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Abstract 

The cross section for bremsstrahlung from highly relativistic particles is suppressed due 

to interference caused by multiple scattering in dense media, and due to photon interactions 

-with the electrons in all materials. We present here a detailed study of bremsstrahlung 

production of 200 keV to 500 MeV photons from 8 and 25 GeV electrons traversing a 

variety of target materials. For most targets, we observe the expected suppressions to a 

good accuracy. We observe that finite thickness effects are important for thin targets. 
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I. INTRODUCTION 

When an ultra-relativistic electron emits a low energy photon via bremsstrahlung, the 

longitudinal momentum transfer between the electron and the target nucleus can be very 

small. Because of the uncertainty principle, this means that the momentum transfer must 

take place over a long distance, known as the formation length. One way to think of this 

is as the distance required for the electron and photon to separate enough to be considered 

separate particles. 

If anything happens to the electron or photon while travelling this distance, the emission 

can be disrupted. We have previously presented letters demonstrating suppression due 

to multiple scattering [l] and dielectric suppression [a]. We present here additional data 

further exploring these suppression mechanisms in a variety of materials. These data explore 

bremsstrahlung production of 200 keV to 500 MeV photons from 8 and 25 GeV electrons. 

Special attention will be given to the effects of finite target thickness. 

A. LPM Suppression 

LPM suppression is due to multiple scattering, first discussed by Landau and Pomer- 

-anchuk [3] and slightly later by Migdal [4]. If an electron multiple scatters while traversing 

the formation zone, the bremsstrahlung amplitude from before and after the scattering can 

interfere, reducing the amplitude for bremsstrahlung photon emission. A similar suppression 

occurs for pair production. 

The LPM effect is relevant in many areas of physics. It will cause the elongation of high 

energy electromagnetic showers, making them appear more like hadronic showers. At the 

next generation of colliders, LHC and NLC, this may reduce the electron-pion separation 

achievable for a given detector configuration, especially where early shower development is 

monitored with a pre-shower detector. 

The effects of LPM suppressi-on on cosmic ray air showers have been discussed by many 
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authors [5]. I n exceedingly high energy (above 1018 eV) photon induced air showers, the 

LPM effect increases the graininess of the shower, and changes the relationship between 

shower density and calculated energy. LPM suppression can also affect showers produced 

by ultra-high energy Y, interactions in water or ice, as might be observed by underwater or 

under-ice detectors [6]. 

The electronic LPM effect has analogs in nuclear physics involving quarks and gluons 

moving through matter, and calculations have used LPM-like formalisms to put limits on 

color dE/dx [7]. H owever, the strong-coupling nature of QCD makes comparison with data 

less than straightforward. An LPM-type suppression also appears is in stellar interiors. 

Because the density is very high, the nucleon collision rate, rcoll, far exceeds the oscillation 

frequency of neutrino or axion radiation [8], production of these exotic particles is suppressed. 

Several previous experiments have studied the LPM effect, mostly with cosmic rays. 

Most of the cosmic ray experiments date to the 1950’s [9], with a few more recent results 

f [lo]. Most examined the depth of pair conversion of high energy photons in emulsion. They 

qualitatively confirmed the LPM effect, but with very limited statistics. 

A 1975 experiment at Serpukhov measured the photon spectrum from 40 GeV electrons 

[ll]. They were troubled by limited statistics and large systematic errors and backgrounds, 

-but observed a qualitative agreement with the LPM theory. Experiment CERN NA-43 mea- 

sured photon emission from electrons and positrons in a silicon crystal [12]. They observed 

suppression due to a number of effects; they attribute part of the total to the LPM effect. 

B. Dielectric Suppression 

A second suppression mechanism involves the photons. Produced photons can interact 

with the electrons in the medium by Compton scattering. For forward scattering, this 
? - 

interaction can be coherent, causing a phase shift in the photon wave function. If this phase 

shift, taken over the formation length, is large enough, then it can cause a loss of-coherence, 

reducing photon emission. As the photon energy approaches zero, this effect completely 
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suppresses bremsstrahlung, removing the infrared divergence of ‘the original Bethe-Heitler 

cross section. This is the QED analog of color screening in QCD [13]. Little previous data 

exist on this suppression mechanism [14]. 

II. THEORY 

The length scale for suppression is determined by longitudinal momentum transfer from 

the nucleus to the electron: 

411 = p, - p; - k = dE2-m2 - ,/E-lc)2-nz - k, (1) 

where pe and E are the electron momentum and energy before the interaction, p’, is the 

electron momentum afterward, m is the electron mass, and k is the photon energy. For 

E >> m and k << E, this simplifies to 

m2k k 

“’ N 2E(E - k) N g’ (2) 

where y = E/m. This momentum can be very small, for example, 0.02 eV/c for a 25 GeV - 

’ - electron emitting a 100 MeV photon. Therefore, the uncertainty principle requires that the 

emission take place over a long distance, called the formation length: If = 2ficy2/k. For 

25 and 8 GeV electrons, lr(m) = 864eV/k and If(m) = 88.2eV/k respectively. This is 

the same formation length that occurs in transition radiation [15]. 

A. LPM Suppression 

The LPM effect comes into play when one considers that the electron must be undis- 

turbed while it traverses the formation length. One factor that can disturb the electron, 

and supipress the bremsstrahlung, is multiple Coulomb scattering. If the electron multiple 

scatters by an angle I~MS, greater than the typical emission angle of bremsstrahlung photons, 

OB - m/E= l/y, then-th e b remsstrahlung is suppressed. 



In the Gaussian approximation, a particle traversing a thickness Zf of material with 

radiation length Xo scatters by an average angle of [16] 

-2 
8 MS = ,g,2-$, 

where E, = J- 4~ CY . m = 21 MeV and cu the fine structure constant N l/137. The LPM 

effect becomes important when 19~s is larger than 0 B. This occurs for E,/EdfIXo > m/E. 

For a given electron energy, suppression becomes significant for photon energies below a 

certain value, given by 

where ELpM (ev) = m”X,/(2hcEp) = 3.8 x 10’2X0(cm), about 1.3 TeV in uranium and 

2.1 TeV in lead; values for the targets used in this experiment are given in Table I. For a 

specific beam energy, 25 GeV, for example, it is possible to define a maximum photon energy 

for which the LPM effect is significant, kLpM = E2/E~p~ For example, kLpM25 is 470 MeV 

for uranium, and 8.5 MeV for carbon; Table I gives values for our targets for 8 and 25 GeV 

beams. 

The multiple scattering adds to 411 by changing the electrons direction, and reducing its 

-momentum. The formation zone can be found by replacing p and p’ with their forward 

components assuming that the multiple scattering is spread throughout the formation zone. 

Then, 

qll = ($)(l + E,21f). 
2E2Xo (5) 

Since the formation zone length is given by lf = tz/qll, this produces a quadratic equation 

for If, and, hence suppression: 

kELpM s= E2. 
J (6) 

Migdal did a detailed-calculation-, describing the multiple scattering angles classically with a 

Gaussian distribution, and solving the transport equation to find an ensemble of trajectories 
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[4]. Then, with appropriate weighting, he used these trajectories to calculate the photon 

emission probability. He found 

* = 4QT,2((S) 
dk 3k {y2G(4 + 2P + Cl- Y>“IGWV~~~ ($$), (7) 

where 

s = p-)1’2(+23L)1’2. 
(8) 

Z is the atomic number, r, the classical electron radius, and t(s), G(s) and 4(s) are complex 

functions with 1 5 t(s) 5 2, 0 < G(s) 5 1 and 0 5 d(s) 5 1. When y < 1, s N 

d( kELpM/E2). In the absence of suppression s + co, G(s) -+ 1, and 4(s) + 1; strong 

suppression corresponds to s -+ 0, G(s) + 0, and d(s) --+ 0. Migdal’s calculation gives 

results within about 10% of Eqn. 6. 

Migdal was forced to made a number of simplifying assumptions. First, he only included 

elastic scattering from the nuclei themselves. More recent calculations have considered both 

electron-nucleus and electron-electron interactions, using form factors [17] [18]: 

{y” + 2[1 + (1 - y)2]}(z2F,* + Z&,1) + (1 - JZ2; “‘I. (9) 

Here Fe, M ln( 184/Z1i3) and Finel M ln( 1194/Z2i3) are the elastic and inelastic atomic 

form factors (181. In Eqn. 7, dq,&dk includes the elastic form factor, but not the inelastic 

form factor or the last (1 - y)( Z2 + 2)/3 t erm. Because the elastic and inelastic form factors 

have the same y dependence, it is easy to include the inelastic form factor by normalizing 

dq,pM/dk to the radiation length as defined by Tsai [18]. Because of the small momen- 

tum transfer, the recoil of the struck electron can be neglected, and so electron-electron 

bremsstrahlung should manifest the same LPM suppression as nuclear bremsstrahlung. 

Th&(l-- y)(Z2 + 2)/3 t erm is omitted from both our cross sections and the traditional 

definition of the radiation length [18],; this is roughly a 2% correction. 

In addition, Migdal was forced to assume that the multiple scattering angle followed a 

Gaussian distribution; this is known to underestimate the number of large angle scatters. 
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This can affect his results. For example, the occasional large angle scatter can lead to some 

suppression at photon energies above which Migdal predicted suppression would disappear. 

Blankenbecler and Drell developed a new calculational approach to this suppression, 

based on the formalism they developed for beamstrahlung, treating the multiple scattering 

quantum mechanically [ 191. Th e results of their calculation cannot be given as a simple 

equation, but their results are similar to those of Migdal for thick targets. 

One big advantage of their calculation is that it implicitly handles targets of finite thick- 

ness, dividing the electron path into 3 sections: before the target, inside the target, and 

after the target, with interference between the different regions (including before and after). 

Because of this treatment, they calculate the total emission over the slab, and do not localize 

the point of photon emission. 

More recently, Zakharov has presented a calculation [20]. Although it has a different 

basis from Blankenbecler and Drell, it appears to give similar results. Unfortunately, it also 

suffers from the same limitations regarding multiple emission and dielectric suppression. 

B. Dielectric Suppression 

The magnitude of dielectric suppression, due to the photon-electron gas interactions, can 

be calculated by finding the photon phase shift due to the dielectric constant of the medium, 

using classical electromagnetic theory [al]. The phase shift is (1 - &)kcZf where E is the 

dielectric constant of the medium, given by 

c(k) = 1 - (%+J2/k2, (10) 

_ where wP = J 4nNZe2/m; N is the number of atoms per unit volume, Z the atomic charge, 

and e the electric charge. If the phase shift gets large, coherence is lost. This limits the 
? - 

effective formation length to the distance which has a phase shift of 1: 

l 
f 

= 2hCkY2 
k2 + k;’ (11) 
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where k, = yhw;, is the maximum photon energy for which dielectric suppression is large. 

It is also the maximum energy at which transition radiation is large. The suppression is 

simply given by the ratio of in-material to vacuum formation lengths: 

s= k2 

k2 + k;’ (12) 

The suppression becomes large for k < 5; below this energy, the photon spectrum changes 

from l/k to k. Numerically, the plasma frequencies for most solids are in the 20-60 eV 

range, so the suppression becomes important for k < T-E where r = tiw,/m = fi,/4T;Ze2/m3, 

about 5.5 x 10e5 in carbon or 1.4 x 10m4 in tungsten; values for other targets are given in 

Table I. For small k, dielectric suppression is much more important than LPM suppression. 

C. Total Suppression 

Because LPM and dielectric suppression both reduce the effective formation length, the 

suppressions do not simply multiply. Where both mechanisms appear, the total suppression 

can be found by summing the contributions to qll and hence Zf = h/q,,; the suppression is 

* - simply the ratio of Zf to its vacuum value [22]. Migd a included dielectric suppression in 1 

his formalism by scaling 4 appropriately [4]. U n or unately, f t the Blankenbecler and Drell 

approach is not easily amenable to inclusion of dielectric suppression [23]. 

For 25 GeV beams hitting the targets used here, the LPM effect is more important for 

photon energies above 5 MeV; at significantly lower energies, dielectric suppression domi- 

nates. With 8 GeV beams, LPM suppression is reduced by a factor of (s/25)“, so dielectric 

suppression is usually the dominant effect. These spectral shape for the different photon 

energies (and hence mechanisms) are schematically summarized in Fig. 1. 

D. Thin Targets and Surface Effects 

When. an electron-interacts near the surface of a target, part of the formation zone may 

extend outside of the target. Then, there will be less multiple scattering or Compton scatter- 
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ing, so the suppression should be reduced. There is also a transition as the electromagnetic 

fields of the electron readjust themselves to allow for the electron multiple scattering and 

effect of the medium. 

A very simplistic approximation for the surface effects would be to allow for a single 

formation length of un-suppressed Bethe-Heitler radiation near the target surfaces, with the 

rest of the radiation from the interior fully suppressed. This implies that the surface effects 

are important where LPM suppression is large, at small k, since If scales as l/d. However, 

where dielectric suppression dominates, lf scales as k, giving short formation zones and little 

surface effects. 

Unfortunately, this model is conceptually inadequate because, in addition to the re- 

duced suppression, there can also be edge radiation. For dielectric suppression, this is just 

conventional transition radiation [ 151, given by 

dN a -=- 
dk rk 

(l+$)ln(l+$)-21. (13) 

Where LPM suppression is large, Gol’dman [24] has p ointed out that there is an additional 

transition radiation caused by the multiple scattering. 

When the target is thinner than the formation zone, the problem simplifies. For ex- 

tremely thin targets, where the target thickness t < Xo(m/E,)2, there isn’t enough multiple 

scattering to cause suppression, and the Bethe-Heitler spectrum is retained. 

For slightly thinner targets, but where t < Zf, Shul’ga and Fomin showed [25] that the 

entire target can be treated as a single radiator, and the Bethe- Heitler spectrum is recovered 

[26], albeit at a reduced intensity. The radiation spectrum is given by 

dNsF 2a o3 - = -J, dk T 
(14) - 

wh&e C = @/a, 19 being the scattering angle. The integrals are taken over the two 

independent scattering planes, and 

fib)) = --$ exp( -O”/@). 
0 

(15) 
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Because the targets are very thin [27], 

80 = 2 
J 

f [l + 0.0381n $1. (16) 
0 0 

These formulae are numerically evaluated. It is worth pointing out that, in the limiting case, 

the radiation becomes proportional to In(t)! Th en, the radiation depends only on t/X0, 

and is independent of E. This spectrum applies for photon energies k where the reduced 

formation length (taking into account the reduction due to the LPM effect) is larger than 

the target thickness. This occurs when 

If = s * If, = 
dN&dk 2hcy2 > t 

dNB,/dk k ’ (17) 

where dNB,/dk is the Bethe-Heitler predicted radiation from the entire sample. This equa- 

tion is valid as long as dielectric suppression and transition radiation are not large. 

For thicker targets, Ternovskii [26] calculated the spectrum of this radiation at an inter- 

face. Like-Blankenbecler and Drell, Ternovskii divided the electron path into 3 regions, and 

allowed for interference between the regions. For sufficiently thick targets, he parameterized 

his results into a bulk emission, matching Migdal, plus two edge terms. For k << E and 

. s >> 1, the edge term is conventional transition radiation. For s < 1 and sk,2/k2 << 1 LPM 

suppression dominates and Ternovskii finds for k << E, 

dN 2culn X 
dlc=rk &’ (18) 

where x N 1, similar to the logarithmic uncertainty found by Migdal. For s > 1, the region 

of no LPM suppression, this equation is negative; common sense seems to indicate that 

the function should be cut off. For comparison with data, a more serious problem is that 

Eqns. 13 and 18 do not match up in the region ski/k2 N 1. 

Garibyan [28] 1 a so calculated the transition radiation spectrum, also using Gol’dman as 

a base,+but for a single edge. His results were similar, but not identical to Ternovskii, with 

the same negative region. 

In 1965, Pafomov 1291 stated that th e f ormulations of Gol’dman, Ternovskii and Garibyan 

were flawed because they improperly separated the total radiation into bremsstrahlung and 
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transition radiation, causing the negative regions, In his calculations, Pafomov found that 

there is transition radiation even for s > 1, with a l/k2 spectrum. Pafomov predicted that, 

for kLpM > k,, the transition radiation term is, per edge: 

dN 
-= 
dk 2 1% (k?m2’ k < k,“13/k;$M (19) 

dN 
-II 
dk 

k;‘“/k;$& < k << kLpM 

dN 8~2 kwM 2 ---III 
dk -b-----> . 217rk k 

The first equation is similar to, but larger than conventional transition radiation, with 

the difference probably due to calculational technique. Unfortunately, Eqns. 19 and 20 do 

not quite match when k = kz13/kzI,“, causing a noticeable step in our simulations. There 

is also a discontinuity between Eqns. 20 and 21 at k N kLpM. Pafomov gives a numerical 

approximation that covers the entire region k > k:fM/kti3 and avoids the discontinuity; we 

use it in our calculations. For bulk emission, Pafomov accepted Migdal’s results. 

Because of the logarithmic uncertainties, transition regions, and discontinuities, it is 

difficult to confidently apply any of these edge effect formulae; we will show a few selected - 

* - comparisons with our data. Even in the absence of a acceptable theory, it is possible to 

remove the edge effects by comparing data from targets of similar composition but different 

thickness. By subtracting the two spectra, it is possible to find an ‘internal’ spectrum and a 

‘surface effect’ spectrum, accurate as long as there is no interference between the two edge 

regions. 

For thin targets, dielectric suppression should be reduced, at least in classical calcula- 

tions. When the photon wave phase shift, integrated over the target thickness, is small, then 

_ the suppression should disappear. 

III. EXPERIMENT 

This experiment [-I] [2] [30] [31] was conducted in End Station A at the Stanford Linear 

Accelerator Center. As Fig. 2 shows, electrons entered End Station A and passed through 
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targets mounted in a seven position target holder. During data taking, we rotated through 

the targets, taking -2 hours of data on each target. We took a total of 8 hours of data on 

most target/beam energy/calorimeter gain setting combinations. The targets materials and 

thicknesses are given in Table II; a selection of high and low Z targets were used, usually 

with two target thicknesses per material. Rotations included one position on the target 

ladder which was left empty for no-target running to monitor beam related background. A 

1 cm square silicon photodiode was mounted in another position. By measuring the rates of 

lead glass hits to Si photodiode hits, we could check for changes in the beam size; the beam 

position and shape proved stable with time. 

After passing through the targets, the electrons entered an 18D72 dipole magnet, which 

was run at 3.25 (1.04) T- m of bending for 25 (8) GeV electrons. This field bent full-energy 

electrons downward by 39 mrad; lower energy electrons were bent more. One especially 

useful feature of the magnet was its large fringe field. Because of this fringe field, the electron 

bending started slowly, so synchrotron photons produced during the initial bending had low 

momenta; this reduced the synchrotron radiation background observed in the calorimeter 

significantly. Synchrotron radiation emitted by an electron pointing at the bottom edge of 
9 - 

the calorimeter had a 280 keV (9 keV) critical energy at 25 (8) GeV. The average energy 

-deposition in the calorimeter was 40 keV and 400 eV respectively. 

After bending, the electrons exited the vacuum chamber, travelled 15 meters through 

a helium bag, into 6 planes of proportional wire chambers [32], with a 20 cm separation, 

arranged Y U Y V Y U where Y plane wires were horizontal, and U and V planes were were 

at a 30 degree angle from horizontal, to provide left-right information. The Y (U/V) planes 

had a 2 (4) mm wire pitch. Due to an unfortuitous choice of angle, the wire chambers had 

a momentum resolution only slightly better than a single plane, giving resolution of roughly 

90 Mev at 25 GeV. 

The electrons were absorbed in a stack of three 10 cm by 10 cm lead glass blocks, arranged 

so that full energy electrons hit the middle of the top block. This enabled us to accurately 

count electrons calorimetrically. Electrons with energies below 17.4 (5.8) GeV for 25 (8) GeV 
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beams missed the blocks and were not counted. The fraction not counted was estimated 

with the Monte Carlo, and was typically about 1% per 1% of X0 target thickness. 

Photons produced in the target travelled 50 meters downstream through vacuum into a 

BGO calorimeter. The calorimeter consisted of 45 (a 7 by 7 array with the corners missing) 

BGO crystals, each measuring 2 cm square by 20 cm (18 X0) deep [33]. Each crystal was 

read out by a Hamamatsu R1213 l/2” photomultiplier tube (PMT) with a linear base. The 

PMTs detected about 1 photoelectron per 30 keV of energy deposition in the BGO. During 

much of the running, one crystal in the outermost row was not functional. The calorimeter 

was built and extensively characterized in 1984 as a prototype, and was reconditioned for 

this experiment. In 1984, the nonlinearity in the 100 MeV range was estimated at 2%; 

Monte Carlo simulations of leakage indicate that this does not change significantly at 500 

MeV. 

The calorimeter was read out by a LeCroy 2282 12 bit ADC. The ADC gate was set to 

900 nsec, several times the BGO light decay time of 300 nsec. One advantage of this gate 

width was that sensitivity variations due to the 50 nsec time structure of the electron beam 

were negligible. Because the ADC pedestals were known to drift slowly, frequent pedestal 

runs were performed. 

Calorimeter ADC overflows were detected by histogramming the ADC output on a chan- 

nel by channel, run by run basis; the maximum ADC count was typically 3950 counts and 

was easily determined by inspection. Events with an ADC overflow were flagged. 

The experiment studied a very wide range of photon energies, from 200 keV to 500 MeV. 

This is a considerably wider range than can be handled by a single PMT gain and ADC, so 

data were taken at two different calorimeter gain settings, with the gain adjusted by varying 

the PMT high voltage. The first data set corresponded to 100 keV per ADC count, and the 

second+to-13 keV per ADC count. These will be referred to as ‘low gain’ and ‘high gain’ 

running respectively. 

Initially, a l/2” thick scintillator slab was placed in front of the calorimeter, as a charged 

particle veto. When the charged particle background was found to be small, it was removed. 
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The only other material between the target and the calorimeter‘was a 0.64 mm (0.7% X0) 

aluminum window immediately in front of the calorimeter. This minimized the number of 

produced photons that were lost before hitting the calorimeter. 

Scintillator paddles were located above and below the calorimeter. Their logical AND 

provided a cosmic ray muon trigger, used to calibrate the calorimeter. The paddles could 

initiate a trigger in the interval between beam pulses. 

Most of the electronics were housed in a single CAMAC crate. Besides the calorimeter 

ADC, lead glass block ADCs and wire chamber hit patterns, we read out a number of 

additional scintillator paddles on each beam pulse, irrespective of what happened on that 

pulse. Monitoring data, such as the BGO temperature and spectrometer magnet settings 

were read out periodically. We used the acquisition framework developed by SLAC-E-142/3. 

The beams for this experiment were produced parasitically during Stanford Linear Col- 

lider (SLC) p t o era ions. Off axis electrons and positrons in the SLAC linac struck collimators 

near the end of the accelerator [34]. A useful flux of high energy bremsstrahlung photons 

emerged from the edges of these collimators and travelled down the beampipe, past the bend- 

ing magnets, and into a target in the beam switchyard. This target converted the photons 
. _ 

into e+e- pairs, and those electrons within the A-line acceptance angle were transported to 

-End Station A. 

For most of the running, we ran at an average intensity of one electron per pulse, with 

the short term averages between 0.8 and 1.5 electrons per pulse as SLC conditions varied. 

The average intensity was changed by adjusting the momentum defining collimators; typical 

momentum acceptance was AP/P N 0.2%. The beam optics were set up so that there was 

a virtual focus at the calorimeter. The typical beam spot vertical and horizontal half widths 

were 2.5 mm at 25 GeV and somewhat larger at 8 GeV. 
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IV. CALIBRATION 

Since the calorimeter calibration is crucial to experimental accuracy, several methods 

were used to calibrate the calorimeter: 400 and 500 MeV electron beams, bremsstrahlung 

events, and cosmic ray muons. The calibrations were divided into two classes: relative cali- 

brations, which were used to measure the relative gain between BGO crystals, and absolute, 

- which set the overall energy scale. The most careful calibration was done with the ‘low gain’ 

calorimeter PMT HV setting; the ‘high gain’ data were calibrated by comparison with the 

‘low gain’ running. 

This analysis used the ‘low gain’ data over the range of 5 to 500 MeV. The ‘high gain’ 

data are used from 200 keV to 40 MeV. Between 5 and 40 MeV, the data are combined 

using a weighted mean. In this region, the data agree well; this gives us confidence in our 

relative calibrations. 

One key factor in the calibration was the BGO temperature, which is known to affect 

both the light output and decay time. We therefore measured the way that changing tem- 

peratures affected the BGO response to cosmic ray muons, and corrected the data. The 

* - BGO temperature was monitored by a thermistor throughout the experiment. The BGO 

light output decreased by 2%/‘C, a bit more than other measurements [35]. This correction 

factor was applied to our data. 

The BGO channel gains were controlled by adjusting the PMT high voltage. Relative 

high voltages were set with potentiometric dividers, and the absolute scale was set by two 

supplies in our counting house. The relative gains were roughly equalized before the exper- 

iment by normalizing the calorimeter crystal response to 662 keV gamma rays from a 137Cs 

_ source. The change from ‘high gain’ to ‘low gain’ was done by adjusting the voltage on 

the two supplies. Since not every phototube had identical gain vs. voltage characteristics, 
? - 

- 

this changed the relative gains somewhat. Because of this, the relative channel to channel 

calibrations were done separately for ‘high and low gain running. 

Better measurements of the relative gain came from the cosmic ray data gathered 
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throughout the run. The cosmic ray trigger consisted of a coincidence between the two 

scintillator paddles bracketing the calorimeter. They were placed so that triggers occurred 

for muons traversing the center of the BGO. 

-The calorimeter absolute energy scale was largely determined with 400 and 500 MeV 

electron beams. The electrons were produced parasitically, as during normal E-146 running. 

Because of the low energy, special precautions were required. All of the beam line magnets 

were degaussed, and the usual power supplies were temporarily replaced with lower current 

supplies that could regulate reliably at the required power levels. The magnetic fields were 

monitored with a flip coil in a magnet that was subjected to identical treatment to the beam 

line magnets. The estimated error on the overall energy scale calibration is 5%. 

Since the low energy beam had a relatively wide angular distribution, these data also 

provided a check on the crystal to crystal intercalibration. By examining histograms of 

reconstructed energy vs. the location where the electron hit the calorimeter, we estimate that 

the crystal to crystal calibration varied by less than 2%. Since most of the bremsstrahlung 

photons hit the central crystal, this had a negligible effect on our overall resolution. 

For each event, the electron momentum, measured in the wire chambers, and the pho- 
* - 

ton energy should sum to the beam energy. Since the wire chamber energy resolution is 

-determined by geometry, it can provide an additional check on the calorimeter calibration. 

Unfortunately, because of the steeply falling photon spectrum and the quantization intro- 

duced by the wire spacing, this analysis is quite tricky. However, it analysis confirmed that 

the calorimeter energy calibration is good to within 10%. 

The ‘high gain’ data were calibrated by comparison with the low gain data, mostly using 

the cosmic rays. This calibration is accurate to about 10%. 

It is worth noting that the calorimeter behavior is significantly different for the high and 

low gam data. At higher energies, the impinging photons create electromagnetic showers, 

while at lower energies, most photons interact via single or multiple Compton scattering. 

Besides the loss in resolution due to the phot 

for resolution deterioration because photons 

1 

oelectron statistics, it is necessary to account 

can be Compton scattered out the front face 
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of the calorimeter; the probability of this increases at low energies. Also, because of the 

possibility of a photon Compton scattering twice, in two widely separated crystals in the 

calorimeter, the photon cluster finder loses efficiency; these problems are accounted for in 

our systematic errors, which are larger for small photon energies. 

V. DATA ANALYSIS 

Because bremsstrahlung is the dominant cross section, event selection is simple. Events 

containing a single electron in the lead glass were selected. The calorimeter ADC counts were 

converted to energy. For ‘low gain’ running, the total energy observed in the calorimeter was 

used directly. For ‘high gain’ running clustering was required to remove spurious pedestal 

fluctuations: we stared with the highest energy crystal in the event, and added in the energies 

of all neighboring crystals that were above the ADC pedestal. 

Because the angular acceptance of the central crystal, 0.2 mrad, was larger than the 

typical bremsstrahlung angle, l/y - 0.02 mrad, even after allowing for the beam divergence, 

the majority of the bremsstrahlung photon flux hit the center of the calorimeter, so we did - 

. - 
not have to correct for calorimeter leakage on an event by event basis. 

Events with a calorimeter energy between 200 keV and 500 MeV were histogrammed 

by photon energy, with the bins having a logarithmic width. The photon intensity, 

(l/Xo)(dN/d(Zoglc)) = (l/lcXo)(dN/dlc) is plotted vs. Ic, with Ic on a logarithmic scale, 

necessary to cover the 3 l/2 decades of energy range. The y axis is chosen so that the 

classical Bethe-Heitler l/&z spectrum will appear as a flat line. There are 25 bins per decade 

of photon energy, giving each bin a width Alc/lc N 0.09, 

Although the Bethe Heitler cross section is flat for a logarithmic energy binning, the - 

corresponding data would not be flat because of multiphoton pileup. This is because a 
? - 

single electron traversing the target may interact twice, emitting two photons. Because the 

photon energies add, this depletes the low energy end of the measured spectrum and tilts 

the spectrum. 
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The logarithmic energy scale and the mismatch between ADC counts and histogram bin 

boundaries can create a problem for low Ic. The uneven mapping can create a dithering in the 

histograms, with different numbers of ADC counts contributing to adjacent bins, creating 

an up-down-up pattern, as can be see in Fig. 2 of Ref. 2. To avoid this, the data below 500 

keV were smoothed with a 3 point average with weights 0.25 : 0.5 : 0.25. Above 500 keV, 

the weights of the 2 side points were reduced logarithmically with the energy, reaching zero 

at 5 MeV. 

We have previously shown that both LPM and dielectric suppression are necessary to 

explain the data; this paper presents a more detailed examination of the data for a variety 

of targets. In most cases, only a single, combined LPM plus dielectric suppression curve is 

shown. 

To produce histograms covering almost 3 l/2 d ecades of photon energy, it was necessary 

to combine data from the high and low gain running. Above 5 MeV, high gain data were 

used, while below 40 MeV low gain data were used. Between 5 and 40 MeV, weighted 

averages of both data sets were used. Because the agreement between the two data sets was 

considerably better than the estimated systematic errors, the actual combination technique 

was unimportant. One run of 0.7% X0 Au 8 GeV high gain data was removed from the 

analysis because it was significantly above both the other high gain data and also the low 

gain data. And, as discussed below, the 0.1% X0 gold data were not always consistent. In 

all other cases, the data from individual runs were consistent. 

A. Monte Carlo 

A computer code using Monte Carlo integration techniques based on a set of look-up 

tables was written to make predictions for the photon intensity spectra. This technique was 
? - 

- 

necessary in order to combine the effects of multiple photon emission from one electron with 

predictions for LPM and dielectric suppression and transition radiation. Tables of photon 

production cross sections are generated, starting with 10 keV photons, with each step in 
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photon energy increasing exponentially in multiples of 1.02. The Migdal cross sections are 

generated using the simplified calculational methods developed by Stanev and collaborators 

[36]. Their parameterizations agree well with Migdal’s calculations, without dielectric sup- 

pression. Our calculations include an additional term for the longitudinal density effect, in 

the manner prescribed by Migdal. 

A separate table is generated for transition radiation. This table is normally filled with 

conventional transition radiation (Eqn. 13); the Gol’dman or Pafomov combined formula can 

also be used. The photons from the entry radiation can, of course, interact in the target. 

For ease of extrapolation, these tables are then converted to integral and total cross sections. 

The Monte Carlo then begins generating events. Each electron enters the target, and 

entry radiation may be generated. The electron is tracked through the target in small steps. 

The step size is limited so that the probability of emission at each step is less than 1%; 

at most one photon can be produced per step. If the electron radiates, the photon energy 

is chosen using the integral cross section table. The photon energy is subtracted from the 

electron energy, and the tracking continues, until it leaves the target, producing another 

opportunity for transition radiation. The possibility of produced photons interacting in the 
. _ 

target by pair production or Compton scattering is included using another look up table 

-[37]; any ph o t on that interacted is considered lost. 

When one electron emits multiple photons, the photon energies were summed before 

histogramming. The photon energies are then smeared to match the measured calorimeter 

resolution. 

In the Monte Carlo curves, at 1.1 < Ic/lc LPM < 1.3, the LPM curve rises slightly above the 

Bethe-Heitler curve. This rise comes from Migdal’s original equations, because the product 

t(s)d(s) can rise slightly above 1. 

Th& Blankenbecler and Drell theory, as described in Section II.A., does not allow for 

the possibility of multiple interactions, and, without the photon emission point, it isn’t easy 

to include their calculations in a Monte Carlo, and, consequently, allow for experimental 

effects, such as photon absorption in the target. 
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Because of these problems, in particular the multiple interaction possibility, we have not 

implemented their cross sections in our Monte Carlo. Instead, we will directly compare 

their cross sections with our data, but only for the thinnest targets, where multiple photon 

emission is small, and at energies above those where dielectric suppression occurs. 

B. Backgrounds 

Because the calorimeter subtended such a small solid angle, backgrounds due to pho- 

tonuclear interactions were small - only photons produced with very small pl would hit the 

calorimeter. 

As previously mentioned, the maximum critical energy for synchrotron radiation from 

the spectrometer magnet incident on any part of the calorimeter was 280 keV (40 keV) at 

25 (8) GeV; for synchrotron radiation hitting the central crystal, the critical energies were 

much lower. Because the synchrotron radiation was painted in a band downward from the 

central crystal, it was easy to identify in the calorimeter. 

For the 25 GeV ‘high gain’ data, synchrotron radiation could be a significant background. - 

. 
- For the data, backgrounds were reduced with the cut diagrammed in Fig. 3. Photon clusters 

in the lower 25% of the calorimeter, below the diagonal lines, were removed. Photons 

reconstructed exactly on the border were kept, but with an appropriate weighting, 50% if 

they were on the border lines, and 75% at the center of the center crystal. The data were 

adjusted upward to compensate for this 25% loss of signal. Because of uncertainty in the 

source of after-cut backgrounds, no further corrections are applied. 

The backgrounds were measured with periodic no-target runs. The no-target data, both 

_ with and without the synchrotron radiation cut are shown in Fig. 4 for both 8 and 25 GeV - 

running. Note that this figure ais normalized as photons per 1000 electrons, whereas Figs. 5- 
? - 

13 are normalized as photons per electron per radiation length of the target. The back- 

grounds in Fig. 4 can be scaled to the data in Figs. 5-13 by dividing by 1000 the electron 

scale factor in Fig. 4, and again by the radiation length in percent. At 25 GeV, the majority 
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of background is synchrotron radiation, which is largely removed by the cut. At 8 GeV, 

the cut has little effect; acceptance corrections occasionally make the post-cut background 

larger than the pre-cut. 

-Except for the region where synchrotron radiation was expected, backgrounds were al- 

ways small. After the cut, backgrounds at 25 GeV were less than one 200 keV- 500 MeV 

photon per 1000 electrons. At 8 GeV, the background was about a factor of 3 lower, with 

or without the cut. 

C. Discussion of Data 

Figures 5-13 present our data for a variety of target materials, arranged in order of 

increasing suppression. For each material, there is one figure, with four or six panels, 

showing two target thicknesses in 8 and 25 GeV beams, plus edge-effect subtracted data 

(discussed in Section VI). The 25 GeV ‘high gain’ data have had the synchrotron radiation 

removal cut applied. For lead, there is only one target thickness. Occasionally, there are 

data at only one energy for a target. The high gain and low gain calorimeter data have been 

- combined as previously described; where there are no high or low gain data, the histogram 

is cut off at the appropriate energy. 

For each target, we compare the data with different Monte Carlo curves. Our standard 

curve, shown by a solid line in all the plots, is a Monte Carlo including LPM and dielectric 

suppression, with conventional transition radiation. For the thinner targets, we make com- 

parisons with a number of transition radiation theories. For these plots, the Monte Carlo 

curves have been normalized to match the data, as discussed in Section VIII. 

Figure 5 shows data from the carbon targets. In addition to the standard Monte Carlo 

(solid line), LPM supp ression only (dotted line) and a Bethe-Heitler curve (dashed line) are 
r - 

shown for comparison. To give an idea of the effect of transition radiation, we also show 

in Fig. 5a a Bethe-Heitler only curve and in Fig. 5d the suppression curve, both with no 

transition radiation, as dot-dashed lines. The upturn below about 500keV for the 25 GeV 

- 
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electron Monte Carlos is transition radiation (Eqn. 12). The additional upturn in the data 

are consistent with the remaining background. The combined Monte Carlo does the best job 

of representing the data. At 8 GeV, the suppression is dominated by dielectric suppression; 

at 25 GeV, the two effects have a similar magnitude. At 25 GeV, the suppression appears 

to turn on at higher energies and more gradually than predicted by the Monte Carlo. 

Figure 6 shows data from the aluminum targets, with the same three Monte Carlo curves 

as in Fig. 5. The data are slightly below the Monte Carlo over most of the plot. Here, the 

upturn below 500 keV in the 25 GeV data are consistent with transition radiation plus 

remnant synchrotron radiation. Since the 2 of aluminum is twice that of carbon, the LPM 

effect is much larger. Because the densities are similar, dielectric suppression is very similar. 

As with carbon, the LPM effect appears to turn on slightly more gradually than the Monte 

Carlo predicts. 

Figure 7 shows data from the iron targets, compared with just the standard Monte Carlo. 

The data and Monte Carlo are close, but the data may have a longer, but more gradual 

slope than the Monte Carlo predicts. Data from the 2% X0 lead target are shown in Fig. 8, 

again with the standard Monte Carlos. 
9 - 

Figure 9 shows data from the tungsten targets. The fit is quite good at 8 GeV. At 

-25 GeV, for k < 10 MeV, the data for the 2% X0 target are above the Monte Carlo. At 

7 MeV, the target thickness is comparable to the unsuppressed formation length. Eqn. 17. 

shows that the suppressed length becomes comparable to t below 3.0 MeV. Below 1.7 MeV, 

dielectric suppression reduces Zf below t. Between 1.7 MeV and 3.0 MeV, the target should 

interact as a single radiator; the straight line on the figure is from Eqn. 14; the height is 

significantly above the data. 

Figure 10 shows data from the 3% X0 and 5% X0 uranium targets. In both cases, the 

25 Gev data rise above the Monte Carlo at low k. The prediction of Eqn. 14 is shown by 

the straight line in the 25 GeV 3% X0 data. For the 5% X0 target and the 8 GeV 3%X0 

data, t >.Zf everywhere, so it is appropriate to treat the edge effects in terms of independent 

transition radiation. The transition radiation predicted by Ternovskii (dotted line) and 
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Pafomov (dashed line) are shown on these plots, on top of the LPM + dielectric suppression 

base. 

The Ternovskii curve has a jump around 500 keV in the 25 GeV data. This corresponds 

to sk,2/k2 = 1, below which transition radiation from Eqn. 13 applies; the corresponding 

k is below 200 keV for 8 GeV electrons. Below this energy, Ternovskii matches conven- 

tional transition radiation. Above this energy, Ternovskii predicts a rather large transition 

radiation, which does not match the data. The match could be improved by adjusting x. 

However, a rather large adjustment would be required. 

Pafomov’s predictions jumps at about 800 keV (400 keV), corresponding to k = 

k4/3k1/3 
P 

LPM. Below this, his predictions are considerably above both conventional transition 

radiation and the data. Above the break, the shape looks reasonable, but the amplitude 

appears to be a factor of 2 to 3 too big. 

Figure 11 shows data from the 6% X0 and 0.7% X0 gold targets. For the 0.7% X0 target, 

the excess flat region extends from about 1 MeV up to 30 MeV. The downturn for the 0.7% 

X0 data above k = 100 MeV is due to the natural decrease of the Bethe-Heitler spectrum. 

Because the 0.7% X0 target is thin enough that multi-photon emission is small, we can 
9 

compare it directly with predictions that are not amenable to Monte Carlo simulation. 

-We do this in Fig. 12, which shows an enlarged view of the data in Fig. 11. Here, the 

dashed line is the result of a calculation by Blankenbecler and Drell [23], normalized to 

our Bethe-Heitler Monte Carlo. Because Blankenbecler and Drell do not include dielectric 

suppression or transition radiation in their calculations, the calculations are suspect below 

5 MeV (1.5 MeV) at 25 (8) GeV. At 25 GeV, Bl an en ec er and Drell are an excellent fit k b 1 

to the data, with a x2/DOF of 1.15 above 2 MeV. At 8 GeV, the agreement is not as good, 

with x2/DOF=2.3. Because of the more gradual onset of suppression in the Blankenbecler 

and D&l1 calculation, the downturn in the 8 GeV spectrum occurs above k = 500 MeV and 

is not visible. 

At 25~GeV, the prediction of.Shul’ga and Fomin is shown as a straight dot-dashed line. 

At 8 GeV, the target is thin enough that their formulae do not apply. Zakharov [20] has 
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compared his calculation with our 0.7% X0 25 GeV data for k >-5MeV, and finds excellent 

agreement. 

Figure 13 shows data from the 0.1% X0 gold target, with Bethe-Heitler (dashed line) 

and dielectric suppression only (solid line) Monte Carlos. The target is thin enough that 

the total multiple scattering is less than l/y. 0 ne might expect that there is then no LPM 

suppression. However, Blankenbecler and Drell found [23] a slight suppression at 25 GeV, 

about 8% at k = 500 MeV, rising to 13% at k = 100 MeV. At 8 GeV, the suppression is a 

few percent. Because of the small signal and relatively large uncertainties, we are not able 

to confirm or reject this slope. 

Little transition radiation is visible. Because t < Zf over the entire relevant k range, 

transition radiation is reduced by sin2 (t/Zr) [38] compared to a thick target (t > If). Di- 

electric suppression is expected to be similarly reduced, because the total phase shift in 

the entire target thickness is much less than one. However, at 8 GeV, considerable down- 

turn is observed, with the data between the dielectric suppression only and Bethe-Heitler 

predictions. 

Unfortunately, there are a number of experimental uncertainties associated with this 
. 

target. Because the target is so thin, background contamination is relatively more significant 

-than it is for other targets. The actual target thickness is not well known, and visual 

inspection suggests that the target thickness is not uniform; we have not been able to 

measure this. We have observed considerable variation in overall bremsstrahlung amplitude 

from run to run; this could be caused by the beam spot hitting different locations on the 

target . 

VI. TARGET SUBTRACTION 

The data presented above show that the suppressed curves are a much better fit to the 

data than the Bethe Heitler curves. However, in many cases, the Monte Carlo does not fit 

the data well, especially when the target thickness is a significant fraction of If, and surface 
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effects are large. One way to remove the surface effects is to compare targets of the same 

material, but differing thicknesses. 

We do this by performing a bin by bin subtraction of the histograms of the same material 

but differing thicknesses, for example 6% X0 Au - 0.7% X0 Au, giving the ‘middle’ 5.3% 

X0 of the target. Because this subtraction increases the slope change due to multi-photon 

pileup (multiple interactions in the target), it is necessary to compare the result with Monte 

Carlo data which have been subjected to the same procedure. The subtractions are shown 

in Figs. 5-11. 

This subtraction suffers from a few drawbacks. It assumes that the target is thicker than 

a formation length, so that there is no interference between the transition radiation from 

the two edges. The subtraction increases the effect of multi-photon emission and photon 

absorption in the targets. Because of this, when the procedure is applied to Monte Carlo 

data, the result is negative below about 1 MeV (500 keV) at 25 (8) GeV beam energy, 

depending on the target material. These effects are included in the Monte Carlo, but the 

subtractions do increase the relative systematic errors. However, edge effects change the 

multi-photon pileup slightly. Because this is not in the Monte Carlo, it also adds to the 
* - 

systematic errors. The systematic errors due to the Monte Carlo in Table IV should be 

-doubled. Nevertheless, subtraction appears to be an effective process for separating edge 

effects from bulk LPM suppression, so we present the subtracted data here. 

After subtraction, the LPM Monte Carlo is a much better match to the data. To quantify 

the agreement, we have performed a X2 fit of the Monte Carlo to the data; the results of the 

fit are given in Table III. The only free parameters in the fit are the previously mentioned 

normalization constants; see Section VIII for a discussion of the normalization. For most 

- of the materials, the fit quality is good, with X2/DOFw 1. For the targets where the 

X2/D0+’ > 1, indicating a poor fit, the disagreement appears to be within the systematic 

errors; we have not attempted to include the systematic errors in the fit or x2. 

Figures 5c and 5f-show the carbon data, above 450 keV (200 keV) for 25 (8) GeV. The 

fit quality is reasonable, although, because of the good statistics, the x2/DOFs at 25 GeV 
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of 2.74 is high. At 8 GeV the fit quality is much better, with X2jDOF = 1.17. At 25 GeV, 

much of the X2 comes from the region of small k, where the data are below the Monte Carlo. 

The fact that the subtracted data and MC agree much better than their unsubtracted 

counterparts indicates that the mismatch between the data and LPM + dielectric suppres- 

sion MC is related to the target edges. This is a bit puzzling, since it is difficult to see 

. how surface terms could increase the suppression; an unreasonably large contamination by 

a higher 2 material would be required to explain the spectrum. 

Figures 6d, 7d and 9d show the 25 GeV subtracted aluminum, iron and tungsten data, 

above 500 keV. The aluminum and tungsten simulations are an excellent fit to the data, 

with x2/DOF=0.84 and 0.99 respectively. The iron fit is rather poor with X2/DOF = 2.32, 

although it agrees a lot better than the unsubtracted data. 

Figures 1Oc and 10f show the uranium data, above 1000 keV (300 keV) for 25 (8) GeV. 

The fit quality is quite good, with x2/DOFs of 0.89 and 1.56. 

Figures llc and llf show the gold data, above 5 MeV (350 keV) for 25 (8) GeV. The 

fit quality is excellent at 25 GeV, with x2/DOF=0.85. The 8 GeV data have a X2/DOF 

of 2.68, because the data are below the MC prediction below 1 MeV. This may be partly 
. _ 

because the 0.7% X0 target is so thin that coherent interactions between the two edges are 

significant. However, in that case we would expect better agreement at 8 GeV, where Zf is 

much smaller. 

One side benefit of the subtraction procedure is that the break in the spectrum between 

LPM suppression and dielectric suppression becomes much clearer. 

From these results, it is clear that the Migdal formula does an excellent job of describing 

suppression in bulk media. The suppression scales as expected with beam energy, photon 

energy, target Z and X0. 

It tiould be possible to modify the subtraction procedure to isolate the emission due to a 

single edge. However, because of the large errors and uncertainties inherent in the process, 

the results would have limited significance. For the carbon and iron targets, the ‘edge’ term 

would be negative over a fair fraction of the spectrum. 
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VII. SYSTEMATIC ERRORS 

Our systematic errors are divided into two classes, those that affect the absolute nor- 

malization only (discussed in the next section) and those that can affect the shape of the 

spectrum. The major systematic errors are due to energy calibration, photon (cluster) find- 

ing, calorimeter nonlinearity, uncertainty in the target density, and multiphoton pileup, as 

- summarized in Table IV. 

The systematic errors that can affect the spectral shape are quite different for the high 

and low calorimeter gain data, because several things change. As was previously discussed, 

in one case energy loss is primarily by showering, and in the other by Compton scattering, so 

the clustering works differently. Also, for the high gain data, backgrounds are much larger. 

For these reasons, the systematic errors are much larger for k < 5 MeV than for k > 5 MeV. 

Surprisingly, except for the synchrotron radiation removal cut, the systematic errors are 

independent of electron beam energy. 

For k > 5 MeV, the major errors are calorimeter energy calibration (1.5%), photon 

cluster finding (a%), calorimeter nonlinearity (3%), backg rounds (l%), target density(2%), 

- electron flux (0.5%), and Monte Carlo uncertainties (l%), for a total systematic uncertainty 

of 4.6%. 

The 5% uncertainty in the calorimeter energy calibration is equivalent to shifting the 

histogrammed data by just over half a bin. The magnitude of the consequent error in cross 

section’depends on the slope of the curve, and consequently on the target thickness. In the 

worst case, the 6% X0 gold target, a 5% energy scale shift produces a 1.5% change in the 

measured cross section. 

The photon cluster finding introduces a 2% uncertainty in the cross section. Likewise, 

leakage out the back and sides of the calorimeter, and PMT saturation effects introduces a 
r - 

3% uncertainty, 

- 

Most of the targets materials had a well defined density. However, the carbon targets were 

graphite, which-has a density that can vary, only partly because it can absorb water. During 
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data taking, they were in vacuum, so that wasn’t a problem. Their density was determined 

by measuring and weighing them, the latter after they were dried in an oven. We measured 

a density 4~t2% below the standard value [27], and used this density in calculations of the 

radiation length and ELpM. 

For the k < 5 MeV data, many systematic errors are larger. The photon cluster finder 

is less effective because of the possibility of non-contiguous energy deposition (7%), and 

the calorimeter energy calibration is worse due to the need to use the higher energy data 

as an intermediate calibration (3%). Al so, at these energies, backgrounds are larger, a 4% 

uncertainty, and the Monte Carlo is probably less accurate for low energy photons (1.5%) 

This gives an overall 9% systematic error. 

For the data where the synchrotron radiation rejection cut was used, ‘high gain’ 25 GeV 

running, there is an additional systematic error. This is because the cut efficiency is sensitive 

to how well the electron beam is centered on the calorimeter. During our running, the average 

deviation from the calorimeter center was less than 5 mm. This introduces an additional 

15% systematic error. 

VIII. NORMALIZATION 

We have compared our measured absolute cross sections with the Migdal predictions 

by calculating the adjustment required to normalize the data to the Migdal plus dielectric 

suppression Monte Carlo. To avoid regions where edge effects and backgrounds are impor- 

tant, the 25 GeV data are normalized over the range 20 MeV to 500 MeV, and the 8 GeV 

data are normalized from 2 MeV to 500 MeV. For the 0.7% X0 data, a narrower range, 

30 MeV (10 MeV) to 500 MeV was used at 25 (8) GeV, to avoid surface effects. This is 

a much, wider fitting range than was used previously [l]. For each data set, Table II gives 
r - 

the normalization corrections, the percentage by which it is necessary to adjust the Monte 

.Carlo prediction to best match the data. The errors given are statistical only; the systematic 

errors are summarized in Table IV. 
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The electron flux was measured using the lead glass blocks. The blocks are large enough 

so that there was almost no leakage out the side or top of the block stack. The major source 

of missed electrons was high energy bremsstrahlung where the electron lost enough energy 

to be bent below the lead glass blocks. Electrons with energies below 17.4 (5.8) GeV for 

25 (8) GeV beams missed the blocks. 

The fraction of electrons missing the blocks depended on the target thickness, and was 

determined by the Monte Carlo; the miss probability ranged from 2% to 7%. This miss prob- 

ability was folded into a matrix to estimate the number of single electron events. Because 

missed electrons events produce high energy photons, the events will also cause overflows in 

the calorimeter, thus they do not affect the histograms. 

In this unfolding, a fortuitous cancellation limits the systematic errors to 0.5%. Most 

of our running was at an average of one electron per pulse. At this level, the probability 

of a single electron being missed was very close to the probability of a two electron event 

appearing as a single electron in the lead glass blocks. So, the probability of losing an 

electron almost completely cancels out of the luminosity, so it is not necessary to know this 

number well. 
* 

Many uncertainties that affect the relative measurement are reduced for the normaliza- 

tion, because of the more limited photon energy range. Above 20 MeV, photon-finding is 

much more robust, and the calorimeter nonlinearities are less significant. 

The target thickness measurement was more complicated than originally expected. The 

targets thicknesses were measured with calipers. The thinner targets were weighed, and their 

sizes measured, to find the thickness in gm/cm 2. The uncertainty in thickness contributed 

a 2% systematic error. Because of the previously mentioned uncertainties about the 0.1% 

X0 gold target, it is not considered here. 

Th6 normalization constant depends only slightly on the normalization procedure. 

Changing the lower energy limit only produces small changes, of order 0.5%. To account for 

these fitting uncertainties, we include a 1% systematic error. 

On the average, the normalizations show that the data are slightly below the Migdal 
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prediction. The weighted averages are -4.7 f 2.0% (-3.1 f 5.6%) at 25 (8) GeV, with a 

3.5% systematic error. If the outlying 6% X0 gold target is excluded from the 8 GeV data, 

the average becomes -4.8 f 2.5%. However, the 2.5% contribution to the cross section 

from the (1 - y)(Z’ + 2)/3 t erm discussed in section 1I.A. increases the disagreement. 

Including systematic errors, we find roughly a 2a discrepancy. This is difficult to explain by 

experimental effects alone. 

There are some attractive theoretical explanations, stemming from limitations in 

Migdal’s calculations. Migdal used a Gaussian approximation for multiple scattering. This 

underestimates the probability of large angle scatters. These occasional large angle scat- 

ters would produce some suppression for k > k LPM, where Migdal predicts no suppression 

and where we determine the normalization. Fig. 12 shows that, compared to Migdal, the 

suppression predicted by Blankenbecler and Drell turns on much more slowly, and, hence 

if Blankenbecler and Drell were used in the normalization, the discrepancy would be less- 

ened or eliminated. Zakharov’s [20] calculation would also appear to lessen or eliminate this 

discrepancy. 

‘a - 

IX. DISCUSSION 

As the data presented above shows, the LPM and dielectric effects suppress 

bremsstrahlung as expected for most of our target materials and thicknesses. The suppres- 

sion scales as expected with electron energy, photon energy, and radiation length. Materials 

with similar radiation lengths, but different densities and atomic numbers (tungsten and 

uranium) display similar LPM suppression. For low photon energies, the formation length 

_ can become longer than the target thickness. When that happens, we observe that the target 

behaves as a single scatterer, and the spectrum again becomes flat, like the Bethe-Heitler 
r - 

- 

result, but at a lower intensity. For thicker targets, there is an edge effect radiation which 

can be removed by subtraction. 

Unfortunately, we have not found a single calculation that matches the data and includes 
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both LPM and dielectric suppression for finite target thicknesses. However, we have removed 

the finite target thickness effects by subtraction. 

Although the data clearly demonstrate LPM suppression to good accuracy, for low 2 

targets, the simulations do not match the data as well as expected. The fact that the 

discrepancy is greatly reduced by the subtraction procedure indicates that some sort of a 

surface effect is involved. However, it is difficult to imagine how a surface effect can reduce 

the emission. It is also difficult to imagine instrumental effects that would affect only carbon 

and iron; a 20% adjustment to the the energy scale would improve the agreement for these 

materials, but it would produce a large disagreement for the other materials. 

A discrepancy in the bulk material (subtracted plots) might be explainable by material 

effects. The carbon targets were made of pyrolitic graphite, which has internal structure on 

a scale much larger than crystalline structure. If the target varied in density on a scale large 

with respect to the formation zone length, then the average suppression and edge effects 

will increase and additional transition radiation will be generated, consistent with the data 

at 25 GeV beam energy. 

The iron targets should be mechanically homogeneous, but magnetically inhomogeneous. 

Individual magnetic domains are magnetized to saturation (B - 2T), but in different di- 

rections. The typical domain size is of order lpm. Magnetic bending of the elctrons can 

also suppress bremsstrahlung; a detailed model of the phenomenon is lacking [30]. Two 

Tesla is enough to bend the electrons by l/y in a distance Zf; in combination with multiple 

scattering, this could alter the spectrum. 

It is perhaps significant that at 8 GeV beam energy, where the formation zone is a factor 

of 10 shorter and edge effects consequently are greatly reduced, the data shows much better 

agreement than at 25 GeV beam energy. 
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X. CONCLUSIONS 

The LPM and dielectric effects suppress bremsstrahlang as expected for a variety of 

target materials and thicknesses and two beam energies. For carbon and iron, somewhat 

more suppression than expected is observed. However, the excess suppression appears to 

be a surface or magnetic effect, and perhaps can be explained by the properties of these 

- targets. For most of our targets, the agreement is within 5% of the theory. 

Thin targets, where the formation length is longer than the target thickness, behave as 

single radiators. Calculations by Blankenbecler and Drell reproduce the shape of the photon 

spectra where dielectric suppression is unimportant. 

The overall bremsstrahlung cross section for low energy photons is measured to be about 

5% (2a) lower than expected due to Migdal’s work. Alternate calculations, by Blankenbecler 

and Drell, or by Zakharov, might agree better with the data. 
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FIGURES 
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FIG. 1. Schematic plot of cross sections, showing Bethe-Heitler, LPM and dielectric suppression 

regions. 
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FIG. 2. A diagram of the experiment. The apparatus is described in detail in the text. 
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FIG. 3. Drawing of the front of the calorimeter, showing bremsstrahlung plus transition radia- 

tion signal (dots) and synchrotron radiation background (hashes). The region below the diagonal 

- solid lines is where the background rejection cut removes photon clusters from the data. 
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FIG. 4. Data from the blank target runs at (a) 25 GeV and (b) 8 GeV. The units are photons 

per log(k) per 1000 electrons. There are 25 bins per decade of photon energy, so each bin has width 

- - Ak/k N 0.09. The raw data are shown in the solid histogram, while the dashed lines show the data 

after the synchrotron radiation removal cut and efficiency correction. The cut removes about 90% 

of the data at 25 GeV, while at 8 GeV the efficiency only matches the geometrical expectation. 
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FIG. 5. Measurements with statistical errors only of dN/d(log k) compared with the LPM plus 

dielectric effect plus transition radiation Monte Carlo curves (solid line), for our (a) 2% X0 carbon 

and (b) 6% X0 carbon targets in 25 GeV electron beams, while (d) shows the 2% X0 carbon and 

(e) the 6% X0 carbon target in the 8 GeV beam. The cross sections are given as dN/d(log k)/Xo 

where N is the number of events per photon energy bin per incident electron. (c) shows the result 

- - of subtracting the data in (b) from that in (a), while (f) is the result of subtracting (e) from (d), 

as discussed in Section VI of the text. The curves are cut off where they go negative as a result of 

the procedure. Also shown are the Bethe-Heitler plus transition radiation MC (dashed line), LPM 

suppression only plus transition radiation (dotted line) and, for comparison, Bethe-Heitler without 

transition radiation (dot-dashed line). Figures 6 through 12 follow a similar format. 
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FIG. 6. Measurements and Monte Carlo for our (a) 3% X0 and (b) 6% X0 aluminum targets 

at 25 GeV and (c) 3% X0 at 8 GeV. (d) is the result of subtracting (b) from (a). The data and 

- - Monte Carlo formats and labels match Fig. 5, except that, for variety, the LPM suppression only 

simulation does not have transition radiation added. 
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FIG. 7. Measurements and Monte Carlo for our (a) 3% X,, and (b) 6% X0 iron targets at 

25 GeV and (c) 6% X0 at 8 GeV, while (d) is the result of subtracting (b) from (a). Here, only an 

LPM plus dielectric suppression curve is shown. 
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FIG. 8. Measurements and Monte Carlo for our 2% X0 lead target at (a) 25 GeV and (b) 8 GeV. 
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FIG. 9. Measurements and Monte Carlo for our (a) 2% X0 and (b) 6% X0 tungsten targets at 

25 GeV and (c) 2% X0 at 8 GeV, while (d) is the result of subtracting (b) from (a). The flattening 

- - below 10 MeV is discussed in the text. The straight solid line in (a) between 1.5 and 2.7 MeV is 

the ‘single radiator’ calculation. 
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FIG. 10. Measurements and Monte Carlo for our (a) 3% X0 and (b) 5% X0 uranium targets 

at 25 GeV and (d) 3% X o and (e) 5% X0 uranium at 8 GeV, while (c) and (f) are the subtracted 

- - data. The solid line shows the standard Monte Carlo prediction. The horizontal solid line in (a) is 

from Eqn. 14. The dashed line includes the Pafomov transition radiation in the Monte Carlo, along 

with LPM and dielectric suppression. The dotted line is for the LPM and dielectric suppression 

plus the Ternovskii transition radiation with x = 1. 
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FIG. 11. Measurements and Monte Carlo for our (a) 0.7% X0 and (b) 6% X0 gold targets at 

25 GeV and (d) 0.7% X0 and (e) 6% X0 gold at 8 GeV, with the subtracted data shown in (c) and 

- (f). 
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FIG. 12. Expanded view of the 0.7% X0 data at (a) 25 GeV and (b) 8 GeV, compared with the 

Blankenbecler and Drell prediction (dashed line), Shulga and Fomin prediction (dot-dashed line). 

- For comparison, the standard MC is shown as the usual solid line. 
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FIG. 13. Measurements and Monte Carlo for our 0.1% X0 gold target at (a) 25 GeV and (b) 

8 GeV. The dashed line is the Bethe-Heitler prediction (no suppression), while the solid line is a 

- Monte Carlo which includes dielectric suppression, but not LPM suppression. Because the very 

thin target-should exhibit little transition radiation, no transition radiation is included in the Monte 

Carlo. 
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TABLES 

TABLE I. ELPM, kLPMz5, kLPM8 and T for the target materials used here. 

Target Z X0 (cm) ELPM (Tev) kLPM25 (MeV) kLP,tdMeV) 

Carbon 6 19.6 74 8.5 0.87 5.5 x 1o-5 

Aluminum 13 8.9 36 15.7 1.6 6.0 x 1O-5 

Iron 26 1.76 6.6 95 9.7 1.0 x 1o-4 

Lead 82 0.56 2.1 295 30.1 1.1 x 1o-4 

Tungsten 74 0.35 1.32 472 48.3 1.5 x 1o-4 

Uranium 92 0.35 1.32 472 48.3 1.4 x 1o-4 

Gold 79 0.33 1.25 500 51.2 1.5 x 1o-4 
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TABLE II. List of target thicknesses and overall normalization constants. The target thick- 

nesses t are given in mm, gm/cm2, and X0. The last two columns give the normalization adjust- 

ments used to match the simulations with the data (statistical errors only). 

Target t x0 Normalization Normalization 

(mm) k/cm2 > (%o) (% at 25 GeV) (% at 8 GeV) 

2% c 

6% C 

3% Al 

6% Al 

3% Fe 

6% Fe 

2% Pb 

2%W 

6%W 

3%U 

5%U 
. - 

0.1% Au 

-0.7% Au 

6% Au 

4.10 0.894 2.1 

11.7 2.55 6.0 

3.12 0.842 3.5 

5.3 1.4 6.0 

0.49 0.39 2.8 

1.08 0.85 6.1 

0.15 0.17 2.7 

0.088 0.17 2.7 

0.21 0.41 6.4 

0.079 0.15 2.2 

0.147 0.279 4.2 

0.0038 0.0073 0.11 

0.023 0.044 0.70 

0.20 0.39 6.0 

-3.Of0.3 

-2.9f0.2 

-2.750.4 

-2.81kO.3 

-5.430.2 

-7.5f0.2 

-4.5f0.2 

-8.3f0.3 

-4.7f0.3 

-5.6f0.3 

-7.Of0.3 

-1.3f0.4 12.2f0.7 

-5.5f0.2 -5.Of0.3 

-6.Of0.4 

-4.6f0.5 

-3.Of0.4 

-1.4Ito.4 

-0.7f0.4 

-8.6f0.3 

-6.3f0.3 

-7.560.4 
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TABLE III. x2 per degree of freedom of the fits to the subtracted-data. The only free param- 

eters were the absolute normalizations of the two individual targets. Typically, there were about 

60 degrees of freedom. Statistical errors only were included in the fit. 

Material 

Carbon 2.74 1.17 

Aluminum 0.84 

Iron 2.32 1.41 

Tungsten 0.99 

Uranium 1.56 0.79 

Gold 0.85 2.68 
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TABLE IV. Table of Systematic Errors. The absolute column refers to the cross section for 

k = 500MeV for both 8 and 25 GeV beams. The relative errors for k < 5 MeV and k > 5 MeV 

also apply to both 8 and 25 GeV beams, except for the synchrotron radiation removal cut, which 

is added in separately. Uncertainties in the theoretical calculation are not included. 

Source k > 5MeV k < 5MeV 

Energy Calibration 

Absolute 

1% 

Relative 

1.5% 

Relative 

3% 

Photon Cluster Finding 2% 7% 

Calorimeter Nonlinearity 2% 3% 3% 

Backgrounds 1% 4% 

Target thickness 2% 

Target Density 2% 2% 

Electron Flux 0.5% 0.5% 0.5% 

Monte Carlo 1.5% 1% 1.5% 

Normalization Technique 1% 

8 GeV Beam Total 3.5% 4.6% 9% 

Synchrotron Radiation Removal 15% 

-25 GeV Beam Total 3.5% 4.6% 17% 
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