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Abstract

Fast Ion Instability is studied in the nonlinear regime. It is shown that exponen-

tial growth of the linear regime is replaced in this case by the linear dependence

on time. Numeric and analytical results are presented describing the beam profile

and the beam spectrum in both regimes.
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1 Introduction

The Fast Ion Instability discovered recently [1] has been studied numerically and confirmed
experimentally [2]. The transverse instability is caused by the interaction of a train of
bunches with the residual gas. Ions produced by transversely offset bunches in the head
of a train induce oscillations of the tail of the train. The ions may be cleared out by a
gap after one revolution, but the memory remains in the train. Amplitude of oscillations

rinitially grows exponentially as exp t/tC until the amplitude of a bunch centroid is of the

order of the transverse rms o of a bunch. The initial rise time of the oscillations of a bunch
centroid was found to be a fraction of a millisecond, even taking into account the spread of
ion frequencies [3]. This is too fast to be observed in experiments directly.

The exponential regime is limited by the nonlinearity of the beam-ion interaction. As
a result, exponential growth at large amplitudes is replaced by a linear dependence of the
amplitude on time [4], and only this nonlinear regime can be observed experimentally.

The dynamics of the instability in the nonlinear regime is quite complicated. Additional
to the nontrivial interference of the perturbations of the beam by the ions excited by different
bunches in the train, the instability in the nonlinear regime essentially depends on the
feedback damping and noise in the system while experiments without feedback are hardly
possible due to the adverse effects of traditional multibunch instabilities. All that make
necessary numerical studies of the instability.

Initial simulations of the instability were carried out with large number of macro particles
in each bunch and realistic beam optics. This simulations show clearly exponential growth of
the instability at small amplitudes and transition to the nonlinear regime at the amplitudes
comparable with the transverse rms of a bunch. However, the simulations are quite time
consuming and limited to short period of time. In this paper we present results of simulations
based on much simpler model but extended to longer period of time. Simulations include
also effects of the feedback and random noise describing the time dependence of the train
profile and the beam spectrum.

2 Analysis of Instability

Consider a train of nb bunches equally spaced with the bunch spacing s~ = CTb in a ring with
the circumference C = 27rR = n~sb. At the moment t after k revolutions, the n-th bunch
is located at the position s around the ring, O < s < 27rR, having transverse offset y(t, .z)
where .z = nsb is the distance of the bunch from the head of the train. Time t and location

s are related: t = kTr + s + Z, where T. is the revolution time. A bunch passing location
s in the ring at the moment do = 2mRk + s + z may generate a group of ions centered at

Y(to, s, z) = y(to, z) and with negligible initial velocity. Motion of the ion centroid at t > to

is defined by the interaction of ions with the following bunches. As a result, ions are trapped,

and centroid of ions Y(i, s, z) oscillates in time during the passage of the train. Later ions

are cleared by a gap in the train. Such a simple picture neglects decoherence of ions within

the group. This effect has been discussed in [3].

Initial distribution of ions is defined by the density of the parent bunch which is Gaussian
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with rms Oc, OV, in the horizontal and vertical planes, respectively. We
a. >> OY. Due to the shape of the bunch, the interaction is strongly
distances between bunch and ion centroids. As the result, the vertical

of the n-th bunch on the k-th turn is described by the equation [4]

where tib is betatron frequency,

4r. dNi
~=

~sb~Z~Y ds ‘

and dNi/ds is the ion production rate per bunch proportional

cross-section 01. At 01 = 2 Mbarn and room temperature,

to pressure

dNi
— = ().()6(&)Nb cm-’.
ds

The function ~(~) in the RHS of Eq. (1) is either ~(() = ~/aV for Itj <1

assume a flat beam
suppressed at large
motion of electrons

kc,2’)] (1)

(2)

p and the ionization

(3)

(the linear regime),

or ~(~) = ~/If I for I( I > 1, in saturation regime, and depends only on the sign of ~.
Similarly, the motion of the ions is described by the equation

i32Y(t, s, 2)
~~2

= L&yf[y(t,ct – kc – s) – Y(t,. sz)]. (4)

Here ion frequency
2_ 2NbrP

‘i – As@Yo_z “
(5)

depends on the atomic number of the residual gas A and the rms of the beam o~,g which
may vary around the ring with the variation of the betatron function.

In the linear regime, these equations were considered in the original paper [1]. In this
case, the solution is

y(t, 2) = a(t, z)ei(wb+w’)’lc-iwbt + c.c., (6)

Y(t, s, z) = A(t, s, .z)e-’w’’lc*’w’(S-clcl + c.c.. (7)

Note that for these choice of the phases, both terms in the RHS of Eq. (1) have equal
phases, and the same is true for Eq. (4).

The equations for the amplitudes can be obtained by averaging over the fast oscillations

f9a(t, z) ZK

& = ‘hb–/
d.z’A(t, et – z – kC, z’), (8)

dA(t, s,z)

at
= +;a(t, ct– kc–s). (9)
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For large et >> .z these equations

da(t, z)

&

can be reduced to

J
= +5 z z’dz’a(i, .2’).

4~b O

The solution grows in time only for the upper sign

(lo)

(11)

with the quasi-exponentially growth found in the original paper [1]. This solution cor-
responds to the wave yb(t, z) cx @5((LJJb+ w~)z/c — L@), see Eq. (7), while another solution

Yb(t, ~) ~ c~s((~b – oi)Z/c – Ud) is damped in time. Correspondingly, the spectrum of the
BPM signal

v(t) CX ~ ti(t – kC – nsb/c)y(t, nsb) (12)
n,k

consists of the betatron side-bands at frequencies w = lWT; wb, 1 = O, 1.. with the envelope
proportional to

(13)

The envelope is centered at the ion frequency with the lower side-bands having amplitudes
larger than that of the upper side-bands and growing in time.t

In the nonlinear regime, the RHS in the Eqs. (1) and (4) depends on the function ~(f).
We can expect that the variation of the argument ~ in time is similar to variation of the
RHS in the linear regime, that is proportional to eitwb*w’jZ/C-i’”bfin the equation for y(t, z)
and ~–~WbS/C~~Wi(~–S/C) in the equation for Y(t, s, z), see Eq. (7). In the linear regime, the

main harmonics in the RHS of Eq. (1) and Eq. (4) have frequency equal to the betatron
or ion frequencies, correspondingly. In the strongly nonlinear regime, the spectrum of the
RHS is a spectrum of a step-function which changes sign with the periods of betatron or ion
oscillations. The spectrum of ~(f) in Eq. (1) and Eq. (4)) contains in this case harmonics
of @ and wi correspondingly. The amplitudes of the harmonics roll off slowly as 1/n for the

n-th harmonic. In the nonlinear regime, the ions motion is a superposition of ion frequency
harmonics. The amplitudes of harmonics don’t grow in time but, without the feedback
system, their number does. The RHS of Eq. (1) has always a harmonic oscillating with
the betatron frequency. As the result, the amplitude of the bunch centroid motion linearly
increases in tilme.

Ks:nbntpy t
/i(nb) & g ~. (14)

T

The linear growth described by Eq. (14) replaces the quasi-exponential growth of the linear
regime, see Eq. (11), when amplitude is of the order of transverse beam size rms. We can

expect that the spectrum in the nonlinear regime would have envelope centered not only at
ion frequency but also at all frequencies nwi + mwb with integers n and m. The number of
side envelopes increase in time and spectrum become flatter.

t* This result was obtained before by G. Stupakov.
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3 Model for simulations

To simulate the instability we use a simplified model describing each bunch in a train of nb
bunches as a single macroparticle which goes around the ring in steps equal to sb. At each

step in time, all bunches, first of all, update their coordinates by rotation by the angle wbrb
in the phase plane of dimensionless coordinate yb = y/ay, y: = y’/y~. Here yj = aV/@V is
natural divergence of the beam, and ~Y = c/wb. In the same way, the coordinates of the ion
centroids ~ = Y/oY is changed to ~ + Yi’, where Yi’ = (dY/di)7_b, and ~’ remains at this

step unchanged. Then all bunches get a kick from each group of ions at the new location of
individual bunches

~; = Y; – ‘s;~gf(yb – ~) (15)

where ~(x) =x if Iz( < 1 or j’(x) = x/lxl if Izl >1.

Similarly, each group of ions gets a kick

Then, each bunch generates an ion macroparticle with the offset equal to the offset of a bunch,

all ions are killed at the location of the ring just left by the last bunch in the train, and the

process repeats again. At each step, there are nb macroparticle representing bunch centroids
and, at maximum, there is the same number of macroparticle in each of nb locations around
the ring representing ions. To model variation of the rms beam size around the ring, the ion
frequencies and the kicks to the bunches are periodically modulated with the period equal to

l/12-th of the circumference of the ring (periodicity of the ALS lattice). The feedback was
modeled as a single additional kick for each bunch per turn with the amplitude proportional

to the offset of the same bunch calculated at the location shifted upstream by the betatron
phase 7r/2

V;(s) = Y\(3) + gyb(s – T/3y/2). (17)

The gain g defines amplitude damping time Td = 2TT/g. Random kick uniformly distributed

within the range +a ~~ was added to the RHS of Eq. (17) to simulate noise.
The amplitudes of bunches in the train were plotted giving the snap-shot of the beam

profile. Offsets of all bunches were stored at a given location and then FFT was used to
produce the snap-shot of the beam spectrum.

Most of the simulations were carried out for the ALS-like ring with the revolution period

TT = n~rb, n, = 328, rb = 2 ns, for the bunch train of nb = 50 bunches, and He gas (A = 4).
The bunch parameters were: Nb = 4 x 109, 0. = 165p, and OY= 27p. The betatron tune
was WY= 8.18, and the ion frequency with these parameters was 50.8 MHz. The pressure
was increased to 2pTorr and the damping time of the feedback system to rd = 0.1 ms to
speed up simulations. Initially there were no ions in the ring, and initial conditions were

yb = y~ = O for all but the first bunch, for which initial offset of yb = 1.0 x 10-4 (in units of
OY) and y; = O were taken. Results for different amplitude of the noise a~~ and modulation
Awi/tii are described below.
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4 Results of the simulations

Fig. 1 shows growth of the amplitude of the last bunch in the train with number of turns.

Dependence is shown in logarithmic and natural scales. In the left hand side, results are
shown with the feedback system turned down (1/~~ = O), without noise (amplitude of the
noise a.. = O) and with the amplitude of modulation of ion frequencies mod = Atii/wi = O
or mod = 0.5. Initially, result clearly corresponds to the quasi-exponential growth of the
linear regime with the parameter tc= 0.41ps in accordance with Eq. (11. Later, the growth

of the dimensionless amplitude is only linear with time and in agreement with Eq. (17),

which gives the rate dA/dn = 0.05.

Results with the feedback turned on (~~ = 0.1 ms) are shown in the right hand side of Fig.
1. After initial growth, the amplitude of the last bunch oscillates around some steady level.
It is interesting that the steady level is lower although the initial growth is faster for the
higher noise level. This is, probably, because the effect of the noise is two-fold: noise excites
bunch oscillations but at the same time decohere oscillations of different bunches preventing
fast growth of the collective ion instability. Effect of the ion frequency modulation in the
saturation is small, see two curves without modulation and with the amplitude of modulation
mod = 0.5.

Results on the beam profile are shown in Fig. 2 and Fig. 3. Initially, the amplitude of
a bunch grows according to the linear theory and much faster for the bunches in the tail of
the train then in the head. At a given moment, we look for a bunch which is the first in
the train (starting from the head) to have a given amplitude, A = 1. In the beginning, for
small initial amplitude y(0) taken for simulations, there are no such bunches at all. After

several hundred turns such a bunch can be found in the tail of the train. The bunch number
with A = 1 then decreases because bunches closer to the head of the train reach the given
level of excitation. Later, however, the feedback takes over and suppresses oscillations of
the bunches in the head of the train to zero amplitudes. As a result, the growth rate and
the amplitudes of the following bunches decrease and the bunch number with the amplitude
A = 1 increases in time. Oscillations with large amplitudes retain only in the very tail of

the train and, eventually, all oscillations are damped out.
If we now, additionally to the feedback, turn on the noise, the beam profile goes to a

steady-state, see Fig. 3. Without the instability, the equilibrium amplitude of a bunch in
units of o would be

For the parameters used in
corresponds to the nonlinear

Am = 4== ~m. (18)

simulations, T. = 0.656ps and Td = 0.1 ms, this amplitude
regime Am > 1 for the amplitude of the noise an, > 0.2 If the

amplitude is smaller than that, the head of the train oscillates in the linear regime, and the
transition to the nonlinear regime takes place somewhere closer to the train tail.

With the instability, the beam profile oscillates around almost triangular shape with am-
plitudes larger in the tail of the train. This beam profile was observed experimentally [5].

The steady-state amplitudes depend on the feedback and are smaller for smaller rd. Compar-
ison of the beam profile with different level of the noise shows that the maximum excitation
of the beam is not monotonic function of the amplitude of the noise a~~ and may be larger for
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smaller noise alt bough it goes down again at larger a~~. Possible explanation is mentioned
above.

The ion frequency modulation reduces the rate of the instability [3]. Effect is quite
noticeable in the linear regime, but affects less the steady state amplitudes which are mostly

given by the relation between the feedback and the noise.

The beam spectrum at small number of turns has all features of the linear regime: enve-
lope is centered at the ion frequency, ~;/~r = 33.3, see Fig. 4, and the upper side-bands have
lower amplitudes then lower side-bands. On the longer time scale, the spectrum changes:
more harmonics with frequencies fi + nfb appear and the ion frequency decreases due to the
increase of the amplitudes of ion. In the extreme nonlinear case, ions oscillate in a potential
well U = k; [Yl and have frequencies depending on the amplitudes A = rnax(yi),

(19)

where Wi is ion frequency in the linear regime. In the nonlinear regime, where the interaction

between ions and bunches depend mostly on the sign of the relative position of the bunch
and ion centroid, there is no reason to expect that the spectrum is centered around the ion
frequency which is typical for the dipole signal of the linear regime. It should be noted, that
for relatively low noise level, the head of the train can have small amplitudes corresponding
to the linear regime while the tail of the train at the same time may be in the nonlinear
regime.

The beam spectrum in the nonlinear regime with feedback and noise initially is much
wider than that in the linear regime, Fig. 5, but with time only relatively few harmonics
with low frequencies survive.

Calculations with the train of 100 bunches lead to similar results scaled correspondingly
with the number of bunches.

5 Conclusion

Ion-induced fast transverse instability is constrained by nonlinear effects. Nonlinear effects

stop quasi-exponential growth of the amplitude and only the linear with time growth re-
mains. The feedback damping suppresses the bunch oscillations first in the head of the
train, effectively reducing the train length and, therefore, the growth rate of the instability.

With the noise, the beam takes the typical triangular shape with the profile determined by
relation between noise and the feedback. The spectrum of the beam become wider and flat-
ter comparing to the spectrum predicted by the linear theory. Details of the spectrum again
depend on the noise and feedback. This may explain unstable character of the spectrum in
the experiments.
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