large Plate
Lump 3 Small Plate

Fig. 5    Large test plate with tracker
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Table 6    Horizontal Angle residuals from relocation adjustment
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Table 4    Vertical Angle residuals from relocation adjustment
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Table 2    Distance residuals from relocation adjustment
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Table 3   Distance residual from traditional adjustment
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Table 7  Horizontal angle residual from traditional adjustment
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Table 5   Vertical angle residual from traditional adjustment
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Table 8    X-Coord. StD. From relocation adjustment
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Table 9    X-Coord. StD. From traditional adjustment
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Table 11  Y-Coord. StD. From traditional adjustment
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Table 13    Z-Coord. StD. From traditional adjustment
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Table 12    Z-Coord. StD. From relocation adjustment
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Table 10    Y-Coord. StD. From relocation adjustment



The adjustment of all points without the relocation algorithm shows large residuals and standard deviations.
This was to be expected, since the three epoch instances of each point have a clear physical separation and
therefore distinct, different coordinates. If these points now are addressed with the same point number, a
classical adjustment can only try to minimize the discrepancies. However, this effect mimics only in an
exaggerated way what happens when a measurement object expands and the resulting point motion is not
considered in the measurement procedure and modeled in the adjustment algorithm.

On the other hand, as the small residuals and excellent standard deviations from the relocation
enabled adjustment prove, the relocation approach is obviously able to deal with the exact same data set
properly. Although the three epoch instances of each point have still the same point number, the relocation
algorithm permits the least squares process to filter out the point motion caused by the expansion.
Consequently, the least squares minimization does not become biased with what would otherwise be
interpreted point motion, and retains its ability to estimate accurate parameters despite the presence of
expansion.

Conclusion and Outlook
From the above comparisons it can be clearly seen that the relocation approach effectively filters

thermal expansion or contraction motion from measurement data. This avoids the otherwise inevitable
warping of the coordinate system, and as a result, one can obtain more accurate and reliable coordinates. In
addition, the relocation process also allows the rigorous calculation of statistical information.

It should also be pointed out, that the same algorithm can be used to successfully measure objects
which are not in a fixed position. The object could either translate or rotate slowly and regularly, or move in
jumps between epochs.

More work is necessary to streamline the relocation formalism and to automate the rejection of
statistical insignificant epoch groupings.

The described algorithm will be implemented in Version 2.0 of the SMX Insight data analysis
package.
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