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Abstract 

A light front treatment of the nuclear wave function is developed and applied, 

using the mean field approximation, to infinite nuclear matter. The nuclear 

mesons are shown to carry about a third of the nuclear plus momentum p+; 

but their momentum distribution has support only at p+ = 0, and the mesons 

do not contribute to nuclear deep inelastic scattering. This zero mode effect 

occurs because the meson fields are independent of space-time position. 
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The discovery that the deep inelastic scattering structure function of a bound nucleon 

differs from that of a free one (the EMC effect[l]) changed the way that physicists viewed 

the nucleus. With a principal effect that the plus momentum (energy plus third component 

of the momentum, p” + p3 G p+) carried by the valence quarks is less for a bound nucleon 

than for a free one, quark and nuclear physics could not be viewed as being independent. 

Many different interpretations and related experiments[2] grew out of the desire to better 

understand the initial experimental observations. 

The interpretation of the experiments requires that the role of conventional effects, such 

as nuclear binding, be assessed and understood[2]. N UC ear binding is supposed to be rel- 1 

evant because the plus momentum of a bound nucleon is reduced by the binding energy, 

and so is that of its confined quarks. Conservation of momentum implies that if nucleons 

lose momentum, other constituents such as nuclear pions[3), must gain momentum. This 

partitioning of the total plus momentum amongst the various constituents is called the 

momentum sum rule. Pions are quark anti-quark pairs so that a specific enhancement of 

the nuclear antiquark momentum distribution, mandated by momentum conservation, is a 

testable [4] consequence of this idea. A nuclear Drell Yan experiment [5], in which a quark 
, _ 

from a beam proton annihilates with a nuclear antiquark to form a p+p- pair, was per- 

formed. No influence of nuclear pion enhancement was seen, leading Bertsch et a1.[6] to 

state that the idea of the pion as a dominant carrier of the nuclear force is in question. 

Here a closer look at the relevant nuclear theory is taken, and the momentum sum rule 

is studied. The first step is to discuss the appropriate coordinates. The structure function 

depends on the Bjorken variable XBj which in the parton model is the ratio of the quark 

plus momentum to that of the target. Thus XBj = p+/k+, where k+ is the plus momentum 

of a nucleon bound in the nucleus. Thus, a more direct relationship between the necessary 

nuclear+kheory and experiment occurs by using a theory in which Ic+ is one of the canonical 

variables. Since Ic+ is conjugate to a spatial variable x- E t - z, it is natural to quantize 

the dynamical variables at the equal light cone time variable of x+ E t + z. To use such a 

formalism is to use light front quantization, since the other three spatial coordinates (x-, ~1) 
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are on a plane perpendicular to a light like vector[7]. Th is use of light front quantization 

requires a new derivation of the nuclear wave function, because previous work used the equal 

time formalism. 

Such a derivation is provided here, using a simple renormalizable model in which the 

nuclear constituents are nucleons + (or $‘), scalar mesons 4[8] and vector mesons VP. The 

Lagrangian .fZ is given by 

l = &w4 - m:42> - ;vpvvpv + +vp + $(y(iap - g, V,) - A!f - gsq5) $7' (1) 
where the bare masses of the nucleon, scalar and vector mesons are given by A!, m,, m,, 

and VP” = 8‘V” - d”Vp. This Lagrangian may be thought of as a low energy effective 

theory for nuclei under normal conditions. Quarks and gluons would be the appropriate 

degrees of freedom at higher energies and momentum transfer. Understanding the transition 

between the two sets of degrees of freedom is of high present interest, and using a relativistic 

formulation of the hadronic degrees of freedom is necessary to avoid a misinterpretation of 

a. kinematic effect as a signal for the transition. 

This hadronic model, when evaluated in mean field approximation, gives[9] at least a 

. - 
qualitatively good description of many (but not all) nuclear properties and reactions. The 

aim here is to use a simple Lagrangian to study the effects that one might obtain by using a 

light front formulation. In this first evaluation, it is useful to study infinite nuclear matter. 

This system has ignorable surface effects and using it simplifies the calculations. 

The light front quantization procedure necessary to treat nucleon interactions with scalar 

and vector mesons was derived by Yan and collaborators[lO, 111. Glazek and Shakin[l2] used 

a Lagrangian containing nucleons and scalar mesons to study infinite nuclear matter. Here 

- both vector and scalar mesons are included, and the nuclear plus momentum distribution is - 

obtaine$ . - 

The next step is to examine the field equations. The relevant Dirac equation for the 

nucleons is 

Y . (;a - g?JV>$ = (m + gsq+y. (4 
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The number of independent degrees of freedom for light front field theories is fewer than in 

the usual theory[l3]. 0 ne defines projection operators A* = y”y*/2 and the independent 

Fermion degree of freedom is $i = A+$‘. One may show that $J[ can be obtained from 

$i~using standard projection operator techniques. This relation is very complicated unless 

one may set the plus component of the vector field to zero[l3]. This is a matter of a choice 

of gauge for QED and QCD, but the non-zero mass of the vector meson prevents such a 

choice here. Instead, one simplifies the equation for $i_ by[ll] transforming the Fermion 

field according to $’ = eiguA(Z)lC) with d+h = V+. Th is t ransformation leads to the result 

(ia- - g,v-)$+ = (a~- . (P-L - su%> + M + g&b- 

id+?!‘- = (m. (~1 - g,%) + M + gs+)$+ (3) 

where 

a+$+ = g+vfi - pv+ (4) 

The term on the right hand side is V+fi. 

The field equations for the mesons are 
* _ 

8,Vp” + mzVp = gv$,yp$ 

8,P4 + mi4 = -g,$$. (J-9 

We.now introduce the mean field approximation[9]. Th e coupling constants are consid- 

ered strong and the Fermion density large. Then the meson fields can be approximated 

as classical- the sources of the meson fields are replaced by their expectation values. The 

nuclear matter ground state is assumed to be a normal Fermi gas, with an equal number 

of neutrons and protons, of Fermi momentum kp, and of large volume R in its rest frame. 

Under these assumptions the meson fields are constants given by 

4 = --$(d$) 

VP = $($y”$) = p&, (6) i 
2, 2) 
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where ,oB = 2kj$/3n2. This result that VP is a constant, along with Eq. (4), tells us that 

the only non-vanishing component of v is v- = V O. The expectation values refer to the 

nuclear matter ground state. 

~With this mean field approximation, the light front Schroedinger equation can be ob- 

tained from Eq. (3) as 

(gj- _ gvp)++ = k: + y-++gs4J2$+. 

The light front eigenenergy (ia- z k-) is the sum of a kinetic energy term in which the 

mass is shifted by the presence of the scalar field, and an energy arising from the vector 

field. Comparing this equation with the one for free nucleons shows that the nucleons have 

a mass M + g& and move in plane wave states. The nucleon field operator is constructed 

using the solutions of Eq. (7) as the plane wave basis states. This means that the nuclear 

matter ground state, defined by operators that create and destroy baryons in eigenstates of 

Eq. (7), is the correct wave function and that Equations (6) and (7) represent the solution 

of the approximate field equations, and the diagonalization of the Hamiltonian. 

The computation of the energy and plus momentum distribution proceeds from taking 
. - 

the appropriate expectation values of the energy momentum tensor TpV[lO, 111. 

Pfi = f / d2xldx-(T+p). 

We are concerned with the light front energy P- and momentum Ps. The relevant compo- 

nents of Tp” can be obtained from Refs. [lo] and [ll]. Within the mean field approximation 

one finds 

T+- = mt42 + 2y!1i(iiF - gvv-)$+ 

+. - T++ = rn:Vt + 2$~id+$+. (9) 

Taking the nuclear matter expectation value of T+- and T++ and performing the spatial 

integral of Eq. (8) leads to the result 
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P- 
- = mt42 + (2%)3 F d2kldk +““I 
R s 

P” =m2V2+ 4 
a 

‘u o (2T>3 F d2k&+k+. 
s 

(10) 

(11) 

The subscript F denotes that } i ]< kF with k3 defined by the relation 

k+ = (M+g,qS)2+c2+k3. (12) - 

The energy of the system E = $(P+ + P-)[12], has the same value as in the usual 

treatment[9]. Th is can be seen by summing equations (10) and (11) and changing integration 

variables using $$ = dk” 

1/(M+gs4)2+P * 
This equality of energies is a nice check on the present 

result because a manifestly covariant solution of the present problem, with the usual energy, 

has been obtained[l4]. M oreover, setting g to zero reproduces the field equation for 4, 

as is also usual. Rotational invariance, here the relation P+ = P-, follows as the result of 

minimizing the energy per particle at fixed volume with respect to kF, or minimizing the 

energy with respect to the volume[l2]. The parameters g,“M2/mt = 195.9 and gzM2/ml = 

267.1 have been chosen [15] so as to give the binding energy per particle of nuclear matter 

, _ as 15.75 MeV with kF=1.42 Fm-‘. In this case, solving the equation for C$ gives M +g,qS = 

0.56 M. 

The use of Eq. (11) and these parameters leads immediately to the result that only 

65% of the nuclear plus momentum is carried by the nucleons; the remainder is carried 

by the. mesons. This is a much smaller fraction than is found in typical nuclear binding 

models[2]. Th e nucleonic momentum distribution which is the input to calculations of 

the nuclear structure function of primary interest here. This function can be computed 

from the integrand of Eq.( 11). The probability that a nucleon has plus momentum k+ is 

determined from the condition that the plus momentum carried by nucleons, P$ , is given by 

P&/A g’Jdk+ k+f(k+), h w ere A = ,0Bfi. It is convenient to use the dimensionless variable 

. y- $ with &! = M - 15.75 MeV. Then Eq.(ll) and simple algebra leads to the equation 

- 

f(y) = $6yy+ - y)fqy - y-) $ - (3 - y)" 
[ 1 ) (13) i 

- 
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where y* = EF*kF - Ii? and EF = dk$ + (M + gs$)2. This function is displayed in Fig. 1. 

Similarly the baryon number distribution fB(y) ( number of baryons per y, normalized to 

unity) can be determined from the expectation value of $+$I. The result is 

- 

fB(y) = ;$(y+ - !@(y - Y-) )(jt$ - ($ - y)“) - -&g - (S -y)“)] . 

(14) - 

Some phenomenological models treat the two distributions f(y) and fB(y) as identical. 

The distributions have the same normalization: J dyf( y) = 1, J dyfB(y) = 1, but they are 

different as shown in Fig. 1. 

The nuclear deep inelastic structure function, F2A can be obtained from the light front 

distribution function f(y) and the nucleon structure function F2~ using the relation[l6] 

w= 
A s dYf(Y)F2NWY)> 

where x is the Bjorken variable computed using the nuclear mass divided by A (I@): 

x = Q”/~A?~Y. This formula is the expression of the convolution model in which one means 

. - to assess, via f(y), only the influence of nuclear binding. Other effects such as the nuclear 

modification of the nucleon structure function (if F 2~ is obtained from deep inelastic scat- 

tering on the free nucleon) and any influence of the final state interaction between the debris 

of the struck nucleon and the residual nucleus[l8] are neglected. Consider the present effect 

of having the average value of y equal to 0.65. Frankfurt and Strikman[l] use Eq. (15) to 

argue that an average of 0.95 is sufficient to explain the 157% depletion effect observed for 

the Fe nucleus. One may also compare the 0.65 fraction with the result 0.91 computed[l9] 

for nuclear matter, including the effects of correlations, using equal time quantization. The 

present result then represents a very strong binding effect, even though this infinite nuclear 
+. - 

matter result can not be compared directly with the experiments using Fe targets. One 

. might think that the mesons, which cause this binding, would also have huge effects on deep 

inelastic scattering. 



It is certainly necessary to determining the momentum distributions of the mesons. The 

mesons contribute 0.35 of the total nuclear plus momentum, but we need to know how this 

is distributed over different individual values. The paramount feature is that 4 and VP are 

the~same constants for any and all values of the spatial coordinates x-, ~1. This means that 

the related momentum distribution can only be proportional to a delta function setting both 

the plus and -L components of the momentum to zero. This result is attributed to the mean 

field approximation, in which the meson fields are treated as classical quantitates. Thus 

the finite plus momentum can be thought of as coming from an infinite number of quanta, 

each carrying an infinitesimal amount of plus momentum. A plus momentum of 0 can only 

be accessed experimentally at XBj = 0, which requires an infinite amount of energy. Thus, 

in the mean field approximation, the scalar and vector mesons can not contribute to deep 

inelastic scattering. The usual term for a field that is constant over space is a zero mode, 

and the present Lagrangian provides a simple example. For finite nuclei, the mesons would 

also be in a zero mode, under the mean field approximation. If fluctuations are included, 

the relevant momentum scale would be of the order of the inverse of the average distance 

between nucleons (about 2 Fm). 
I _ 

The Lagrangian of Eq. (1) and its evaluation in mean field approximation for nuclear 

matter have been used to provide a simple but semi-realistic example. It is premature to 

compare the present results with data before obtaining light front dynamics for a model with 

chiral symmetry, in which the correlational corrections to the mean field approximation are 

included, and which treats finite nuclei. Thus the specific numerical results of the present 

work are far less relevant than the emergent central feature that the mesons responsible 

for nuclear binding need not be accessible in deep inelastic scattering. Another interesting 

feature is that f(y) and fB(y) are not the same functions. 

MO&Z generally, we view the present model as being one of a class of models in which the 

mean field plays an important role[20]. F or such models nuclei would have constituents that 

contribute to the momentum sum rule but do not contribute to deep inelastic scattering. 

Thus the predictive and interpretive power of the momentum sum rule is vitiated. In 

_.. 
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particular, a model can have a large binding effect, nucleons can carry a significantly less 

fraction of P+ than unity, and it is not necessary to include the influence of mesons that 

could be ruled out in a Drell-Yan experiment. 
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Figure captions 

Fig. 1 The momentum distribution, f(y) (solid) and b ar y on momentum distribution f~(y) 

(dashed). 
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