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DUALITY IN SUPERSYMMETRIC YANG-MILLS THEORY 

MICHAEL E. PESKIN 
Stanford Linear Accelerator Center, Stanford University 

Stanford, CA 94309, USA 

These lectures provide an introduction to the behavior of strongly-coupled su- 

persymmetric gauge theories. After a discussion of the effective Lagrangian in 

nonsupersymmetric and supersymmetric field theories, I analyze the qualitative 

behavior of the simplest illustrative models. These include supersymmetric QCD 

for Nf < NC, in which the superpotential is generated nonperturbatively, N = 2 

SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturba- 
tive behavior of the effective coupling is described geometrically, and supersymmet- 

ric QCD for Nf large, in which the theory illustrates a non-Abelian generalization 

of electric-magnetic duality. 

1 Introduction 

‘Despite the recent dramatic progress in string theory, our understanding of 
string phenomena is still grounded in our understanding of quantum field the- 
ory. Though string theory has magical properties that might make ordinary 
local quantum field theory feel drab and envious, field theory often allows a 
tactile understanding of issues that string theory still leaves mysterious. So it 
is useful to look for field theory realizations of the phenomena of string theory, 
in order to find a more complete understanding of these phenomena. 

In fact, much of the impetus for the recent developments in string the- 
ory has come from new discoveries in field theory. For the past several years, 
Seiberg has led an effort to exploit the special simplifications of supersym- 
metric field theory to discover the behavior of these theories in the region of 
strong coupling. His investigations led to many wonderful realizations about 
these theories. In particular, he discovered that many cases have remarkable 
nontrivial dual descriptions. 

In addition, however one considers the relative role of field theory and 

string theory, it is certainly true that physics at distances well below the Planck 
scale is described by a local quantum field theory. If, as phenomenological stud- 
ies suggest, this field theory is approximately supersymmetric, then the basic 
building blocks for any theory of elementary particle physics are supersym- 
metric field theories, and, most probably, supersymmetric Yang-Mills theories. 

Any special properties of these systems could well be reflected directly in the 
physics of elementary particles. 

?- - Thus, we have three reasons to explore the physics of supersymmetric 
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Yang-Mills theory, for its relevance to the mathematical physics of fields, for 
its relevance to the mathematical physics of strings, and for its own direct 
application to theories of Nature. But the best reason to explore this subject 
is that it justifies itself through its beauty and richness. In these lectures, I will 
provide an introduction to the physics of supersymmetric Yang-Mills theory, 
and I will try to capture at least a bit of the underlying beauty. 

These lectures will analyze the physics of supersymmetric Yang-Mills theo- 
ries through the analysis of effective Lagrangians constructed to describe their 
low-energy dynamics. In Section 2, I will discuss the general idea of an effective 
Lagrangian description of a strongly-coupled quantum field theory. In Section 
3, I will discuss the special properties of supersymmetric effective Lagrangians 
and, in the process, introduce the most important tools that we will use in 
our study. In Section 4, I will give a first illustration of these tools by describ- 
ing the Affleck-Dine-Seiberg picture’ of the dynamics in the supersymmetric 
generalization of &CD. 

In Section 5, I will present the Seiberg-Witten solutionsI of the SU(2) 
Yang-Mills theory with N = 2 supersymmetry. In this solution, magnetic 
monopoles which appear as solitons in the weak-coupling analysis of the the- 
ory play a crucial dynamical role at strong coupling. The dynamics of this 
theory illustrates a role reversal of electrically and magnetically charged fields 
which illustrates electric-magnetic duality in a quite unusual context. This 
analysis, which showed how solitons could take on the dynamical properties 
of quantum particles, has become an important touchstone in many aspects 
of field theory and string theory duality, and in mathematical studies which 
make use of concepts of quantum field theory. In Section 6, I will present some 
generalizations of the Seiberg-Witten theory which illustrate additional novel 
effects that may be found in these models. 

In Section 7, I will return to supersymmetric QCD and consider this theory 
for the case of many quark and squark flavors. In this case, Seibere has given 
evidence for a new type of dual description, which he calls ‘non-Abelian electric- 
magnetic duality’. I will explain this duality and its relation to new nontrivial 
renormalization group fixed points in four dimensions. Finally, in Section 8, I 
will discuss some generalizations of non-Abelian duality and the connection of 
this idea to the Abelian electric-magnetic duality of the Seiberg-Witten model. 

2 General Principles 

As I have noted in the introduction, Yang-Mills theories are the basic building- 
blocks for models of the fundamental interactions. Our current understanding 

. 7 -of the strong, weak, and electromagnetic interactions rests on our knowledge of 
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how the specific Yang-Mills theories which appear in Nature behave. In fact, 
among the most difficult steps in the creation of the present ‘standard model’ 
of particle physics was the realization that Yang-Mills theory can reproduce 
the observed qualitative features of the major forces of Nature. 

In trying to create theories of Nature at shorter distances, we can try to use 

again the qualitative features that we have already found in Yang-Mills theory 
or we can discover new ways in which these theories can behave. The most 
basic information we can give about the qualitative behavior of a quantum 
field theory is the manner in which its symmetries are realized in the vacuum 
state. So the general question that we will be interested in is the following: 
Given a Yang-Mills theory with gauge group G, and global symmetry G, how 
are G, and G realized in the vacuum state of the theory? 

2.1 A familiar example 

In this section, I will give a specific example of an answer to this question and 
a survey of the possible choices for this qualitative behavior. The example I 

‘would like to consider is an SU(3) gauge theory with three flavors of massless 
fermions. The Lagrangian of the theory is 

C = --a (F$)2+i&iPqi +Tj~i@q~, 

for f = 1,2,3. The gauge symmetry is G, = SU(3). At the classical level, the 
global symmetry is U(3) x U(3), p se ara e t g eneral unitary transformations on 

qi and &. However, the U(1) transformation 

9L -+ eia9L QR - emzaQR (2) 

is spoiled by the anomaly, so that the global symmetry of the quantum theory 

is G = SU(3) x SU(3) x U(1). 
This example is, of course, &CD, the correct theory of the strong inter- 

actions. I have only made the idealization of ignoring the masses of the light 
quarks U, d, and s. For this case, there is an enormous amount of evidence 
from experiment, theoretical considerations, and simulations which leads to a 
definite picture of the realization of G, and G. For G,, we observe experimen- 
tally the permanent confinement of quarks in to color-singlet bound states. 

This property is also seen in studies of the strong-coupling limit of QCD on 
a lattice5, and in lattice simulations of QCD in the region of intermediate 
coupling.6 The theory is asymptotically free at short distances, and the lattice 
results show that there is no barrier to the coupling becoming strong at large 

. -distances. c 

4 



For G, the SU(3) x U(1) subg rou p is observed as a classification symmetry 
of hadrons; SU(3) g ives the flavor quantum numbers and the U(1) charge is 
baryon number. The remaining generators of G must be broken in some way. 

In fact, it makes sense intuitively that at strong coupling quarks and antiquarks 
should bind into pairs, and that the vacuum would be filled by a condensate 
of these pairs. This intuition can be supported by explicit calculations in 
various approximation schemes ? To connect this intuition with experimental 
observations, we have to take a few further steps. 

A quark-antiquark pair condensate is characterized by a vacuum expec- 

tation value of a scalar color singlet quark bilinear ?&c&. The simplest form 
that this expectation value could take is 

( > &I = P&f’ . (3) 

Since separate SU(3) rotations of & and C& do not leave this form invariant, 
(3) signals the spontaneous breaking of G, in the pattern 

SU(3) x SU(3) x U(1) --+ SU(3) x U(1) . (4) 

Eight global symmetries are broken, and so eight Goldstone bosons must ap- 
pear. These belong to the adjoint representation of the unbroken SU(3). Phe- 
nomenologically, these bosons can be identified with the eight exceptionally 
light pseudoscalar mesons R, Ii’, rir, 17. 

In fact, we now have enough information to build a quantitative theory of 
the couplings of the pseudoscalar mesons. An SU(3) rotation of the qi or C& 
separately converts the vacuum expectation value (3) into 

( > q{qL’ = AUff’ , 

where U is an SU(3) matrix. Thus, the model has a manifold of vacuum 
states which is isomorphic to the group SU(3). The low energy degrees of 
freedom of the theory should correspond to slow point-to-point changes in the 
vacuum orientation. We can parametrize these by a field U(x) which gives the 

local vacuum orientation at each point. The U(1) symmetry corresponding to 
baryon number leaves U(x) invariant. An SU(3) x SU(3) transformation acts 

on U(x) by 

U(x) + ~~fJ(+b , (6) 

where AL, AR are independent 3 x 3 unitary matrices. 

The dynamics of the model should be described by a Lagrangian written 
. ? -in terms of the variables U(x) which is invariant to the full G symmetry. To 
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construct the possible terms in this Lagrangian, we can consider the terms with 
each possible number of derivatives. There are no terms without derivatives, 
since any G-invariant can contain U(x) only in the combination UtU = 1. 
There is a unique term with two derivatives, and additional possible terms 
with higher derivatives: 

,C = fz tr [d,U+PU] + K:tr [d,U+d’“Ud,U+d”U] + ... . (7) 

Since there are no nonderivative terms, the eight degrees of freedom in U(x) 

are massless, as required by Goldstone’s theorem. At sufficiently low energies, 
the interactions of these eight fields should be well described by the term 
with two derivatives. The corrections due to four- and higher-derivative terms 
are proportional to powers of k2/M2, where M is an intrinsic mass scale of 
the theory. Thus, we find definite predictions for the low-energy scattering 
amplitudes of the mesons, in terms of a single parameter fir. 

In principle, the Lagrangian (7) could be derived starting from the QCD 
Lagrangian (1) by integrating out the high-momentum degrees of freedom. 

.However, this would be a very difficult analysis that would need essential in- 
formation about the strong-coupling region of the theory. On the other hand, 
we know in advance that the final answer must have the form (7), since this 
is the most general Lagrangian depending on U(x) which has the symmetries 
of the original problem. When combined with terms representing the weak G 
symmetry breaking due to nonzero quark masses, the Lagrangian (7) in fact 
does a good job of representing the low-energy interactions of the pseudoscalar 
mesons.s~g~lo 

For &CD, then, all of the pieces of the story fit together neatly. Basic the- 
oretical considerations, the results of numerical simulations, and experimental 
observations all reinforce this qualitative picture of the physics of the QCD 
Lagrangian. But what is the situation for other possible Yang-Mills theories? 
Need there be confinement of the gauge charges? Could we find another pat- 
tern of global symmetry breaking? Does the low-energy spectrum consist only 
of Goldstone bosons, or can it contain additional bosons and fermions? 

The example of QCD demonstrates that, once one has a definite qualitative 
picture of the dynamics in a Yang-Mills theory, much more can be learned by 
writing the effective Lagrangian which contains the degrees of freedom relevant 
at low energies and gives the most general form of their interaction consistent 
with the symmetries of the problem. But, in nonsupersymmetric gauge theo- 
ries, there are very few methods known to constrain the qualitative pattern of 
symmetry-breaking. 

This is a place that supersymmetry can add powerfully to our technol- 
. c pgy. We will see that, in the case of supersymmetric Yang-Mills theory, the 
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effective Lagrangian obeys strong constraints which can test the consistency 
of different schemes of global symmetry breaking. In these lectures, the con- 
struction of effective Lagrangians will be one of our major tools in working out 
the qualitative behavior of a variety of supersymmetric theories. 

2.2 Phases of gauge theories 

Before going on to supersymmetric theories, I must review one more set of in- 
sights gained from nonsupersymmetric gauge theories, which gives the possible 
patterns in which the gauge symmetry can be realized. 

The original gauge symmetry G, could be completely spontaneously bro- 
ken. Alternatively, the vector bosons could mediate long-ranged interactions. 
These might give rise either to potentials associated with vector boson ex- 
change or to confinement of the gauge charge. It is common to characterize 
these various types of behavior as possible phases in which the gauge symmetry 
can be realized: 

l Higgs phase: spontaneous breaking of G,, all vector bosons obtain mass. 

l Coulomb phase: G, vector bosons remain massless and mediate l/r in- 
teractions. 

l Wilson phase: G, color sources are permanently bound into G, singlets. 

It is possible to have intermediate situations, for example, a gauge theory 
spontaneously broken from G, to a subgroup H, which is then confined. In 
such situations, I will describe the phase by the behavior of the subgroup 
that survives to the lowest energy. I should also note that the presence of a 
Coulomb phase is not unique to electrodynamics. A Yang-Mills theory with 
sufficiently many fermions that it is no longer asymptotically free gives a long- 
ranged potential between color charges of the form l/r times a coefficient which 
decreases slowly as the logarithm of the separation. 

The relation of these phases is especially well understood for the Abelian 
case G, = U(1). There, the Coulomb phase can contain both electric and 
magnetic charges, with dual coupling strengths. A vacuum expectation value 
for an electrically charged field takes us to the Higgs phase. This phase has 
solitons which have the form of magnetic flux tubes. Dually, the appearance 

of a vacuum expectation value for a magnetically charged field gives a phase 
with electric flux tubes which permanently confine electric charge.i1112 This is 
a Wilson phase. In Abelian lattice gauge theories, one can make this duality 
manifest.13 Certain of these theories show all three phases, with two second- 
order phase transitions as a function of the coupling strength.141i5 Such distinct 

phases can also arise in non-Abelian gauge theories. 



On the other hand, the relation of the Higgs and confinement phases in 
the non-Abelian case is often more subtle. In many examples, there is no 
invariant distinction between the Higgs and confinement phases and one can, 

as a matter of principle, move continuously from one to the other. Fradkin 
and Shenker made this possibility concrete by exhibiting lattice gauge theory 
models in which it was possible to prove that these phases were continuous 
connected.i6 

Here is an interesting illustrative example?7 Consider an SU(2) gauge 

theory like the standard electroweak theory, with a Higgs scalar doublet 4, an 
SU(2) singlet right-handed fermion eR, and a left-handed fermion doublet L = 
(VL, eL>. In the realization of the SU(2) gauge symmetry which is standard in 
electroweak theory, the electron obtains a mass through the interaction 

L, = XL. C$eR + h.c. (8) 

The scalar 4 receives the vacuum expectation value 

1 0 
(4) = Jz v 1 

0 

which breaks the SU(2) gauge symmetry completely, giving mass to all three 
vector bosons. Inserting (9) into (8), we find a mass for the electron 

(10) 

while VL remains massless. 
Now consider what would happen if the theory were realized with SU(2) 

color confinement. Again, there are no massless gauge bosons. The fermions 
and the Higgs bosons would bind into the SU(2) singlet combinations 

EL =d+.L NL = &b&Lb eR . (11) 

The coupling (8) th en takes the form of a mass term for the color-singlet 
combinations EL and eR, 

L, = m??LeR + h.c. (12) 

In this way, EL and eR pair and become massive, while NL remains massless. 
In this example, the qualitative form of the spectrum is the same in the 

two cases, and in fact there is no gauge-invariant expectation value that distin- 

. c -guishes them. Of course, the two situations are quantitatively distinguishable. 
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For example, because the EL is composite, its pair-production would be sup- 
pressed by a form factor which is not observed in high-energy experiments. 
Thus, we know experimentally that the electroweak interactions are realized 
in a Higgs phase and not a Wilson phase. However, this example indicates the 
possibility that, by adjusting some parameters of a gauge theory, we can move 
continuously from one type of phase to the other. Such transitions will occur 
frequently in the examples that I will discuss later. By trying to visualize how 
these transformations occur, one can acquire the flexibility of intuition needed 
to understand the global features of these models. 

3 Supersymmetric Effective Lagrangians 

In the previous section, I introduced the general question of the realization 
of symmetry in a Yang-Mills theory. I discussed the utility of constructing 
an effective Lagrangian as a way of analyzing the qualitative features of the 
model in the regime of strong coupling. So far, all of my remarks apply equally 
well to conventional and supersymmetric quantum field theory. In this section, 
I would like to discuss the additional restrictions and tools for analysis that 
appear in the supersymmetric case. 

3.1 The general supersymmetric Lagrangian 

In these lectures, I will only discuss models with global supersymmetry. I will 
be concerned with models that, at the fundamental level, are renormalizable 
gauge theories. However, when we describe these models by writing effective 
Lagrangians, we will often be interested in models which are not renormal- 
izable and may contain no gauge interactions. For the nonsupersymmetric 
case, (7) provides an example. Thus, it is best to begin by writing down the 
most general form of a supersymmetric Lagrangian and understanding what 
additional restrictions supersymmetry implies. 

The basic ingredients for the construction of supersymmetric field theories 

are chiral superfields @, antichiral superfields at’, and vector superfields V”. 

For simplicity, I will represent with vector fields only the subgroup of the gauge 
group H, which is realized manifestly. Then the V” belong to the adjoint 

representation of H,. The @ belong to some representation r of H,; call 
the generators of H, in this representation ta. Methods for the construction 
of Lagrangians for these fields are described in the lectures of LykkenJ8 The 

. c -most general Lagrangian for the @’ and V/” with at most two derivatives takes 
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the form 

L = 
J 

d48 K((a+, e”“Q) + ( IJ 2 d20 T(Q) W*“W,, + h.c. 

+ J d2B W(Q) + h.c. (13) 
The first term of (13) is a nonlinear sigma model for the fields a”, that is, a 
nonlinear model in which the bosonic components of Cp” may be thought of as 
coordinates on a manifold. This is a complex manifold with metric derived 
from the Kahler potential li(@t, a). Thus, the terms involving the bosonic 
components of Cp only, with two derivatives, are 

L = g..d Q+idW + “3 P . . . (14) 

where 
d2K 

gij = a@+idQj . (15) 

The second term in (13) is the kinetic term for the gauge fields. The 
superfield W”” contains as its components the gaugino fields and the gauge 
field strengths. The coefficient of this term should be proportional to (l/g2). 
More generally, r is the natural combination of the gauge coupling and the 0 
parameter, 

r= (&+i$) . (16) 

In an effective Lagrangian, r represents a large-distance coupling, which differs 
from the short-distance coupling by some renormalization effects. Since these 
renormalizations can depend on the nature of the vacuum state, r can depend 
on the values of chiral superfields that indicate which vacuum has been chosen. 
If the gauge group H, is not simple, r should be generalized to a matrix rab. 

The last terms in (13) contain the superpotential W(Q). This term leads to 

the nonderivative interactions of the chiral superfields. An important property 
of the superpotential is its nonrenormalization: In any order of perturbation 
theory, the superpotential can be modified only by field resealings. In partic- 
ular, if the superpotential is zero in the underlying theory at short distances, 
a superpotential can be generated in the effective Lagrangian only by nonper- 
turbative effects?’ 

In the Lagrangian (13), the Kahler potential I< can be a general real-valued 
function of @ and Qt. However, the coefficient functions which appear under 
chiral fermion integrals, r(Q) and W(Q), must be holomorphic functions of the 

. c -chiral fields. If these functions carry any dependence on at, the Lagrangian 
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will not be supersymmetric. This restriction is apparently straightforward, but 
it will turn out to be a very powerful constraint on the effective Lagrangian. 

I should note an important subtlety which is contained in this statement. 

The transition from a fundamental Lagrangian to an effective Lagrangian in- 
volves integrating out high-momentum degrees of freedom. Alternatively, we 
might just integrate out all of the degrees of freedom and calculate the Green’s 
functions of the original theory. The generating functional of Green’s func- 
tions is the e$ective action I?, which is often interpreted as a sort of effective 
Lagrangian. However, I typically does not have the form of a supersymmetric 
Lagrangian with holomorphic coefficients. 

An important example arises in the renormalization of gauge couplings. 
Let g2 be the short-distance coupling defined at a large scale M. Integrating 
out a charged field with vacuum expectation value Q will produce a renormal- 
ized gauge coupling. If we compute this coupling using the one-loop ,B function 

only, 

P(s) = -&Y3 ’ 

‘we find a holomorphic result of the form 

(18) 

However, the result of integrating the two-loop renormalization group equation 
involves loglog(l@[2) d. an is not properly holomorphic. Shifman and Vainshtein 

have explained how to reconcile this result with the supersymmetry of the effec- 
tive action?1l22 Integrating out only high-momentum degrees of freedom leads 
to the result (18). This gives the coefficient of the gauge kinetic term in the 
effective Lagrangian. To emphasize that only high-momentum degrees of free- 
dom are considered, they call this result the ‘Wilsonian effective Lagrangian’. 
If one continues to integrate out degrees of freedom down to zero momentum, 
one finds the additional terms in the effective action which convert the coeffi- 
cient of (F;lv)2 to the solution of the two-loop renormalization group equation. 
In these lectures, I will typically be carrying out manipulations at the level of 
the Wilsonian effective action, and so the one-loop p functions will be not only 

sufficient but exact. 

3.2 Conditions for the vacuum state 

Once we have written a supersymmetric effective Lagrangian in the form (13), 

we can try to find the vacuum state of the theory. In supersymmetric theories, 
. c -the energy of any state satisfies (H) 2 0, where equality holds if the state is 
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annihilated by the supersymmetry generators. Thus, if a supersymmetric state 
exists, it will be a vacuum state of zero energy. 

To find the vacuum state of from the effective Lagrangian, we minimize 
the potential energy. The Lagrangian (13) leads to a potential energy of the 
form 

V = F) gijFj + 1 g2(Da)’ 
2 (19) 

where g is the coupling constant defined by (16), gij is the inverse of the metric 
(15), and the Lagrange multiplier fields Fj and Da are given by 

Da = c @+%a@ ) (20) 
i 

where ta represents the gauge group generators on Cp. Fj and D” transform 
nontrivially under supersymmetry, in such a way that the conditions 

(4) # 0 or (Da) # 0 (21) 

signal the breaking of supersymmetry. On the other hand, if supersymmetry 
is exact, the formula (19) gives V = 0. 

The conditions Fj = 0 and D” = 0 are called, respectively, ‘F-flatness’ 
and ‘D-flatness’. Typically, these conditions can be satisfied simultaneously, 
leading to a supersymmetric vacuum state. For example, if W is a polynomial 
in unconstrained fields @, the conditions 

dW 
------=(I 
d@i 

i= l,...,n (22) 

are n polynomial equations in n unknowns, to be solved over the complex 
domain. A solution will exist unless we are in an exceptional case. One way to 
arrange such an exceptional case is to choose W in such a way that, for some 
particular value of i, @ does not appear in (22). Then some remaining Qi is 
doubly constrained. This is how the O’Raifeartaigh model of supersymmetry 
breaking worksz3 

The conditions Fj = 0 are holomorphic in fields. The D-flatness condi- 
tions are not holomorphic, but the solutions to Da = 0 can be parametrized 
holomorphically. The reason for this is that the fundamental gauge symmetry 
of a supersymmetric gauge theory is 

c - 
i0.t @--+e CD 

12 

(23) 



where cr is a chiral superfield. The bosonic part of (Y is thus a complex pa- 
rameter. The F-flatness conditions are invariant under this complex extension 
of the gauge group. The D-flatness condition may be thought of as a gauge- 
fixing term which breaks this complex gauge symmetry down to the actual 
gauge group G,.z4 That is, fixing the gauge symmetry G, and imposing of the 
conditions D” = 0 is equivalent to fixing the complex extension of G,. Then 
the solution of the Da = 0 conditions are described by gauge-invariant combi- 
nations of holomorphic fields. Luty and Taylo?4 have shown, further, that it 
is possible to parametrize the space of solutions of the D-flatness conditions 
simply by gauge-invariant polynomials. We will see examples in Section 4 in 
which both descriptions of the D-flat configurations, that in terms of expec- 
tion values of the fundamental fields, and that in terms of the gauge-invariant 
polynomials, are useful. 

3.3 Consequences of holomorphicity 

The holomorphic structures involving the coupling constant and the super- 
.potential have some additional consequences that I will make use of in my 
analysis. Let me discuss three of these points here. 

First, the description of supersymmetric Lagrangians in superspace natu- 

rally suggests that the complex rotation of the fermionic coordinate P should 
be a symmetry, 

e -+ e-IQ0 . (24) 

This transformation, called ‘R symmetry’, is realized on the component fields 
as chiral rotations of the fermionic fields of the model. If we denote the 
fermionic components of chiral superfields by 4” and the gaugino fields by 
A”, then the transformation (24) can be written alternatively as 

$” + e--za$z ,Aa +. eiaXa . (25) 

R-symmetry may be broken if the superpotential does not transform cor- 
rectly. Since the term in the Lagrangian following from the superpotential 
is 

LW = J d2e W = (coefficient of 82 in W) , (26) 

the superpotential should have charge 2 under R, 

W -+ e+2iaW . (27) 

If the fundamental theory has R symmetry, the effective Lagrangian should 
respect this, and so the superpotential of the effective Lagrangian should have 

+ -R-charge equal to 2. 
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It often happens that the ‘canonical’ R symmetry just described is anoma- 
lous. In that case, it is often possible to form a non-anomalous U( 1) symmetry 
by combining the canonical R symmetry with some global U(1) transforma- 
tion that acts on chiral multiplets. If the anomaly-free R transformation is 
to be a symmetry, the superpotential must have charge 2 under this modified 
transformation. In the following sections, when I apply R symmetry, I will 
state explicitly whether I am discussing the canonical or the anomaly-free R 

transformation. 
The second of these consequences concerns the symmetry-breaking dy- 

namics of gauginos. Because the gauginos of supersymmmetric Yang-Mills 
theories are massless, strongly interacting fermions, it will be interesting to 
ask whether these particles undergo pair condensation like the quarks in &CD. 
Holomorphicity gives us a useful tool to examine this question. 

The gaugino condensate analogous to (3) is 

(x”“A;) . (28) 

The fermion bilinear in (28) is also the scalar component of the superfield 
WLIQW~. This means that we can extract the expectation value of this operator 
by differentiating the Lagrangian (13) with respect to F,, the F component 
of r. The fundamental definition of the operator is given by differentiating 
with respect the F term of the short-distance coupling constant rc = 4&/g2. 
However, according to (18), the effective gauge coupling 7-e~ is related to the 
short-distance coupling r by an additive term, so we could equally well simply 
differentiate with respect to the F terms of rep. In any event, we have 

(AaaAz) = 167~ &log Z, where Z= eiSL. 
T J 

If we integrate out the gauge fields and describe the theory using an effective 
Lagrangian with chiral fields only, we can still recover the value of the gaugino 
condensate through the dependence of the effective superpotential We, on 7, 

(XX) = 16ri $ J d20 Weff(~, 4) = 16ri Y& We.(T, 4) . (30) 
7 

Finally, it is interesting to think about the relation between the effective 

Lagrangians of related supersymmetric models. An example we will often 
encounter is the relation between a Yang-Mills theory with with (n + 1) matter 
flavors to that with n flavors. We can obtain the second of these theories from 
the first by adding a mass term for the (n + 1)st flavor and then taking this 

. c -mass to be large. 
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The result of this procedure on the effective superpotential is very simple 
to analyze. Typically, if the chiral field an+1 is not yet integrated out, the mass 
operator for this field in the effective Lagrangian will be simply the original 
mass term for this field. Then, if the theory with (n + 1) massless flavors has 
superpotential We,, the superpotential with the mass perturbation will be 

weff(a,> + ma:+1 . 

We can then solve the F-flatness conditions which involve m and use these 
to eliminate the field an+1 from the effective Lagrangian. This procedure 
generates a new holomorphic effective superpotential from the original one. 

I will refer to the relation of these two superpotentials as ‘holomorphic 
decoupling’. If we have the exact form of the effective superpotential for some 
number of flavors n, decoupling allows us to compute the effective superpo- 
tentials explicitly for any smaller number of flavors. Even more remarkably, 
holomorphic decoupling also turns out to be a powerful tool for determining 
the effective superpotentials in model with a larger number of flavors, since it 
provides a stringent consistency condition on any proposed superpotential for 
these models. 

4 Supersymmetric QCD 

As a first example for the application of these methods, I would like to consider 
the supersymmetric generalization of &CD, SU(N,) gauge theory with Nf 
flavors of quark superfields in the fundamental representation of the gauge 
group. At least for the case of a small number of flavors, this theory was 
analyzed many years ago by Veneziano, Taylor, and Yankielowiczz6 and by 
Affleck, Dine, and Seiberg! Naively, one might expect the same behavior found 
in ordinary &CD-chiral symmetry breaking caused by pair condensation of 
the quarks. Instead, we will find many surprises. 

4.1 Lagrangian and symmetries 

Let me first set up some basic notation for this theory. The Nf flavors of quarks 
can be described as Nf left-handed fermions in the (N, + N,) representation 

of the gauge group. These belong to chiral supermultiplets that I will call Qi 
and&i, i= l,... , Nf. Note that the bar refers to a chiral superfield in the N, 
representation, while an antichiral superfield will be denoted by a dagger. I will 
use the symbol Qi to denote both the superfield and its scalar component (with 
the precise meaning hopefully evident from context) and denote the fermionic 

i -components of Qi, pi by $IQ~, $~i. 
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The Lagrangian of supersymmetric QCD is 

i=l >“‘> Nf , with no superpotential. At the classical level, this theory has the 

R symmetry (24). In the quantum theory this symmetry is anomalous, though 
it will still be useful to us, as we will see in a moment. On the other hand, 
the R symmetry can be combined with the anomalous U(1) flavor symmetry 
to form an anomaly free R symmetry. The full global symmetry of the model 
is then 

G = SU(Nj) x SU(Nf) x CUB x UR(1) , (33) 

where the first U(1) factor is proportional to baryon number and the second 
is the anomaly-free R symmetry. I will define the chiral multiplets Qi to have 
UB(~) charge B = +l; the chiral multiplets Bi, whose’fermionic components 
are left-handed antiquarks, will have B = -1. 

If we wish to work with the anomalous R symmetry, we must take into 
.account the effect of the anomaly. To do this, note that the chiral rotation of 
a left-handed fermion field 

* + eta+ (34) 

changes the measure of integration over ti in such a way as to shift the 0 
parameter of the Yang-Mills theory by 

e+e-na (35) 

where n is the coefficient of the anomaly term in the conservation law for the 
corresponding chiral current. (Equivalently, n is the number of zero modes of $J 
in a one-instanton solution of the Yang-Mills equations.) Thus, an anomalous 
chiral symmetry can be combined with a transformation of B or r to give a 
symmetry of the theory. 

A supersymmetric Yang-Mills theory with gauge group G, and chiral su- 
perfields in the representations ri has a one-loop p function of the form (17), 
with 

bo = 3Cz(Gc) - cC(ri) , (36) 

where C,(r)1 = (tat”),. is the quadratic Casimir operator and C(T)~“~ = 
tr,[tatb], and G, denotes the adjoint representation. In the same notation, 
the anomaly coefficient n for fermions in the representation r is given by 

71 = 2C(r) = fn: 
r = NC or rv, of SU(N,) 

c r = adjoint of SU(N,) 
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In the case of supersymmetric &CD, the formula for the p function be- 
comes 

b. = 3N, - Nf . (38) 

If the fundamental coupling constant g2 is defined at the large mass scale M, 
the effective running coupling constant of the theory is given by 

s(Q) = F - 3Nc2; Nf 10,; (39) 

It is convenient to define A to be the scale at which this expression formally 
diverges, 

Abe = Mboe-8a2Jg2 _ Mboe2?rir - (40) 

Note that, in any particular perturbative scheme for defining g2, such as 
MS or DR, there may be a scheme-dependent constant added to the right- 
hand side of (39), which generates an overall constant resealing of A. I will 
ignore these constants, since they can be absorbed by a redefinition of M. 

‘However, to compare exact results for supersymmetric Yang-Mills theory to 
explicit perturbative or instanton calculations, it is necessary to keep track of 
these terms. A careful treatment is given in27. 

4.2 Nf = 0 

Let us begin by considering the pure supersymmetric Yang-Mills theory, the 
case Nf = 0. The Lagrangian of this theory is written in terms of component 
fields as 

ie 
L = ---$ (F;J2 + -$“i@‘+ - F” @=W’ . 

32w2 P (41) 

This Lagrangian looks just like that of ordinary &CD, but with the massless 
quarks replaced by one flavor in the adjoint representation of the gauge group. 
In (41), the gaugino X” is a left-handed field, but this is not an essential 
difference because Xa belongs to a real representation of G, and thus can have 
a gauge-invariant mass term. It is very tempting to conjecture that this theory 
behaves exactly like &CD: The gauge coupling becomes strong and confines 
color, the gauginos condense into the vacuum in pairs and break the chiral 
symmetry?5 

To analyze this theory, we should first understand its global symmetries. 
Because there are no quark flavors, it is not possible to build an anomaly-free 

R symmetry in this case. However, a discrete subgroup of the canonical R 

. c -symmetry is left unbroken. One way to see this is to note that, according to 
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(35), a chiral rotation of the gaugino field becomes a symmetry if we combine 
it with a shift of the 0 parameter 

e -+ e + 2N,cr , 
2Nc 

or T+r+-a. 
2?r (42) 

Since the physics of Yang-Mills theory is periodic in 0 with period 27r, no 
compensation is necessary if cx is a multiple of 2~/2N,. Thus, a ZEN, subgroup 
of the original R symmetry survives as a symmetry of the quantum theory. 

On the other hand, it is often appropriate to think of r as an adjustable 
background superfield. In string theory, r is proportional to the dilaton super- 
field S. If the pure Yang-Mills theory is derived by integrating out fields which 
are massive due to the vacuum expectation value of some chiral superfield a’, 
the effective coupling r will be a function of a. If we take this point of view 
that r may be treated as a background superfield, then the supersymmetric 
Yang-Mills theory should be invariant under the full continuous R-symmetry 
combined with the shift of this superfield given in (42). 

This statement has an interesting consequence. Under our hypothesis, the 
pure supersymmetric Yang-Mills theory has no massless particles. The gluons 
and gluinos combine into massive color-singlet bound states gg, XX, and gX. 
Thus, the low-energy effective Lagrangian of the theory contains only the back- 
ground superfield r. In principle, this Lagrangian should have a superpotential 
which is a function of 7. The requirement that the superpotential should have 
R charge 2 specifies its form uniquely: 

weff = c M3 e2aiTINc , 
(43) 

where c is a constant and I have supplied factors of the large scale M to give 
Wee the correct mass dimension. Given (43), we can use (30) to compute the 
gaugino condensate, 

d 32rr2 
(AA) = 16ai - We, = -- . 

dr NC 
c j,,f3 e2?ri~ JN, 

, 

or, at e = 0 

(XX) = 2g. c j,43 e-8~21Ncg2 
e (45) 

This formula accords with our physical intuition in two ways. First, if a 
gaugino condensate is generated nonperturbatively, the renormalization group 
requires that the size of this condensate should be set by the nonperturbative 

QCD scale A(g”, M) given in (40). Specifically, we must have 

c - (XX) = AA3 , (46) 
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where A is a pure number. Evaluating (40) with bo = 3N,, we can see that 
(45) has precisely this form. 

Second, as I explained below (42), the pure supersymmetric Yang-Mills 

theory should have a &?N, global symmetry, A + eiaX with (Y = 2rm/2N,. 

Under this symmetry, the gaugino bilinear is invariant to this transformation 
for (Y = x or m = N,; thus, an expectation value of this bilinear should break 
the ZzN, symmetry spontaneously to 22. This symmetry-breaking would result 
in N, inequivalent vacuum states. These states appear explicitly in the formula 
(44), since the transformations 0 + 0+2r or r -+ r+ 1 which are invariances of 
the Yang-Mills theory sweep out N, distinct values of the gaugino condensate. 

Thus, it is reasonable that supersymmetric Yang-Mills theory should ac- 

quire a superpotential of the form (43). Still, this line of reasoning is not quite 
satisfactory. Though we have shown that the appearance of the superpoten- 
tial (43) is consistent, we still had to assume that this nonperturbative effect 
was nonvanishing. To justify this assumption, we must examine some further 

examples of supersymmetric gauge theories. 

4.3 The Afleck-Dine-Seiberg superpotential 

Consider next supersymmetric QCD with Nf flavors, for Nf < N,. I have 
presented the non-anomalous global symmetry of this theory in (33). 

We have seen in the previous section that we can also consider the trans- 

formation of the theory under anomalous global symmetries as long as we 
compensate the anomalous transformation laws by an appropriate shift of 0 
or r. Thus, I will analyze this theory by making use of the larger symmetry 

group 
SU(Nf) X SU(Nj) X CUB X uA(1) X uR(1) (47) 

which includes the following two anomalous transformations: 

A : $Q--+~Y~"$Q, and 0-+0+2Nfo 

R : '$Q + eeicr$R , X -+ eCtaX , 

and t? -+ 0 + (2N, - 2Nf)o (48) 

The anomaly-free R symmetry is the combination of these two operations 

which does not require a transformation of 0. Its U(1) charge is 

RAF= R+ 
Nf - Nc 

N.f 
A. 

+ -This symmetry will be important to us at a later stage of our analysis. 
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It is useful to tabulate the transformation properties of the various fields 
under the four U(1) symmetries that we have defined: 

B A R RAF 

Qi $1 +1 0 (N.f - Nc1IN.f 

lCIQi $1 +1 0 -NC/NJ 

a 
(50) 

-1 +1 -1 (Nf - Nc1IN.f 

lCIQi -1 +1 -1 -Nc/Nj 

x 0 0 +1 $1 

There are two additional quantities whose quantum numbers will also be 
important to us. The first is the unique gauge-invariant chiral superfield that 
we can build from Qi and Qii, 

Tii = Q; . Qj (51) 
We might think of T& as a meson superfield; its scalar component is a color- 
singlet combination of scalar quarks. Since Tij transforms as a (Nf , Nf ) under 
the SU(Nf ) x SU(Nf ) global symmetries, it is especially useful to consider 
the determinant of this Nf x Nj matrix, which is invariant under the non- 
Abelian part of G. The second important quantity is the nonperturbative 
scale A, which transforms under the anomalous U(1) symmetries by virtue of 
the transformation of 0. The quantum numbers of these objects are: 

B A R RAF 

det T 0 2N.f 0 2CN.f - Nc) (52) 

Ab” 0 2N.f ‘4Nc - Nr) 0 

It is natural to represent the low-energy dynamics of supersymmetric QCD 
by an effective Lagrangian which is built out of gauge-invariant chiral super- 
fields. This Lagrangian would generalize the structure (7) that we wrote for 
non-supersymmetric &CD. If we build this Lagrangian out of gauge-invariant 
combinations of Qi and Qi, it must be a function of components of Tij 

The superpotential of this effective Lagrangian must be a holomorphic 

function of Tij and r which is invariant to the global symmetry group except 
that it transforms with charge 2 under the R symmetry. There is only one 
possible function that satisfies these requirements, 

c - 
(53) 
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Figure 1: Form of the potential for supersymmetric Yang-Mills theory with Nf < NC. 

This is the Affleck-Dine-Seiberg superpotential.r>26 An alternative method for 
constructing possible superpotentials would be to construct a function of T 
that is invariant to the non-anomalous global symmetry group except that it 
transforms with charge 2 under RAF. Factors of A can then be supplied to 
give the effective superpotential the correct mass dimension 3. This argument 
also gives (53) as the unique superpotential for this theory. 

At first sight, the result (53) 1 oo s very bizarre. Differentiating the formula k 

to construct the F term of Qi, we find 

(54) 

This expression decreases as the expectation value of Qi or Tij becomes large. 
But this is the weak-coupling region where the Kahler potential for Q should 
take the simple canonical form. Thus, the potential (19) derived from the 
effective Lagrangian tends to zero as (T) tends to infinity as shown in Figure 
1. In fact, this potential pushes the theory to a vacuum state at infinity. 

However, some careful thinking shows that this is in fact the correct be- 

havior of the model. Consider the alternative possibility that supersymmetric 
QCD leads to confinement and chiral symmetry breaking, just as in ordinary 
&CD. In that case, we would expect the quarks to condense in pairs as in (3) 
or, in our new notation, 

c - (Icl& ’ GQja> # O . (55) 
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The gaugino bilinear could acquire an expectation value consistently with su- 
persymmetry. But for the quark bilinear, this is not true; &~i . 4~~ is the F 

term of Tij , and so an expectation value for this expression signals supersym- 
metry breaking. Since the vacuum energy of a supersymmetric theory is zero 
only when supersymmetry is unbroken, a &CD-like vacuum with a quark pair 
condensate is thus unstable with respect to any field configuration-no matter 
how bizarre-which can allow supersymmetry to remain manifest. 

Here is a way to find such a configuration: The D-flatness condition of 
supersymmetric QCD is 

Da = Q+t”Q -at”&+ = 0 . (56) 

This condition is satisfied by any set of expectation values with (Qi) = (Qi). 
By choosing gauge and flavor rotations to diagonalize the (Qik), where k is the 
gauge group index, we can write this expectation value in the form 

(Q)i, = 

al 0 0 . . . 
a2 0 

aN,-1 0 

0 aN, 0 ". 1 
( > g, = 0 . (57) 

Note that this solution has the form of a diagonal matrix acted on by two 
U(Nf) flavor matrices, just the amount of information encoded in (Tij). For 

al,..., aN, large, the gauge symmetry is spontaneously broken 

SU(Nc) - SU(N, - Nf) . (58) 

In the process, all fermions and bosons which transform under the residual 
gauge group SU(N,-Nf) obtain mass. If we send the parameters ai to infinity, 
the situation reverts to that of the pure gauge theory, for which we have argued 
that there is a supersymmetric vacuum with gaugino condensation. This is a 
vacuum state with zero energy and is therefore the preferred configuration for 
this theory. 

It is interesting to work out some further details of this picture. For 
simplicity, I will consider the symmetrical configuration al = . . = aN, = v. 

Then, for momenta scales Q > 21, the theory looks like supersymmetric QCD 

with Nf flavors, while for Q < v it look like a pure supersymmetry gauge 
+ -theory with gauge group SU(N, - Nf). 
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We can compute the effective coupling constant in the pure gauge theory 
at low energies by matching to the high-energy coupling constant at the scale 
v. The high-energy behavior, valid for Q > v, is 

$ (Q) = 3Nc2; Nr log $ . (59) 

For Q < v, the p function of the theory is given by 13s = 3(NC - Nf). We 
parametrize the value of the running coupling constant by a scale h,~, 

F(Q)= 2T 
3(Nc - NJ=) log & 

A . eff 
(60) 

We may obtain an expression for A,, by insisting that the running coupling 
constant should change continuously. Thus, we should set the expressions (59) 
and (60) equal at the scale v. This gives 

or 

*;,= (AyfNf))h . 

(61) 

(62) 

Finally, we can make use of the result of the previous section that the pure su- 
persymmetric Yang-Mills theory has gaugino pair condensation (XX) - (hetf)3, 
which is the consequence of an effective superpotential 

w,ff = c . A& . (63) 

Substituting (62) into (63), we find precisely the Affleck-Dine-Seiberg effective 

superpotential (53). 
There is a second way to check the validity of the superpotential (53), by 

holomorphic decoupling. Start with the effective superpotential for Nf flavors, 
and add a mass term for the Nf th flavor. The supersymmetric mass term is 

AW = m&Nf .GNf = mTNfNf . 

Then the superpotential of the massive theory is 

(64) 

+ mTNfNf (65) 
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Now work out the F-flatness conditions for this superpotential. The van- 
ishing of the F-flatness conditions for TNf i (or for Qi) imply that TN~ i = 0 for 

i # Nf. Similarly, Ti:rlvf = 0 for i # Nf. Then T takes the block form 

T= ;; . 
(” > 

(66) 

The F-flatness condition for TN~ ~~ = t is 

- N,cNf (e.$)l’(Nc-Nf’(~)l+l”Nc-Nf’+m~O, (67) 

which implies 

t = (NC ~ Nf m (~)‘;‘Nc-Nf’)‘Nc-Nf”‘Nc-Nf+l’ . (68) 

‘Putting this back into the superpotential, we obtain 

, (69) 

if c = (NC - Nf ), c’ = (NC - NJ + 1). This is precisely the form of the 
Affleck-Dine-Seiberg superpotential for (Nj - 1) flavors. Thus, the various 
effective superpotentials of the family (53) are consistent with one another by 
decoupling. In these decoupling relations, the various nonperturbative scales 
A are related by the formula 

(Abo)effNf -1 = m @“‘)Nf (70) 

It is not difficult to check that this is precisely the relation that is required by 
a renormalization group analysis similar to the derivation of (62), in which we 
match running coupling constants above and below the scale Q = m. 

4.4 Nf = NC - 1 

We have now shown that the Affleck-Dine-Seiberg superpotentials are linked to 
one another by holomorphic decoupling. Then, if this superpotential is known 
explicitly for any particular value of Nj, we can compute its coefficient for all 
values of Nf < N,. Thus, to complete the derivation of these superpotentials, 

. c -we need only find one value of Nf at which we can derive them directly. 
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Affleck, Dine, and Seiberg showed that there is a direct derivation of the 
superpotential for the case Nj = N, - 1. In this case, the expectation values 
for Qi and Gi given in (57) b reak the SU(N,) gauge symmetry completely. 

For large values of the aa, the gauge theory never reaches strong coupling 
and so any terms that appear in the effective Lagrangian must be visible in a 
weak-coupling analysis. On the other hand, because of the nonrenormalization 
theorem, a superpotential cannot be generated in any order of perturbation 
theory. The only gap between these two requirements is the possibility that a 
superpotential may be generated through a systematic instanton calculation. 

The instanton is the leading nonperturbative contribution to gauge theory 

amplitudes which appears in a weak-coupling expansion. Methods for per- 
forming instanton calculations are reviewed in 28. In this article, I will not 
attempt to obtain the correct coefficient of the instanton amplitude but only 
to show that it is nonzero. For this purpose, one can view an instanton as a 
source of chiral fermions. More precisely, if 4 is a fermion matter field in the 
representation r, the instanton creates n = ~C(T) units of 1c, charge. In the 
model at hand, an instanton creates one each of the ‘$Qi and $ai and 2N, of 

‘the X. On the other hand, the supersymmetric gauge theory contains a vertex 
proportional to Q+X”$Qa, which can annihilate a X and a $JQ (or $G) in the 

presence of a vacuum expectation value of Q (or Q). Annihilating all of the 
X’s, we are left with an operator of the form 

AL = F(Q+, ifj+)qi+“qbh (71) 

which can be rewritten as the Hermitian conjugate of the superpotential term 

A,C = J d28W(Q, v) (72) 

The amplitude is proportional to one power of 

Mboe-8xZlga+iB = Ab” ) (73) 

where the dependence on g2 follows from the instanton action and the M 

dependence appears because this factor must be a renormalization group in- 
variant. The dependence of W on Q and Q then follows from the fact that 

W must be an SU(Nf) x SU(Nf) invariant of mass dimension 3. From these 

considerations, we obtain 

w=$&. (74) 

with a nonzero value of c. The exact value of c has been obtained by carrying 
. c put the instanton calculation explicitly, which has been done in a series of 
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papers by Cordeszg Shifman and Vainshtein,so and Finnell and Pouliot?7 Thus, 
the Affleck-Dine-Seiberg superpotential can be carefully justified for this case 
and, by extension, for all cases Nf < N,. 

As a final comment on these models, I would like to note that the poten- 

tial we have found, which pushes the vacuum state to infinity, is actually not 
so inconsistent with the familiar symmetry-breaking pattern of nonsupersym- 
metric &CD. Given the potential in the supersymmetric case, we can break 
supersymmetry explicitly by adding a positive mass term for the scalar quarks 

only, 
AL = -m2 (I&I" + IvI") . (75) 

This term pulls the minimum of the potential back from infinity to some large 
but finite value of (Tij). The minimum occurs for an expectation value 

(zj) = A6ij , (76) 

and so the vacuum of the modified theory spontaneously breaks SU(Nf) x 

SU(Nf) to the diagonal SU(Nf). Th’ is is just the symmetry-breaking pattern 
.of nonsupersymmetric &CD. As m2 increases, the expectation value (T) de- 
creases while (FT) = ($Q . $9) . increases. Thus, it is reasonable that, as m2 

is sent to infinity, the vacuum state we have found goes over smoothly to the 
QCD vacuum with a nonzero quark pair condensatea’ The only thing that is 
still peculiar about this transition is that its starting point, for small m2, is a 
Higgs phase and its endpoint, at large m2, is a confining or Wilson phase. But 
we have already seen that these two situations are not distinguished by any 
gauge-invariant expectation values and that it is possible to make a smooth 
transition between them. We will see additional examples of such transitions 
as we proceed. 

4.5 Nf = NC 

Now that we have understood the behavior of supersymmetric QCD for Nj < 
N,, it is natural to ask what happens for larger values of Nf . I will discuss 
this question in full detail in Section 7. But I would like to give a preview of 
that discussion now by considering the case Nf = N,. 

It is tempting to think of this next case as a smooth extrapolation of the 

cases discussed in this section. However, it cannot be. Most clearly, the formula 

(53) for the Affleck-D’ me-Seiberg superpotential is singular or meaningless at 
Nf = N,. To see the origin of this difficulty, notice from (49) that the canonical 
R symmetry is has no anomaly and from (50) that the elementary fields Q and 

& have R charge zero. Thus, it is impossible to build a superpotential with R 

. c _charge 2 out of these ingredients. 
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There is another new feature in the case Nj = NC. This is the first case 
in which it is possible to build gauge-invariant chiral fields with the quantum 
numbers of baryons. We have two such terms here, 

B = b,...Q& Q;‘...Q;T 

B = E,,...,& Q; -&;f ; (77) 

the lowered indices denote the flavor, as before, and the raised indices denote 
the color. 

I pointed out earlier that the solutions of the D-flatness equations are 
parametrized by gauge-invariant polynomials. Thus, the appearance of new 
gauge-invariants should be accompanied by the appearance of new families of 
the solutions to the D-flatness conditions. In this case, there is a new solution 
of the form 

(Q) = 

i 

a 

a 

0 

0 

a 
a 

(a+) = 0 (78) 

A second solution is obtained by reversing the roles of Q and $ ‘in (78). 
However, this should not be counted as a new solution, since it is a combination 

of the above and a solution with (Q) = (a’). Through the correspondence 
between solutions and gauge-invariant polynomials, this implies that the three 
polynomials T, B, and ?? should not be independent. Indeed, classically, they 
obey the relation 

detT= B??. (79) 

It is very tempting to think of the low-energy dynamics of this theory as 

being described by the fields T, B, and B fluctuating subject to the constraint 
(79). There can be no superpotential generated, and so the composite chiral 

fields sweep out a manifold of supersymmetric vacuum states. 
However, Seiberg has argued that this manifold of vacua is distorted by 

32 nonperturbative effects. In fact, there is no symmetry which prohibits the 

modification of the constraint (79) to 

detT- BB= A2Nc . (80) 

All of the terms in this equation have R = 0 and mass dimension 2N,. In 
+ -addition, (80) gives a different result from that of (79) under holomorphic 

27 



I 
. 

c 

decoupling. To see this, add a mass term for the last flavor by adding to the 
theory the superpotential 

w=mTN,N,. (81) 

Let t = TN~N~, and consider this field to be determined in terms of the other 

fields by the constraint. The F-flatness conditions for B, B, and TN~~ for 
j < Nf are then solved by setting these components equal to zero. This leaves 
T in the form that we have seen in (66), 

T= ;f , 
(” ) 

(82) 

and the constraint (80) now implies det !?. t = AzNc. Inserting the constrained 
value of t into (81), we find 

m A2Nc 
w=---r. 

det T 
(83) 

The renormalization group relation for the effective A parameter (70) implies 
that the numerator of (83) can be replaced by Abe for the effective theory with 
(N, - 1) flavors. This is precisely the Affleck-Dine-Seiberg superpotential. 

Among plausible forms for the constraint among the gauge-invariant ef- 
fective fields, only the version (80) with Seiberg’s quantum modification is 
consistent through decoupling with our results for Nf < N,. Thus, we find a 
space of supersymmetric vacuum states parametrized by T, B, and B obeying 
this constraint. The space of vacuum states resembles the space of solutions 
to the classical D-flatness conditions when the vacuum expectation values of 
these fields are large. However, when the vacuum expectation values become 
small, the space becomes distorted in such a way that it no longer contains the 
point T = B = ?? = 0. I will have more to say about this case, and about the 
cases for Nf > N,, in Section 7. 

The case of supersymmetric QCD with Nf = N, provides a first example of 

a theory with a manifold of vacuum states. Actually, this is a common situation 
in supersymmetric Yang-Mills theories. In any situation for which there is a 

continuous family of solutions to the conditions for unbroken supersymmetry, 
we will find a manifold of degenerate vacuum states with zero energy. This 
manifold will typically be parametrized by the expectation values of chiral 
superfields; thus, it will be a complex Kahler manifold. It is common to call 
this space the ‘moduli space’ of the theory, and I will use that terminology 

from here on. 
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5 The Seiberg-Witten Model 

In the previous examples, the low-energy dyanamics of the gauge theory con- 
tained only chiral multiplets, while all of the gauge charges were either confined 
or spontaneously broken. So it would be good to illustrate that it is also pos- 
sible for the low-energy gauge symmetry to be realized in the Coulomb phase. 
The simplest illustrative model of this type is the celebrated model of Seiberg 
and Witten? 

Consider SU(2) Yang-Mills theory with an extra chiral superfield 4 in the 
adjoint representation of the gauge group. With the superpotential set to zero, 
the Lagrangian of the theory as 

c = J d48 L @i+e?$ - & g2 ‘J d2fk-WaaW, + h.c. (84) 

This model is in fact the pure Yang-Mills theory with N = 2 supersymmetry. 
The two gauginos of the theory are A and $4; I have put a factor l/g2 in 
front of the 4 kinetic energy term to make the symmetry relation of these 
‘two fields more clear. My discussion of this model will be given mainly in 

N = 1 notation, and the conclusions will apply to similar models which are 
only N = 1 supersymmetric. Nevertheless, as I will discuss later, the N = 2 
supersymmetry has interesting consequences that will help us in our analysis. 

5.1 Parametrization of the vacuum states 

The classical potential of the model comes only from the D-term contribution 

T/= $D”)2, where D” = -$ d+t”d . 

The D term is most clearly written by expressing 4 and D as matrices: 4 = 
@t”, D = Data. Then 

D=; [4+,41. (86) 

Thus D = 0 if 4 and #t can be simultaneously diagonalized. Since these are 
SU(2) matrices, this condition implies that there is a gauge rotation such that 

(4”) = abb3 , (87) 

with a a complex number. This expectation value spontaneously breaks SU(2) 

to U(1). Notice that the classical potential equals zero for any value of a. 

Expanding the classical Lagrangian about any of the points (87), one finds 

+ -that all of the the fields charged under the U( 1) receive mass from the 4 vacuum 
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expectation value. The fields that remain massless are the U(1) gauge boson 
A;, the fermions X3 and $, and the complex scalar 43. It is clear that the 

vector and the scalar must remain massless: The vector field is the gauge field 
of an unbroken gauge symmetry, and the scalar field is the fluctuation along 

a manifold of degenerate vacuum states. Together with their superpartners, 
these states fit together into an N = 2 supersymmetry multiplet. 

Since the massless fields of the model are noninteracting at large distances, 

all of the vacuum states (87) belong to the Coulomb phase of the U(1) gauge 
symmetry. And some additional structure is present: Because a non-Abelian 
gauge group is spontaneously broken to U(l), this theory has ‘t Hooft-Polyakov 
magnetic monopoles. 33,34 The N = 2 supersymmetry of the model and the 
flatness of the potential for a implies that these monopoles are regulated by a 
Bogomolny-Prasad-Sommerfield (BPS) inequality.s5>36 The general properties 
of these magnetic monopole solutions are described in Harvey’s lectures at this 
schools7 

Classically, the vacuum states of the theory are related by a U( 1) symmetry 

0 + ezcr4 , $4 -+ eza$4 . (88) 

However, as in supersymmetric &CD, this symmetry is broken by a gauge 
anomaly. Equivalently, the transformation (88) is equivalent to a shift of the 
0 parameter, 

B+B-4a, or 
4 

T~r-iGQ~ (89) 

Since a shift of 0 by 2n is a symmetry of the theory, we could also say that the 
original model is invariant under the discrete symmetry 

q5 -i eiSq3 . (90) 

Though we can reasonably parametrize the vacuum states at weak coupling 
by the expectation value of 4, this is not a useful way to describe these vacua in 
the strong-coupling region, because 4 is not a gauge-invariant quantity. I will 
now propose two different ways to generalize the definition of the parameter a 

introduced above so that it makes sense in all regions in which we would like 
to analyze the theory. First of all, we could characterize the vacuum by the 
vacuum expectation value of the gauge-invariant operator 

u = ((4a)2) (91) 

In the weak-coupling region, u x a2. The chiral symmetry (90) is realized on 

u as a 22 symmetry 

c - u+-u. (92) 
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Another generalization of a involves the particle mass spectrum. At weak 
coupling, in the normalization introduced above, the W bosons acquire mass 
mw = da from the Higgs mechanism, where a = (4”). The magnetic 
monopoles have mass mM = hrfia/g2. The BPS inequality implies that, 

at all values of the coupling, these particle masses satisfy a relation of the form 

m=h laQe+aoQMI (93) 

where Qe QM are the electric and magnetic charges and a and ag are some 
constants. Thus, we can consider the coefficient a in this formula to be the 
gauge-invariant generalization of the vacuum expectation value of 4. The 
coefficient aD should be determined uniquely by the value of a and the effective 
large-distance coupling constant g2 or 7’. 

At weak coupling, aD obeys the relation 

4ai 
aDz7a=r.a. 

g 

However, this cannot be an exact relation in the theory. The effective cou- 
pling r is determined, at least in part, by the renormalization group running 
of the coupling constant in the SU(2) gauge theory from the fundamental 
short-distance scale down to the scale a. But the formula aD = r(a)a is not 
renormalization-group invariant. Seiberg and Witten proposed the formula 

(95) 

This relation is consistent with a nontrivial dependence of r on a. It also 
suggests a duality symmetry 

aHaD, ?- * -I/?- = ‘,-D . (96) 

Some motivation for the formula (95) is given by computing the magnetic 

monopole mass in the weak-coupling limit of the effective U(1) gauge theory. 
In that limit, the monopole mass is given by 

m= d3x $[da/2+$(Z)2) J ( (97) 

Using (95), we can transform the first term using the relation rea = GaD, to 

give 

r - 

m = J ( d3x (A)2 2 I+aD I2 + $T& (d)2) 

= J I d3x -&taD f -& l?i2 F g Jd3xd(aDd) (98) 
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Then. finallv 

- 4a J d2sii. aD6, (99) 

consistent with (93). H owever, we will obtain much stronger tests of the rela- 
tion (95), which also can be made in the strong-coupling region, by examining 
the properties this relation predicts for the B-dependence of the properties of 
magnetic monopoles. 

I have already noted that the vacuum parameter, or ‘modulus’, a, the 
U(1) gauge boson, and the fermionic partners of these fields fit together into 
an N = 2 supermultiplet. Now that we have seen that these fields can be 
characterized in a gauge-invariant way, it makes sense to write an effective 
Lagrangian which could describe their dynamics. The most general possible 
such Lagrangian is 

L = Jd4eIc(a,z) - & Jd2er(a) wowa + h.c. 
.The N = 2 supersymmetry forbids a superpotential. It also relates r and K 
through a ‘prepotential’ F(a): 

d2F 
TX- 

da2 
K=-&lm 

Using (95), we can evaluate 

which is also symmetric under electric-magnetic duality. 

(101) 

(102) 

In (lOl), I have written r as a function of a. In fact, the three complex 
variables r, an, and a are tied together by the relation (95). All three of these 
variables can be thought of as functions of 21 defined in (91). To understand 
the qualitative beahavior of the model, we should try to determine the explicit 
dependence of these quantities on u. 

To determine r(u), we will make essential use of the fact that the rela- 
tions among r, a, aD, and u are holomorphic. In particular, the holomorphic 
function r(u) can be reconstructed from the knowledge of its singularities and 
its behavior at infinity. However, a singularity in the effective coupling con- 
stant must be associated with divergent coupling constant renormalization, 
and this is possible only if very light states appear in the physical spectrum. 
The strategy of Seiberg and Witten is then to determine the singularities of 

r(u) from physical arguments and then to construct the global function from 
. ?- -the properties of these singularities. 
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Figure 2: Determination of the effective coupling constant in the weak-coupling limit of the 

Seiberg-Witten model. 

5.2 Weak-coupling behavior of r(u) 

To begin this program, we might first analyze the behavior of r(u) in the limit 
u + 0~). This corresponds to the weak-coupling region of the theory, and so we 
can obtain the relation between r and u from a weak-coupling renormalization 
group analysis. 

In pure N = 2 Yang-Mills theory, the formula (36) gives 

b. = 2N, , (103) 

or bo = 4 in the SU(2) theory. Th e running coupling constant is then given 
by (18): 

s (Q) = y + $ log 5 (104 

In the theory with spontaneously broken symmetry, the coupling constant will 
run from the short-distance scale M to the scale a, and then stop at the mass 
scale of the particles with nonzero U(1) charge, as shown in Figure 2. Thus, 
the effective coupling at B = 0 should be given by T(a) = 47r/g2(a), plus a 
possible constant shift from one-loop corrections at the scale a. We can absorb 
this shift into the A parameter. Using also the relation (91), we can write the 

holomorphic relation between r and u as 

We can check this formula in a nontrivial way by thinking about the impli- 

. ? -cations of this formula for the dependence of the effective Lagrangian and the 
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monopole masses on the phase of u. First of all, the phase rotation u -+ e 2icrU 

should be equivalent to the shift of 0 by (88), and this relation is nicely real- 
ized in (105). The weak-coupling relation u = a2 can be combined with (95) 
to evalute an as 

2i 
aD = - 

ir 

Then under the rotation a + eiaf4a, which corresponds to 0 -+ B - CX, 

al, -+ e ia/ 

Then the BPS bound becomes 

m * JZla (Qe - e QM) + aDQMI 

(107) 

This is just right. In the presence of a nonzero 0 parameter, a magnetic 
monopole acquires an additional electric charge tiQ~/2~?~ The effect of the 

.nonzero B generated by the rotation of a thus shifts the monopole electric 
charges in precisely the manner indicated in (108). 

To push this picture a little further, recall that the classical solutions 
of the theory we are considering include not only magnetic monopoles but 
also dyons. 37 The magnetic monopole solution can be deformed to a solution 
rotating in the U(1) d irection, and each such solution with quantized angular 
momentum gives a new, electrically charged, solution. Thus, in weak coupling 
at 0 = 0, the spectrum of the model includes a tower of states with QM = 1 
and all integer values of the electric charge, and a similar tower for QM = -1. 
All of these particles obey the BPS mass formula (93). The particle spectrum 
of the theory at weak coupling is shown in Figure 3(a). 

All of these states are affected by the shift of 0 induced by a phase rotation 

of u or a. Under the transformation (107), the positively charged dyons become 
lighter while the negatively charged dyons become heavier. When we have gone 
half-way around the u plane, u + eiau or a --f eiT12a, the spectrum goes back 
to its original form, but with the dyon which originally had charge QE = 1 
becoming the lightest particle with magnetic charge. This transformation is 
shown in Figure 3(b). If we had rotated around the u plane in the other 

direction, we would have found as the lightest monopole the dyon which had 
QE = -1 at 0 = 0. 

The fact that the model has the same spectrum when we carry u + -u 
should be no surprise, because these points are related by the 22 symmetry 

(92). It is a surprise, though, that this identity of the spectra is realized 

. ? -thorough a rearrangement of the states. Similarly, when we come back to the 
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Figure 3: (a) Spectrum of W bosons, monopoles, and dyons in the weak-coupling limit of 
the Seiberg-Witten model with B = 0. (b) T ransformation of the spectrum of monopole and 

dyon states as we turn on 6 or rotate u in the weak-coupling region. 

original value of u after a 27~ circuit of the u plane, we find the same spectrum 
shifted by 2 units. This behavior is suggested by the form of (105), which is 
a branched function of u. In fact, we now see that the whole theory has a 
branched structure in u. rather than being single-valued as a function of this 
variable. 

5.3 Strong-coupling singularities of r(u) 

If the function r(u) has a branch cut singularity at large values of u, this branch 

cut must originate at some point or points in the interior of the u plane. We 
will now try to find and characterize these points. 

At first sight, it seems possible that (105) could be exact. It is true that 
there are no perturbative corrections to (79), since any modification of this 

equation by logarithms of u would destroy the transformation properties of a 

+ -and aD under a shift of 6 that we have just discussed. However, (105) can be 
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corrected by nonperturbative effects 

T(U) = z log 2 + uu-2 
A2 

+ h-4 + . . . 
R (109) 

Because of the 22 symmetry (92), only even powers of u can appear. Solving 

for u perturbatively, one can see that up2 - e-8azlgz, characteristic of a one- 
instanton correction. In fact, these leading instanton corrections have been 

evaluated and are nonzero?7l3g So we will need a more sophisticated hypothesis. 
The next simplest idea is that nonperturbative effects in the theory gen- 

erate a scale ue proportional to A, and that T(U) has a pair of singularities 
at u = &UO. The presence of a pair of singularities is required by the 22 

symmetry. In fact, there is a pleasing physical picture of the origin of these 
singularities. As u decreases, the coupling constant should increase. This will 
cause the parameter a~ to decrease and thus should lower the masses of the 
monopoles. As long as a is nonzero, the dyons with nonzero QE must remain 
massive, but the lightest monopole with QE = 0 could come down to zero 
mass. This evolution is shown in Figure 4. We will then assume that an has 
a zero at a point ~0 on the real axis. At the reflected point ‘1~ = -uo, the dyon 
which has charge 1 for real positive U, which becomes the lightest dyon on the 
negative real axis, comes down to zero mass in the same way. 

This picture leads to an explicit expression for the singularity of T(U) 
at u = 0. Near this point, the only light states in the theory are magnetic 
monopoles with zero electric charge. These monopoles renormalize the effective 
coupling in such a way as to screen the dual coupling constant rD = -l/7. 
The /3 function of this dual theory is the same as that in supersymmetric 
quantum electrodynamics with one charged species, bo = -2. (This is (36) 

with C2(Ge) = 0 and C(T) = 1 for each chiral multiplet.) Then 

2i 
TD = -G lOg??2M 

where rnM is the monopole mass. I will assume that nD is nonsingular at ~0 

with a simple zero, 

Then, since mM = &D, 

aD % b(” - UO) . (111) 

1 . 

rD=-To= 
+ log(u - Uc) . 

From the expressions for r and a~, we can reconstruct the formula for a 

near u = ue. Since 
da 

-= 
daD 

-TD=‘logaD, 
R (113) 

c - 
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Figure 4: Dependence of monopole and dyon masses on u along the positive real axis of the 
u plane. 

we find 

a = ; (aD logaD - aD). (114) 

The singularity of T(U) at u = -UO must be the mirror image of the 
singularity at u = us. To compute the behavior of r, a, and ag at this point, 
start at large real positive U, and go around the outside of the complex u plane 
from to the point uei” on the negative real axis. The new values of a and aI) 

are 

a+G=ia, aD + 6D = i(aD - a) (115) 

The transformed aD must have a simple zero which is the image of (ill), 

60 - (u + UO) . (116) 

Then, in the vicinity of ‘1~ = -uo, r(u) has a singularity given by 

1 . 

rD=-m= 
G log(u + WJ) . (117) 
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and a has the singular behavior 

ii = +,logiiD -CD). (118) 

The branched behavior of r around each of these singularities is most 
clearly demonstrated by the transformation of a and aD around each of the 
singularities. If we make a 27~ circuit of the u plane for large U, (107) implies 
that a and aD return to the values 

a-+--a, UD * -(UD - a) (119) 

Around the singularity at u = ~0, (114) implies the transformation 

a -+ a - 2aD , aD + aD . (120) 

Around the singularity at u = --no, 6 and c?D go through the same transfor- 
mation. Replacing these by a and aD using (115), we find 

a + 3a - 2aD aD + 2a - aD . (121) 

Such transformations of functions around a complex singularity are called 
‘monodromies’. In this case, we can characterize each singularity by a 2 x 2 
monodromy matrix M, by writing 

aDchoosea + ibf (122) 

For the three singularities, 

Mm= (;’ T1) , &=(I2 ;) , M-u,= (1; ;) . 
(123) 

Since u is by definition nonsingular on the u plane, the doublet 

(124) 

has the same monodromies. From the components of this vector, we can re- 

construct 7(u) as \ I 

T(u> = (daD/du) 

(da/du) (125) 

At this moment, there is no guarantee that we have discovered all of the 
. r -singularities of r(u). However, it is possible to check that the branch cuts which 
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Figure 5: Relation of the monodromies about the three singularities of T(U). 

originate at uo and -UO are sufficient to account for the branched behavior of 
r(u) at infinity. Around the path shown in Figure 5(a), a and aD should 
have the monodromy Mm. If r(u) has no sigularities other than those we 
have already identified, this path can be deformed continuously to that shown 
in Figure 5(b). Notice that the path to and from u = -ug passes above the 
singularity at u = ue and thus belongs to the branch for which we have derived 
(121). The test that no other singularities are needed is the equality of these 
transformations, that is, 

M,,M-,, = Mm 

And, indeed, this follows from (123). 

(126) 

5.4 Geometry of the mod& space 

Now that we have determined the singularity structure of r(u), we should be 
able to reconstruct the function explicitly. In principle, this could be done 
completely algebraically. However, there are two clues in the information we 
have uncovered which suggested to Seiberg and Witten a geometrical solution 
to this problem. The first is the general property that the effective coupling 
g2(u) must be positive. This restricts r(u) by 

Imr=e>O. 
g2 

(127) 

The explicit formula for Q- must naturally respect this relation. The second is 
the set of monodromy relations, which induce specific quantized shifts of r as 

we move around each singularity. Both of these properties suggest that r is 

? - the modulus of a torus. 
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Figure 6: (a) The singularities of y(z), and a branch choice for the square root. (b) The
contours Cl and Cz used to define the translations z1 and ~2.

A convenient way to construct these tori is to use the following represen-
tation:  L e t

y2 = (x - uo)(x + uo)(x - u) (128)

and consider the integral

2: dx x dx
z =

J210 [(x - uo)(x + uo)(x  - u)]
112 = Juo

yj- (129)

For definiteness, choose the branch of the square root such that, when u is
real, positive, and greater than ~0, the square root has the phases shown in
Figure 6(a).

The integral Z(X) is a mapping from the two-sheeted 2 plane to a torus.
When u is real and positive, as x moves from uc along the positive real axis, z
moves in the imaginary direction in the complex plane. As x is moved to the
left of ue, z moves along the positive real axis. Complete circuits along the
contours Ci and (2’2 shown in Figure 6(b) carry z into the values

!

dx dx
21 =

Y’
z2 -.

Cl fcz y

These are the fundamental translations on a torus of modulus

(130)

T(U)  = tJz1 (131)

It is not difficult to see that the double-sheeted x plane is mapped l-to-l into
,r -this  torus. For example, the upper half plane on the first sheet in x is mapped
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Figure 7: The mapping from the u plane to the space of torus module 7 

.into the rectangle whose corners are .z = 0, zi/2,22/2, (zr + 22)/2. Then 

d” = Az daD 
du 

1 ,-jy= A22 , (132) 

where the common constant A = 1/4a can be determined from the relation 
a+fiasu-+oo. 

It is straightforward to see that (131) and (130) do indeed construct a 

function with the properties of r(u). The function that we have defined has 
singularities at only at u = &us. By taking u >> ue, one can verify the form 
(105). By carrying u around ue, and paying close attention to the branches 
of the square root in the various segments of the integral, one can verify the 
monodromy relation (120). 

Once r(u) has been determined in this way, it is possible to make a quite 

nontrivial check on the solution by comparing the coefficients a and b in (109) 
with the explicit results of one- and two-instanton calculations. The check 
confirms the Seiberg-Witten solution?7l3g 

The mapping from the u plane to the space of moduli r- is quite interesting. 

As u -+ 00, 22 -+ ice with zr fixed, so we find a tall, thin torus (the ‘Witten 
torus’). As u + us, 22 + 0, and so we find a short, fat torus (the ‘Peskin 
torus’). As u + -us from above or below the real axis, z2 + fl and we find 
a short torus twisted through 2a. The full mapping of the u plane is shown in 
Figure 7. The image of the u plane covers four copies of the fundamental region 

. ? -of the modular group. It is, in fact, the fundamental region of the subgroup 
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5.5 Relation to N = 1 Yang-Mills theory 

Another way to confirm our understanding of the N = 2 SU(2) Yang-Mills 
theory is to explicitly break the N = 2 supersymmetry to N = 1. This is easily 

done by adding a mass term for the 4 supermultiplet to the Lagrangian (84). 
When the field 0 and its fermionic partner are decoupled, the theory should 
revert to the N = 1 pure Yang-Mills theory that we discussed in Section 
4.2. It is not at all obvious that this correspondence can be made. In our 
earlier discussion, we analyzed the N = 1 Yang-Mills theory as a theory of 
confinement; our analysis of the N = 2 theory was based on the realization of 
this model in the Coulomb phase. How could these descriptions be connected? 

In any case, we can carry out the analysis. To add a mass term for q5, add 
the superpotential 

1 1 
AW=-m~2=-mu. 

2 2 (133) 

‘At a typical point in the strong-coupling region, u is the only light chiral 
superfield, so (133) is the full effective superpotential. Then the F-flatness 
condition dW/du = 0 cannot be satisfied. 

Near u = uc, there is a better situation. A set of magnetic monopoles 
become light and so we should include magnetic monopole fields in the effective 
Lagrangian. To write a mass term, we need a pair of chiral superfields M and 
M, which create the QE = 0 monopole and antimonopole. These two fields 
form an N = 2 hypermultiplet. The effective superpotential then takes the 
form 

Weff=&b(u-uo)MM+;mu, (134 

where I have used the expression (111) t o write the monopole mass as a function 
of u. 

The F-flatness conditions following from (134) are 

(u - uo)M = (u - uo)M = 0 
1 

fibMa+-m=O. 
2 (135) 

The solution of these conditions is 

u = UIJ 

. c -up to a U(1) gauge transformation on M, a. 
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Thus, in the presence of the superpotential (133), the manifold of vacuum 
states characteristic of the Coulomb phase is lifted away from zero energy. 
Only two discrete supersymmetric configurations remain, the vacuum we have 
found at u = ue and a mirror-image vacuum at u = -us. In fact, we showed in 
Section 4.2 that the N = 1 supersymmetric gauge theory should have precisely 
two vacuum states, reflecting the spontaneous global symmetry breaking from 
G = Z, to Z2. 

A remarkable property of the vacuum states at u = fus is that the mag- 

netic monopole fields acquire vacuum expectation values. These vacuum states 
are realized in the Higgs phase of the magnetic U(1) theory. Dually, they be- 
long to the confining phase of the original Yang-Mills theory, according to the 
criteria for confinement that we discussed in Section 2.2. 

6 More Phenomena of the Coulomb Phase 

There is much more to say about properties of the Coulomb phase of supersym- 
metric gauge theories. In this section, I would like to highlight two particularly 

‘interesting physical phenomena which appear already in the simplest extension 
of the Seiberg-Witten model. Then I will discuss some models which generalize 
the geometrical structure of the space of vacua which we found in Section 5.4. 

6.1 N = 2 SU(2) Yang-Mills theory with matter 

It is a natural generalization of the Seiberg-Witten model discussed in the 
previous section to add some number of matter fields which couple to the 
gauge symmetry. In an N = 2 supersymmetric theory, matter fields belong 
to N = 2 hypermultiplets, which are pairs of N = 1 chiral supermultiplets 
(Qi, Qi) in conjugate representations of the gauge group. In N = 1 language, 
the Lagrangian consists of the standard coupling of the gauge multiplet to 
these fields, plus the superpotential 

W = 2 C GidataQi ) (137) 
a 

which couples the fields 4, IJ of the N = 2 gauge multiplet to the hypermulti- 

plets. 
For SU(N,) gauge theories with matter in the fundamental representation, 

the ,B function is given by 
b. = 2N, - Nf ; (138) 

thus, the theories are asymptotically free with any number of matter multiplets 

. c yp to 2N,. For SU(N,) gauge theories with matter in the adjoint represen- 
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tation, adding one hypermultiplet already gives bo = 0. This latter theory, 
which has a total of four chiral fermions and six real scalars in the adjoint 
representation, is precisely the N = 4 supersymmetric Yang-Mills theory. 

Since the N = 2 theories with matter have a superpotential, the classical 
vacuum states are determined both by D-flatness and F-flatness conditions. 
There are two classes of solutions to these conditions. The first gives a Coulomb 
phase similar to that of the previous section, with 

(4) # 0 (Q) = (v) = 0 . (139) 

The second gives a Higgs phase with 

(4) = 0 (Q) = (&‘) # 0 . (140) 

In these lectures, I will only discuss the properties of the Coulomb phase. The 
behavior of the Coulomb phase in all four possible cases, Nf = 1,2,3,4, was 
worked out by Seiberg and Witten? 

To analyze the Coulomb phase, we must work out the global symmetries of 
the theory. For a general SU(N,) gauge group, the theory has the continuous 
global symmetry of supersymmetric &CD, SU(Nf) x SU(Nf) x CUB x US 
(where the last factor is the anomaly-free R), broken by the superpotential 
coupling (137) to SU(Nf) x us. If the gauge group is SU(2), however, there 
is additional symmetry because the spinor of SU(2) is a real representation, 
equivalent to its conjugate. For this case, the continuous global symmetry of 
supersymmetric QCD is SU(2Nf) x us. Since an SU(2) vector couples 
to two spinors in the symmetric combination, the coupling (137) preserves an 
SO(2Nj) subgroup of this group. 

If we wish to generalize the analysis of the previous section, it will also 
be interesting to understand the anomalous global symmetry corresponding to 
the phase rotation 

f#~ + ezcrd ,or u-+e 2iau . 
(141) 

To preserve the superpotential (137), this rotation must be carried out together 
with 

Q-+e -ia/ Q Q .+ ,-ialQ . (142) 

The rotations (141) and (142) together give a symmetry of classical N = 2 

Yang-Mills theory. In the quantum theory, the anomaly generates a shift of 6’ 
or r. When we include the effect of (142), our previous relation (89) is shifted 
to 

? - 

4 - Nj 
0+0-(4-Nj)cr, or r-r--a. 

2a (143) 
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This transformation is an exact discrete symmetry of the theory when r is 
shifted by an integer. Thus, the action of this symmetry on u gives a 22 
symmetry for Nj = 0, a Zs symmetry for Nj = 1, and a 22 symmetry for 
Nj = 2. For Nj = 4, the full U(1) y s mmetry is present, as should be expected 
for a theory with p function equal to zero. 

From the ,B function (138), we can deduce the behavior of r(u) in the 
weak-coupling region at large u. Analogously to (105), we find 

T(U) = ; (4 - Nj) log ; . (144) 

Following the logic of Section 5.2, we find for this case the monodromy matrix 
at infinity 

This formula is somewhat awkward to use for the cases in which the matrix 
,elements of M are not integers. For this reason, Seiberg and Witten change 
their conventions for this case and define a resealed r and aL), 

r=2r, aD = 2aD . (146) 

Then 

and the new doublet (a, aD> has monodromy 

Mm = 
-1 

0 

(147) 

(148) 

6.2 More about NJ = 0 

For nonzero values of Nj , we might expect to be able to construct the effective 
coupling 7 using the method described for Nf = 0 in Section 5. That is, 
we consider T(U) to be the modulus of a torus. We consider the points in 
the u plane where this torus degenerates to be points where some particles 
of the theory become massless. The we determine the geometry of the tori 

as a function of u by finding the analytic function T(U) consistent with these 
singularities. This program is carried out in detail in 3. In these notes, I 
would like to focus on the cases Nj = 1,2 to call attention to some interesting 

+ physical features of the solution. 
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As a point of reference for these cases, however, we should first rewrite the 
solution for Nj = 0 in the new notation. For Nj = 0, 7 goes through 

r--r-4 (149) 

as u + ezXiu. Thus, the T plane is a double cover of the u plane and also of the 

shaded region in Figure 7. Seiberg and Witten suggest that we can parametrize 
these tori by writing, instead of (128), the family of cubic polynomials 

(150) 

where I have uo = A’. Since the magnitude of ue is given by the nonpertur- 
bative scale of the theory, the quantity A2 defined in this way is equal to that 
in (144) up to an overall constant. This notation will be useful to us when we 
study the decoupling relation of the solutions for different values of Nj 

To see that this new family of cubits gives the same physics as (128), we 
should study its singularities. The cubic (150) has its zeros at 

x=0, x=x*+-&cG). (151) 

Define z1 and 22 as in (130) w h ere the contours Ci and C2 wrap around (0, Z-) 
and (x-, z+), respectively, in the manner indicated in Figure 6. The singular 
tori occur where pairs of zeros (151) coincide. This happens at u = &A2 (that 
is, at u = &us), and at u = 00. As u + 00, it is easy to directly evaluate the 
integrals and see that the formula T = z2/zr reproduces (147) with Nj = 0. 
In particular, 

s 

21 

- 2i 
dx 1 

22 
-- N i .210g$ ; 

A4/401/;1 fi 
(152) 

this accounts for the extra factor of 2 in r. As u makes a complete circle 
around the point A’, one can observe that the two zeros xk exchange places. 
By playing with the contours, it is not hard to see that this leads to the 
monodromy 

a+a-aD, aD + aD . (153) 

which is the correct transcription of (120) for (aD, u). 
For the cubic (150), and for other cubits that we will encounter in this 

section, it is not immediately obvious which values of u correspond to singular 
tori. For this case, we could find these values by solving a quadratic equation. 
A more generally applicable procedure is to compute the discriminant A. If 

ei, e2, es are the three roots of the cubic, A is defined by 

c - 

A = n(ei - ej)’ . 

i<j 
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On the other hand, for a cubic polynomial 

x3+Bx2+Cx+D 

it is straightforward to show that 

(155) 

A = B2C2 - 4C3 - 4B3D + 18BCD - 270’ . (156) 

For (150), we find A = (u2 - A4)A8/16. Th e singular tori occur where two 

zeros of the cubic collide, that is, at the zeros of A(u). Thus, the discriminant 
easily picks out the singularities at u = &A2 found above. 

6.3 The tori for Nj = 1,2 

In this section, I will review the generalization of the structure just described 
for Nj = 0 to nonzero Nj. I will work through explicitly the two simplest 

cases, Nj = 1 and 2. 
As a step toward generalizing to nonzero Nj , consider first the consequence 

of adding massive matter fields to the theory. Hypermultiplets of N = 2 Yang- 
Mills theory can recieve mass from a superpotential term 

AW = rniQaQi (157) 

which preserves the full supersymmetry. When all of the mass parameters mi 
are large, we must recover the Nj = 0 solution for T(U) just discussed. On 
the other hand, T(U) must depend holomorphically on the mi. So it is natural 
that, for Nj nonzero, the effective coupling T(U) is still the modulus of a torus 
whose geometry is a holomorphic function of u and the mi. 

We can identify these tori by constructing the associated cubic polyno- 
mials y(x). The U(1) y s mmetry (141) provides a useful tool in constructing 

these polynomials. So far in this discussion, we have been thinking of this 
transformation as an anomalous global symmetry. However, as in Section 
4, we can supplement this transformation by a shift of the theta parameter, 
T + r + (4 - Nf)(r/27r and consider it as an exact global U( 1) symmetry. Un- 

der this transformation, u has charge 2 and A”” has charge (4 - N - f), giving 
A charge 1 for any Nj. The cubic y(x) should have a definite transformation 
property under this symmetry. In fact, the following set of charge assignments 

make the Nj = 0 cubic (150) covariant under this U( 1): 

u : 2, A:l, x:2, ~13. (158) 

If we obtain the Nf = 0 torus from a torus with nonzero Nj by holomorphic 
. c -decoupling, and we are careful to give masses to the matter fields in a way 
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that preserves the U(1) y s mmetry, we should expect these charge assignments 
to hold for the tori we will find for nonzero Nj. The U(1) symmetry will be 
respected by the mass terms if the masses mi are assigned a charge which 
compensates the rotation (142), that is 

?72i : 1. (159) 

For very large values of u, 7 must have the asymptotic behavior (144). It is 
interesting to ask how the Nj = 0 solution joins on to this behavior. Consider 
the situation in which all of the mi are much greater than the effective A of 
the theory with the matter fields decoupled. Then for A2 < IuI < mf, r will 
have the singularity (149). H owever, at large values of u we encounter a new 
singularity. The full superpotential for the ith flavor is 

AW = miGi&i + 2Qi~“t”Qi , (160) 

,so that when (4”) = F m, or u = rnf , a pair of matter fields has zero mass. 
Since these massless fields are charged under the unbroken U( 1) gauge symme- 
try, they renormalize the effective coupling toward zero. In fact, we find that, 
near this point, 

u-2mf 
TN&log A2 . (161) 

For larger values of 1u 1, -r shifts by one fewer unit as the phase of u goes from 0 
to 27~. In a theory with Nj flavors of massive matter fields, we will eventually 
pass Nj of these singularities and recover the asymptotic behavior (149). 

A similar effect occurs when we consider the decoupling of a single flavor 
from a theory with nonzero Nj. Consider, for definiteness, the theory with 
Nj = 2. Asymptotically in u, 7 shifts by 2 units as the phase of u is increased 
from 0 to 2~. However, if one flavor is light and one is heavy, we find the 
situation shown in Figure 8. At small values of u, there is a region which 
exhibits strong-coupling dynamics. When u is carried around this region, r 
shifts by 3 units. At large u, there is an additional singularity which changes 
the shift in -r to the step of 2 units required by (149). 

With this orientation, we can try to obtain the family of tori which describe 
the theory for Nj = 2 massless flavors. By decoupling the two flavors one at a 
time, we should obtain the Nj = 1 and Nj = 0 theories. 

The problem of finding the tori of Nj = 2 has several features in common 
with the problem we solved in the previous section for Nj = 0. The theory has 

a Z2 symmetry acting in u. The behavior of T at infinity is just that which we 
+ -required for r in (105). 
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Figure 8: Monodromy of Tin the weak-coupling region for a theory with a large mass m for 
one flavor. 

We can try to find strong-coupling singularities of r(u) associated with 
the magnetic monopoles of the theory coming down to zero mass. The global 
symmetry of the theory is SO(4) = SU(2) x SU(2). The monopoles have zero 
modes for the fermionic partners of Qi and qi; when we consider the multiplet 
of states in which these zero modes are filled or empty, the monopoles form 
spinor representations of the global symmetry group. The monopoles with even 
electric charge become (2,l) multiplets of of SU(2) x SU(2); the monopoles 
with odd electric charge become (1,2) multiplets. The simplest Zz-invariant 
set of singularities is one in which a (2,l) multiplet of monopoles becomes 
massless at u = A2 and a (1,2) multiplet becomes massless at u = -A’. Since 
two pairs of monopoles are becoming massless at each of these points, we find 
a singularity in r twice as strong as that in (112), 

1 1 . 

--=-2T(U>= r(u) 
; log(u - ue) . (162) 

From this data, we see that the requirements on the function T(U) for 

Nj = 2 are precisely those which we found in the previous section for r(u) in 
the case Nf = 0. Thus, the effective coupling constant r in this case is given 
by the family of tori associated with 

y2 = (x - A”)(x + A2)(x - u) , (163) 

+ just as in Section 5.4. Notice that, with the U(1) charge assignments given 
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in (158), this polynomial transforms covariantly with charge 6, as we would 
expect. 

From this solution for Nj = 2, we can decouple one flavor to find the 

solution for NJ = 1. First of all, we must determine how the mass perturbation 
affects the polynomial (163). F or small m2 (and so, formally, for all mz), the 
mass of a matter field does not affect the coupling constant renormalization in 
perturbation theory. This mass can enter, however, through nonperturbative 
corrections. For small mi, these are given by instanton effects. According 
to (73), each instanton brings with it a power of Abe. For Nj = 2, the one- 
instanton amplitude is zero unless we saturate the zero modes by supplying 
masses for both flavors. Thus, the leading effect comes from a 2-instanton 
contribution. This term is proportional to m;A4, and this term saturates the 
allowed U(1) charge. Thus, the most general cubic possible for the Nf = 2 
theory with one massive flavor is 

y2 = (x - A”)(x + A”)(x - u) - cmzA4 . (164) 

where c is a constant to be determined. This constant can be fixed in the 
following way. We have argued that, when m2 > A, we must find a singular 
torus when u = mi. The discriminant of (164) is given by 

A = (u - cmi)(4u3A4 - 27(u - cmz)A’) + . . . , (165) 

where the omitted terms are negligible for m2 > A. Thus, we find a singular 
torus for u = cm: and no other singularities except in the region u - A’. This 
implies that c = 1. 

Having now determined the polynomial for Nj = 2 and one flavor massive, 

we can find the polynomial for Nj = 1 by holomorphic decoupling. Take 
m2 + co, while keeping the A parameter of the effective l-flavor theory fixed. 
According to (70), this is given by 

(A3)e~,N,-l = m2 (A2)~, 7 (166) 

so we must take A -+ 0 as m2 --+ 00 in such a way that the right-hand side of 
(166) is fixed. Th en, the family of tori for Nf = 1 are given by 

y2 = x2(x - u) - A6 , (167) 

where I have written the new effective QCD scale simply as A. 
As a first check, the formula (167) has the correct U(1) charge. To under- 

stand this polynomial more fully, we might compute its discriminant: 

c - A = -4u3A” - 27 Ai2 . (168) 
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Pairs of zeros collide when 

(169) 

There are three cube roots, and so we find three singularities in a Zs-symmetric 
pattern. This realizes the Zs symmetry that we predicted below (143). 

Another check of (167) ’ g is iven by decoupling the remaining flavor. If we 
wish to add to (167) a t erm proportional to one power of ml and one instanton 
factor A3 in a way consistent with the U(1) y s mmetry, the only possibility is 

y2 = x2(x - u) - A6 - mA3(ax + bu) , (170) 

where a and b are to be determined. Note that higher powers of (mA”) have a 
U(1) charge higher than 6. Computing the discriminant, we can see that there 
is a singular point at u = rnf only if a = 2 and b = 0. Then the polynomial 
corresponding to Nj = 1 with a nonzero mass is 

y2 = x2(x - u) - A6 - 2mA3x . (171) 

If we let ml -+ 00, we find a theory with zero flavors and the effective QCD 
parameter 

(A41 eff,o = m2 CA3)l . (172) 

The polynomial which characterizes this situation is 

y2 = x2(x - u) - 2A4x . (173) 

which agrees with (150) after a permitted constant resealing of A. 
Now that we understand the transition from the NJ = 2 theory to the 

Nj = 1 theory at a technical level, it is worth thinking a bit more about 
the physics of this transition. In each of these problems, the effective cou- 
pling has singularities at specific points in the moduli space of u where mag- 
netic monopoles become massless. In the Nf = 2 theory, there were two such 
points, at each of which two monopole-antimonopole pairs become massless. 
In the NJ = 1 theory, there were three points, at each of which one monopole- 
antimonopole pair becomes massless. As in the Nj = 0 cases analyzed in the 

previous section, the monopoles which become massless at each point differ in 
their electric charges. In the Nj = 1 case, where 7 goes through 3 units as 
u increases its phase by 2a, the monopoles which become massless are those 
which begin at u real with the electric charges 0, 1, 2. 

The transition from the set of u-plane singularities for Nf = 2 to that for 
. ? _ Nj = 1 is shown in Figure 9. Something strange is happening here. At zero 
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Figure 9: Motion of the singularities of T(U) for the Seiberg-Witten model with Nf = 2 as 
a mass m is turned on for one flavor. 

mass, we have two singularities in Zz-symmetric locations. Under a small mass 
perturbation, these break up into four singularities, each of which corresponds 
to a point where one monopole-antimonopole pair becomes massless. As the 
mass is increased, one of these points runs out to infinity, while the other three 
organize themselves into the Zs-symmetric structure required for NJ = 1. But 
when the fourth singularity comes out into the weak-coupling region, it has the 
interpretation of a point at which an elementary matter field becomes massless. 
So apparently, we can pass continuously, in the Seiberg-Witten solution, be- 
tween solitons of the theory and elementary particles. This is an extreme, but 
perfectly permissible, example of the continuous connection of phases which 
would seem to be distinguished qualitatively. 

The Nj = 1 theory has one more very interesting feature. Starting from 
(167), take the limit A -+ 0. The three points where monopole pairs become 
massless then approach one another and coalesce. We obtain a theory with a 
singularity at u = 0 at which monopoles with electric charge 0, 1, and 2 simul- 
taneously become massless. This is a quite unusual situation, because these 
three species are mutually nonlocal. This general situation, in which nonlocal 
species are simultaneously massless, is called an Argyres-Douglas point?1 The 
particular points of this type in N = 2 SU(2) Yang-Mills theory have been an- 
alyzed in detail by Argyres, Plesser, Seiberg, and Witten:’ who give evidence 
that they are new nontrivial scale-invariant field theories and compute some 
of the scaling dimensions of operators. 

There is one more aspect of the SU(2) gauge theories which I have no 

space to discuss here. For the case Nf = 4, the p function of the theory 
vanishes. This case would then have zero coupling constant renormalization 

and might also be expected to have exact strong-weak-coupling duality (‘S- 
duality’). Seiberg and Witten argue that this case can be described by a 
family of tori described by a cubic which transforms covariantly under the 
SL(2, Z) S-duality groups More concretely, they find 

c - Y2 = 4x3 - 92(7)x - gz(7) . (174) 
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where g2 and gs are the unique modular forms of weights 4 and 6 under 
SL(2,Z). I f y re er ou to their paper for a detailed discussion of the S-duality 

and for a demonstration that this formula implies all of those given above by 
holomorphic decoupling. 

Unfortunately, there are still some lingering questions about the N = 2 

Su(2) Yang-Mills theories. For the case Nj = 3, the general arguments that I 
have given in this section fix the family of tori only up to one undetermined con- 
stant, which eventually was fixed by an explicit two-instanton computation.sg~40 
For Nj = 4, it turned out that the explicit formula (174) was incompatible with 
the result of a similar twoinstanton calculation. Presumably, this is evidence 
that the coupling constant definition used in this calculation, the Pauli-Villars 
prescription, is not invariant under S-duality. The Pauli-Villars coupling would 
then be related to the coupling constant definition used by Seiberg and Witten 
by an arbitrary function of r. It would be strange and remarkable if S-duality 
could be exact in field theory only with the string theory regulator. The precise 
resolution of this confusion, though, is still not clear. 

6.4 Larger gauge groups 

To conclude this section, I would like to comment briefly on the generalization 
of the Seiberg-Witten theory to larger gauge groups. 

The same analysis that predicted a Coulomb phase of the SU(2) gauge 

theory applies to any gauge group. Quite generally, we find a vacuum state of 
the classical theory by solving the D-flatness condition (86). The matrix (4) 
can be diagonalized; for example, for G, = SU(N,) we have 

(175) 

where +I,... , $N, are complex parameters such that xi 4i = 0. At a generic 
point where no pair of the c5i are equal, this expectation value breaks the 
gauge group G, down to (U( 1))‘) where r is the rank of G. For the case 

of SU(N,), we find a product of (N, - 1) U(1) gauge groups. These vacua 
remain supersymmetric minima in the quantum theory. They are described 
by the effective Lagrangian 

c,ff = 2 J d20 Ti-yq!g ,%v; + /L.c. ) (176) 

where i, j are summed over 1, . . . , r. The effective couplings form an r x r 

. c -matrix, which depends on gauge-invariant functions of 4. If we gauge-fix to 
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Figure 10: Complementary cycles on a surface of genus 2. 

configurations of the form (175), V- must still be invariant under all permuta- 

tions of the eigenvalues &. If the gauge boson kinetic energy term in (176) is 
to be positive, the matrix r must satisfy 

Imr>O (177) 

as a matrix. 
This condition is naturally satisfied if r is the period matrix of a 2-dimen- 

sional surface of genus g = r. This object is defined as follows. A surface 
of genus g can be characterized by pairs of complementary cycles oi, ,Bi, 
i = l,... , g, as shown in Figure 10. Alternatively, such a surface can be 

characterized by g independent holomorphic differentials Xl. These objects 
have a complementary relation; the differential Xi integrated around the cycle 
oi or pi gives a nonzero result. More generally, define 

A; = Xe 
f 

Bie = 
0, ! 

Xe . 
Pj 

Then the period matrix of the genus g surface is given by 

(173) 

r=BA-‘. (179) 

This generalizes the formula (131) for the modulus r of a torus. 

? - The most direct generalization of the construction in Section 5.4 would 
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associate r with a 2-dimensional surface defined by an integral 

s 

x dx 
Z= 

20 7 
(180) 

where y’(x) is a polynomial. If this polynomial has degree n = 2g + 2, y(x) 
is a double-sheeted surface with (g + 1) b ranch cuts; this is a surface of genus 
g. (It is equivalent to write a polynomial of degree n = 2g + 1; this puts one 
branch point at oo.) 

A surface constructed in this way is called ‘hyperelliptic’. All surfaces of 
genus 1 and 2 are equivalent to hyperelliptic surfaces by general coordinate and 
conformal transformations, but the set of hyperelliptic surfaces is a smaller and 
smaller subspace of the space of all 2-dimensional surfaces at higher genus. 

Nevertheless, it was shown by Argyres and Faraggp3 and by Klemm, 
Lerche, Thiesen, and Yankielowicz44 that the Seiberg-Witten problem for more 
general gauge groups is solved by a particular class of hyperelliptic surfaces. 
For G, = SU(N,), these surfaces can be constructed easily by generalizing 
the U(1) symmetry described in (158). For the N = 2 SU(N,) gauge theory 
with Nj flavors of hypermultiplets in the fundamental representation, the U(1) 
symmetry of the theory is 

4 --+ ezaqS , 7- --+ 7 + (2N, - Nj)“/27r (181) 

Since the first ,B function coefficient is given by bo = (2Nc - Nj), we find 
from (40) that A has charge 1. The one-instanton amplitude is proportional 
to AzNc-Nf 

Consider first the pure N = 2 SU(N,) gauge theory, Nj = 0. Introduce 
a variable x with charge 1 under the U(1) y s mmetry. (This is effectively the 
square root of x in Section 6.2.) Then consider the polynomial 

y2 = n(X - (hi)’ - AzNc . 

i 
(182) 

This object is covariant under the U(1) and totally symmetric in the &. The 
QCD scale A enters as the one-instanton factor. Thus, it is a reasonable 
candidate for the polynomial we are seeking. For the case SU(2), we may set 
41 = -42 = 4, with 4’ = u. Then (182) takes the form 

Y2 zz (x2 - c$“)” - A4 

= (x + J-)(x - J-)(x + &=%)(x - da) . (183) 

The pairs of zeros coalesce at u = +A’, co. This is in fact another represen- 

+ -tation of the family of tori discussed in Section 5. For more general SU(N,) 
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groups, it is not difficult to check that (182) has the correct decoupling limit 
near points in the moduli space where an SU(2) subgroup of the gauge group 
is manifest at low energy. If the vacuum expectation value of 4 preserves an 
approximate SU(2) symmetry, then two eigenvalues of 4 are almost equal. Call 
these i = 1,2 and write 

di=d+X, $2=4-X f 2=X-d. 

Then (183) becomes 

(184) 

y2 = (i2 - x2) n(q5 - qQ2 - AzNc . (185) 
i>2 

The factors (4 - 4i)’ are the vacuum expectation value which give mass to 
the off-diagonal vector bosons when SU(N,) is broken to SU(2). Using the 
analogue of the relation (62), we can write this equation in the form (183) in 
terms of the effective A parameter of the SU(2) theory. Additional checks of 
the formula (182) are given in43a44. 

The analogous polynomial representing the family of surfaces for the Cou- 
lomb phase of SU(N,) Yang-Mills theory with Nj flavors, Nj 5 N,, is?5,46,47 

y2 = n(X - di)2 - AzNcwNf n(X - mi) , (186) 
a f 

where i = 1,. . . , N, and j = 1,. . . , Nf. The term proportional to one power 
of each mass mi is also proportional to the one-instanton factor. The full ex- 
pression (186) returns to (181) w h en we decouple the massive hypermultiplets. 
For Nf > N,, there are additional ambiguities of the type discussed above for 
SU(2) gauge theories with Nj = 3 and 4. 

In the moduli space of larger SU(Nc) gauge groups, there are many families 
of magnetic monopoles, and thus there are many opportunities for Argyres- 
Douglas points where mutually nonlocal species becomes simultaneously mass- 
less. The original example of Argyres and Douglas was given for the case of 
SU(3)Pi 

Finally, I should note that the Seiberg-Witten construction appears in 
a natural way in considerations of superstring duality. Kachru and Vafa?8 
considered examples of heterotic string compactifications on h13 x T2. These 

theories have N = 2 space-time supersymmetry, and one can find examples 
which give rise to effective SU(2) Yang-Mills theories at low energies. These 
theories are dual to Type IIA theories compactified on certain Calabi-Yau 
manifolds. And, indeed, the dual theory exhibits the moduli space of the 

+ Seiberg-Witten model. The systematics of this phenomenon has been explored 
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further in4’j5’. A review of this set of developments has been given in51. More 
recently, Sen5’ and Banks, Douglas, and Seiber23 have shown that the Seiberg- 
Witten moduli space arises also from the consistency conditions for embedding 
3-branes in well-chosen Type IIB compactifications. 

7 Seiberg’s Non-Abelian Duality 

In Section 4, I discussed the behavior of strongly-coupled supersymmetric 
SU(N,) Yang-Mills theory for values of the number of flavors Nj from 0 to N,. 
It is now time that we returned to this theory and continue to explore its prop- 
erties, considering still larger numbers of flavors. Seiberg found a compelling 
picture for the behavior of supersymmetric QCD in this regime! This picture 
includes a region in which the non-Abelian gauge symmetry is unbroken but 
nevertheless is realized in a Coulomb phase. Seiberg argued that this region 
is dual to a similar non-Abelian Coulomb phase of a different SU(N,) gauge 
theory, thus generalizing the familiar Abelian electric-magnetic duality. 

7.1 More about Nj = NC 

To extend the picture of Section 4 to higher values of Nf, I would like to 
begin by clarifying one aspect of the physical picture for Nj = N, which we 
discussed in Section 4.5. I argued there that, in this case, supersymmetric 
QCD had a manifold of degenerate, supersymmetric vacuum states. These 
vacua were parametrized by the gauge-invariant fields T, B, and B, subject 
to the Seiberg’s constraint (80). Oscillations of the scalar components of these 
fields which satisfy the constraint correspond to local fluctuations along the 
manifold of vacuum states. Thus, they are massless composite bosons. By 
supersymmetry, the fermionic components of these fields are then massless 
composite fermions. 

The question of whether relativistic fermions can be tightly bound into 
massless composite states is obviously a fundamental issue in quantum field 
theory. The question of whether massless fermionic bound states are possible is 
also a matter of phenomenological relevance for people who would like to con- 
struct composite models of quarks and leptons. Some time ago, ‘t Hooft pro- 

posed a general consistency condition on massless fermionic composite states 
which has turned out in practice to be very stringent.54 I would now like to 
introduce ‘t Hooft’s criterion and then check whether it is satisfied by the the 
physical picture we have built for supersymmetric QCD with Nj = N,. 

Consider, then, a Yang-Mills theory with gauge group G, coupled to some 

+ matter fields. Let the continuous global symmetry of this theory be G. Let 
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Figure 11: The ‘t Hooft anomaly matching condition. 

Jfi”, Ji, Ji be three currents of the global symmetry. Typically, the product of 
these currents will have a nonzero axial vector anomaly, which can be evalu- 
ated at short distances by computing the triangle diagram of the three currents, 
summed over all elementary matter fermions in the loop. When we consider 

‘the theory at low energies, the three corresponding symmetries may be spon- 
taneously broken, or they may be exact symmetries of the vacuum. If they are 
exact symmetries, we can assign the massless particles in the theory definite 
quantum numbers under these symmetries, and we can compute the triangle 
diagram summing over the massless fermions of the effective low-energy the- 
ory. ‘t Hooft claimed that the anomaly computed in this way must agree with 
the anomaly obtained from the short-distance calculation using the elemen- 
tary fields. This is the ‘t Hooft anomaly matching condition. The condition is 
illustrated in Figure 11. 

The proof of this condition given by ‘t Hooft is very simple. Add to the 
theory weakly-coupled vector bosons which gauge the global symmetry G, and 
add massless fermions which are neutral under G, (call them ‘leptons’) as 
necessary to cancel the G gauge anomalies. We have now defined a consistent 
gauge theory. The effective theory at low energies should also be a consistent 
gauge theory of G. But in this theory, the ‘leptons’ have the same nonzero 
G anomalies, and these must be cancelled by contributions of the physical 
massless fermions arising from the G, theory at low energy. Note that massive 

fermions must be vectorlike under unbroken global symmetries, so these do not 
contribute at all to anomaly matching. A more formal proof of the anomaly 
matching condition, which uses dispersion relations to connect the low- and 

high-energy evaluations of the anomaly, has been given in 55. 

Since our picture of the the behavior of supersymmetric QCD with Nj = 

+ -N, contains massless composite fermions, it can only be consistent if these 
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satisfy the ‘t Hooft anomaly condition. The original global symmetry of the 
model is 

G = SU(Nj) x SU(Nj) x CUB x US , (187) 

In this section, the symbol R will always refer to the anomaly-free R symmetry 
(49); however, for NJ = N,, this coincides with the canonical R symmetry. At 

a typical point in the moduli space, however, this symmetry is broken all the 
way to US by vacuum expectation values of the fields T, B, and 3. But 
there are certain special points of maximal symmetry where a large part of G 
remains unbroken. At these points, the ‘t Hooft condition is especially strong. 

One set of expectation values which satisfies the constraint (80) and leads 
to a point of maximal symmetry is: T = A2 . 1, B = B = 0. At this point, G 
is broken to 

su(Nj) x CUB x US . (188) 

Under this subgroup, the elementary fermions have the quantum numbers: 

$Q : (Nj)l,-1 !biJ : (&)-1,-l x : (1)0,+1 . (189) 

Among the composite fermions, we may eliminate the superpartner of trT 
using the constraint (80). Th e remaining fermionic partners $T form an adjoint 

representation of SU(Nj). The quantum numbers of the physical composite 
fermions under (188) are then 

$T : (Nf2 - 1)0,-l lC’B : (l)Nf,-1 4, : (+Nf,-1 . (190) 

From these sets of quantum numbers, we can compute the anomaly coef- 
ficients directly. Recall the group theory coefficient C(r) defined below (36) 
equals $ in the fundamental representation of SU(Nj) and equals Nj in the 
adjoint representation. Similarly, let Adab” be the value of the anomaly of three 

SU(Nj) currents due to a chiral fermion in the fundamental representation. 
Then, for example, the (Su(Nf))‘u~(l) anomaly coefficient from the elemen- 
tary fields $Q and $J, in (189) equals 2 . N, . C(Nj) (-1) = -Nf , while the 
anomaly coefficient from the composite fields comes only from ?/& and equals 
C(G). (-1) = -Nj. Th e u se o nonvanishing anomaly coefficients in the f 11 t f 

theory is 
elementary composite 

(Su(NjN2 UR(~) : -Nj -N.f 
(uB(l))2 UR(1) : -2Nj -2N, 

(fhm3 : -(Nf2 + 1) -(N; + 1) 
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I have used Nj = N,. The last line is the sum of the cubes of the UR(~) 
charges of all of the chiral fermions. The ‘t Hooft argument also applies to the 
gravitational anomaly of U( 1) chargesF6 and therefore we should also check 
that the trace of the UR(~) h g c ar e is the same in the elementary and composite 

fermion multiplets. This is 

tr[UR( I)] : -(N; + 1) -(iv; + 1) (192) 

All of the anomalies match. 

A similar check can be made at another point of maximal symmetry with 

a rather different unbroken gauge group. We can satisfy the constraint (80) 
without breaking the SU(Nj) x SU(Nj) global symmetry at the point the in 
the moduli space given by the vacuum expectation values T = 0, B = -?? = 

ANc. At this point, G is broken to 

SU(Nj) x SU(Nj) x US . (193) 

.Under this subgroup, the elementary fermions have the quantum numbers: 

+Q : (Nj, I)>-1 $, : (LNf)-1 A : (1,1)+1 . (194) 

For the composite fermions, we may use the constraint to eliminate the con- 
straint to eliminate $s or 4,~. The quantum numbers of the remaining com- 
posite fermions are 

lC’T : (Nj,Nf)-I lliB : (1,1)-l lC’B : (I)-Nf,-1 . (195) 

The various anomalies can easily be found to be 

elementary composite 

(SU(Nj))3 : ANj ANj 

(h?(l))2 UR(l) : -+Nj +Nj 

tr[UR(l)] : -(Nj + 1) -(NT + 1) 

(uR(l))3 : -(N; + 1) -(N; + 1) 

(196) 

Again, the anomalies match. So Seiberg’s picture of the behavior of super- 
symmetric QCD for NJ = N, passes this unexpected and quite nontrivial 

. -consistency condition. r 
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7.2 Nj=Nc+] 

With this insight, we can move on to discuss the case Nj = NC + 1. For this 
case, the gauge-invariant chiral superfields include T and also the baryonic 
superfields 

Bi = ~iil...jNc~(ll...aN~Qja,’ . . ’ Qyi~ , 

Bi = Eij,...jNcE,,....Nc~i”: . QTil . (197) 

where the ji are flavor indices and the ai are color indices. The fields Bi and 

Pi transform, respectively, as a (Nf, 1) and a (1, Nf) of SU(Nj) x SU(Nj). 
Seiberg proposed that this system is described by the superpotentiaP2 

(198) 

This expression is invariant under the global symmetry of the model and has 
.charge 2 under the anomaly-free R symmetry (49). 

Holomorphic decoupling provides a more stringent test. Add a mass term 
for the last flavor, to give the superpotential 

W=$(detT-BiTijB,)+mTN,Nf . (199) 

The F-flatness conditions for TNf a, TiNf, Bi, and Bi for i < Nj reduce T B 

B to the form 

T=(; ;) B=(Gf) B= (gf) (200) 

The condition Ft = 0 is 

-$(det?-%)+m=O. 

This can be rewritten as 

det? - 5s = mAbo = (Abo)e~,NF-l , 

(201) 

(202) 

where I have used the decoupling condition (70). Since, in the effective theory 
with Nj = NC, bo = 2N,, this is precisely the constraint (80). Thus, the 
effective description of this case as a moduli space of vacua parametrized by 

+ -T, B, ??, subject to the equations of motion following from the superpotential 
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(198), does connect correctly to our descriptions of supersymmetric QCD for 
smaller numbers of flavors. 

The precise description of the moduli space of vacuum states is given by 

solving the F-flatness conditions which follow from (198). These are 

T.B=B.T=O det T(T-‘)“j = BipJ . (203) 

Notice that the point T = B = B = 0 satisfies these conditions, and so there 
is a point in the moduli space where the full global symmetry 

su(Nj) x su(Nj) x CUB x US (204) 

is preserved. At this point, the ‘t Hooft anomaly conditions provide an espe- 
cially stringent check of the analysis. 

The quantum numbers of the elementary fermions of the theory are 

$Q : (Nj, 1)1,-1+1/N, +, : (l,Nf)-1,-l+l/Nf x : (1, l)o,+l (205) 

Note that the US q uantum numbers are those of the anomaly-free R sym- 
metry (49). At the point of maximal symmetry, the composite fermions have 
the quantum numbers 

$‘T : (Nj,Nf)o,-l+z/ivf dB : (rj, l)N,,-l/Nf G, : (l,Nj)N,,-l/Nf 

(206) 
You can readily check that the anomaly coefficients due to these representations 

are the following: 

elementary composite 

(SU(N.f 1)” : AN, AN, 

(SWNj))’ UB(~) : $NC $NC 

(su~(Nj))~ ~-JR(I) : --$N,~/N~ - ;N,~/N~ 

(h?(1))2 uR(1) : -2N; -2N; 

tr [uR(l)] , : -N,2+2Nj-2 -N,2+2Nj-2 

(ur(1>>3 : Nj(Nj - 2) - 2N3iV; Nj(Nj - 2) - 2N;/Nf2 

(207) 
where, in all of the lines, it is necessary to use the relation N, = (Nj - 1). The 
last line of the table is especially tedious to verify, but all of the anomalies do 

. 5- -match, providing a remarkable consistency check on the physical picture. 
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The picture of the vacuum states of supersymmetric QCD that we have 
constructed for Nf = N, + 1 has an obvious generalization for higher values of 
Nf . The gauge-invariant chiral superfields of the theory are 

T” j Bij...k Bij...k . (208) 

Here Bij...k is the baryon superfield, build as a product of N, quark superfields, 
which contains all flavors except ij . . k, and ?? is defined in a similar way. An 

SU(Nf) x su(Nf)- invariant superpotential is given by 

IV- (detT-B. - ‘- - ,j...kTiiT33 . Tkk??ij.,.F . (209) 

However, this superpotential does not have R charge equal to 2, and the multi- 
plet of fields (T, B,B) d oes not satisfy the ‘t Hooft anomaly conditions for the 

unbroken gauge group. In fact, since the anomaly of the flavor representation 
with p indices grows as Nr p-1, the mismatch of the ‘t Hooft conditions grows 

worse with each successive number of flavors. We need a better idea. 

7.3 Seiberg’s dual QCD 

Seiberg addressed this challenge in the following way: The baryon superfields 
in (208) have 

fit = Nj - NC (210) 

indices. Thus, we can view these fields as bound states of N, components. 
Let us assume that these components are the physical asymptotic states of the 
theory. We can associate these components with new superfields q and q. To 
bind these constituents into the gauge-invariant baryon superfields, we need a 
Yang-Mills theory with gauge group SU(fi,), for which the q and ?j transform 
in the fundamental and antifundamental representations. Then the baryon 
superfields would have the dual description 

a- 

Bij...k = cal...a- N, q” q;= . . . QkN’ ) (211) 

and similarly for ??. 
The complete proposal put forward by Seiberg is that supersymmetric 

QCD with Nf flavors can be described, for Nf > N, + 1, by a supersymmetric 

Yang-Mills theory with gauge group SU(fi,) coupled to the chiral fields qi and 

a,i= l,..., Nf , and an additional chiral supermultiplet Tij, which is a gauge 

singlet. The field T couples to q and ?j through the superpotential 

W=qTq. (212) 
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Without the superpotential, the theory has an additional U(1) global symme- 
try which acts on T; however, this symmetry is broken by (212). I will check 
below that the superpotential preserves the anomaly-free R symmetry. Thus, 
this model has the same global symmetry (204) as the original supersymmetric 

QCD model. Seiberg refers to the relation between this theory and the origi- 
nal SU(N,) Yang-Mills theory as non-Abelian electric-magnetic duality. I will 
explain some aspects of the duality of these theories in a moment. 

In this picture, the SU($,.) gauge group comes out of nowhere. Its initial 
role is to parametrize the constraint that the dual quark fields q, ij should com- 
bine correctly into the baryon fields. However, systems are known in which a 
gauge field which arises in this way to parametrize a constraint can become 
dynamical. The most famous example is the CPN nonlinear sigma model in 2 
dimensions!7>58 In any event, we will assume here that the SU(N,) gauge sym- 
metry is realized with a fully dynamical Yang-Mills theory, including asymp- 
totic gauge bosons and gau@os. With this idea, we place the theory in a 

Coulomb phase of the SU(N,) Yang-Mills theory in which the full comple- 

ment of SU(N,) gauge bosons are massless. Now we would like to ask, can we 
find nontrivial consistency checks of this picture? 

I have emphasize that the ‘t Hooft anomaly condition provides a stringent 

test of the low-energy particle content of a strongly-coupled gauge theory. Let 
us apply the test here, at the maximally symmetric point where none of the 
fields acquire vacuum expectation values and the full global symmetry (204) 
is realized. The original quark superfields have the quantum numbers 

& : (Nf, ~)I,I-N,IN~ Q : (~,~~)-I,I-N,IN~ , (213) 

using (49) for the R charge. Then the quantum numbers of the elementary 
fermions are 

~CIQ : (NJ, l)l,-NJN, 1cIq : (l,Nf)l,-NJN, A : (1,1)0,+1 . (214) 

To obtain the quantum numbers of the superfields in the dual description, 
compute the quantum numbers of a baryon field from (213) and then divide 

the result among its fi, components. This gives 

9 : @?fj ‘)j,7 /G c N /N c, c f 
q : (l,Nf) -NcJk,NcfN~ ’ 

Then the fermionic components of these fields have the quantum numbers 

5- - 
$q : mf> 1) N,/k,-1+X/N, 1cI, : (13r) -Nc/it,--1+NcIN~ ’ (216) 
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In addition, the phIsica1 fermions of the dual picture include the superpartners 
of T and the SU(N,) gauginos, 

$T : (N.~,~.~)o,I-zN,/N~ x : (1,1)0,+1 . (217) 

From this fermion content, it is straightforward to check the matching of 

all of the possible anomaly coefficients: 

wwfN3 
wJLwfN2 UB(l) 
csuL cN.f >>” ud1) 

(ud1))2 udl) 
tr [udl)l 
W(l)>” 

elementary composite 

AN, AN, 

LN 
2 = $4 

-;N,~/N~ -$N,~/N~ 

-2N,2 -2N; 

-(Ne” + 1) -(N,2 + 1) 

N,” - 1 - 2N,4/N; N,” - 1 - 2N;/N; 

(218) 

In the last two of these relations, the dual gauginos give a contribution which 
is necessary for the success of the consistency check. Since the value of this 
contribution is (fi: - 1) . (-l), including a sum over the dual gauge color 
quantum numb_ers, the matching requires us to take seriously the realization 
of the full SU(N,) g au g e supermultiplet as a set of physical asymptotic states. 

7.4 Decoupling relations 

To make further checks of Seiberg’s proposal, we should ask whether it connects 
correctly, through holomorphic decoupling, to the picture we have derived for 
supersymmetric QCD with a smaller number of flavors. In the process of 
answering this questions, we will find two other decoupling relations which 
also provide nontrivial checks of Seiberg’s duality. 

The first of these addresses the question of whether the duality relation is 
in fact a duality. If we act with the relation twice, do we recover the original 
theory? Start with a supersymmetric Yang-Mills theory of SU(N,) with Nf 
flavors and no superpotential. By the duality rela_tion, this should be equiva- 
lent to a Yang-Mills theory with gauge group SU(N,), an extra chiral multiplet 
T which is a singlet of the gauge group, and the superpotential given in (212). 
Carrying out the duality transformation once again, we find a Yang-Mills the- 

ory with gauge group SU(N,), an extra chiral multiplet U which is a singlet 
. ? pf the gauge group, and a superpotential of the form (212) which couples U 
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to the quark fields of SU(N,). The superfield U is identified with the bilinear 
i$qj. Thus, the final theory contains two singlet multiplets T and U and the 
superpotential 

W=qT?j+QUg=trUT+QU&. (219) 

The first term in this expression gives mass to all of the components of T and 
U. In addition, the F-flatness condition for FT implies that U = 0. Thus, 
when T and U decouple, we are left with an SU(N,) gauge theory with zero 
superpotential, just the theory that we started with. 

Next, consider the effect of adding a mass term for the last flavor. I 

will assume for the moment that Nj > N, + 2, so that this decoupling should 
connect two theories which would both be expected to exhibit Seiberg’s duality. 
In the original theory, decoupling the Nf th flavor gives a supersymmetric Yang- 
Mills theory with (Nf - 1) flavors and zero superpotential. 

In the dual theory, the addition of the mass term gives us the superpoten- 

tial 

w = qTq+ mTNfNf . 

.The F-flatness conditions for the TN,N, , qNf and (IN, are 

(220) 

q$f&, -trn=O (T.F)N, = (q” .T)N, = 0. (221) 

In this equation, I have explicitly written the SU(fi,) gauge indices a. To 
solve the first of these equations, q&, and TN, must obtain vacuum expectation 
values along a parallel direction of the gauge group. These expectation values 
break SU(N,) to SU($, - 1). Then th e second and third equations in (221) 
imply that the Nfth row and column of T ‘j vanish. The final result is an 

SU(fic - 1) gauge theory with (Nf - 1) flavors, a gauge singlet superfield T 

which is an (Nf - 1) x (Nf - 1) matrix, and the superpotential (212) coupling T 

to the quark superfields. This is the Seiberg dual of supersymmetric Yang-Mills 
theory with (Nf - 1) flavors. 

We have now seen that holomorphic decoupling correctly connects differ- 
ent theories with Seiberg’s duality in a way that preserves the duality relation. 
However, we still need to check that the theories with Seiberg’s duality are cor- 
rectly connected to the supersymmetric QCD models with a smaller number 
of flavors which we have described in earlier sections using different physical 
pictures. To check this connection, consider decoupling the last flavor in su- 
persymmetric QCD with (N, + 2) fl avors. In this case, the dual Yang-Mills 
theory has SU(2) gauge symmetry. The analysis of the previous paragraph 

still applies to this case, leading to a superpotential of the form (212) with qi, 
+ sd now l-component fields for each value of i = 1, . . , (N, + 1). 
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At the same time, the expectation values of qNf and qN, break the sU(2) 
gauge symmetry completely. Thus, as in Section 4.4, this case provides us 
with a well-defined instanton calculation which potentially adds another term 
to the superpotential. As in that section, we can analyze the instanton effect by 
counting zero modes. The instanton creates one each of the fermions Sqi, $qi, 
and 4 dual gauginos X. We can turn four quarks into squark fields using the 
squark-quark-gaugino coupling and replace the squark fields with i = Nf by the 
vacuum expectation values of these fields. We can then use the superpotential 
coupling to convert pairs Gni$u to Tij or pairs qi&j to $7. This allows us to 
construct an effective interaction with two fermions which contains (Nf - 1) 

powers of Tij or $2, i,j = 1,. . .(Nf - l), in a combination invariant to the 
residual SU( Nf - 1) x SU(Nf - 1) fl avor symmetry. This interaction has the 
form of a superpotential correction 

JdZBAW = Jd’BdetT , (222) 

up to an overall constant depending on A and (qN, ). Putting together the two 
contributions to the superpotential, we find 

We,= (q.T.q--detT) (223) 

This has exactly the form of the superpotential (198) which we wrote for the 
theory with (N, + 1) fl avers, with the identification 

qi + & T& -+ Bi . (224) 

Now the whole chain of effective descriptions of supersymmetric &CD, from 
Nf = 0 to large values of Nj, is linked together by holomorphic decoupling. 

7.5 Fixed points and asymptotic states 

In the analysis we have just completed, it seemed that Seiberg’s duality could 
connect supersymmetric Yang-Mills theories with arbitrarily large values of 

Nf. But there is a problem here, because, for sufficiently large Nf, the Yang- 
Mills theory will lose asymptotic freedom. In this case, the theory reverts 

to a weakly-coupled system of quark and gluon supermultiplets, interacting 
through asymptotically decaying forces. There does not seem to be a role here 
for the dual quark and gaugino fields which I insisted in the previous section 
should be thought of as physical particles. 

To understand how the regime with non-Abelian duality fits together with 

. 5- -this infrared-free regime, Seiberg proposed an additional interesting hypothesis: 
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At fixed N,, for some intermediate region of Nf, supersymmetric QCD is 
described by a scale-invariant theory which would be a new infrared fixed 
point of the renormalization group. In fact, this fixed point is already known 
in a certain region of Nf. In nonsupersymmetric gauge theories, at the point 

in Nf where the first /3 function coefficient vanishes, the second ,0 function 
coefficient has already turned positive. Thus, for values of Nf just below 

the critical value NJ where asymptotic freedom is lost, there is an infrared 

fixed point at a weak coupling g2/4a N (Nfc - Nf)!’ A similar result holds 

in the supersymmetric case. Seiberg conjectured that this fixed point extends 
downward in Nf through a significant region. 

In a supersymmetric field theory, a scale-invariant point necessarily has 
superconformal invariance, and this extension of the global symmetry group 
adds interesting structure to the theory. Recall that, in supersymmetric theo- 
ries, the energy-momentum tensor T p” belongs to a supermultiplet which also 

contains the supersymmetry current Si and a U(1) current Jp. In a classical 
scale-invariant supersymmetric theory, Jp is the current of the canonical R 

symmetry. Ordinary supersymmetry implies that Tf’” and Sg are conserved. 
.Superconformal invariance implies, in addition, 

T; = 0 Y&S@ = 0 d,Jp = 0 . (225) 

At a fixed point of supersymmetric &CD, then, Jp must be the conserved 
current of the anomaly-free R symmetry. The superconformal algebra gives 
restrictions on the eigenvalues of these operators. In particular, the scaling 
dimension of a field is bounded by its R charge, 

d 2 ;lRl ; (2’3) 

the inequality is saturated for chiral and antichiral superfields!’ In addition, 
as is true in the nonsupersymmetric case, the scaling dimension of a scalar 
field must satisfy 

dzl, (227) 

with d = 1 possible only for a free field. 61 I should note that both of these 

inequalities apply strictly only to gauge-invariant operators. 
Consider the implications of these statements if supersymmetric QCD is 

scale-invariant in a region where it exhibits Seiberg’s duality. Since the basic 
objects of our description are chiral superfields, we can work out their scal- 
ing dimensions from their R charges. In particular, for the gauge-invariant 
combinations, 

%- - 
Q.Q=T has d=3(N’GNc) 
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q.q=U has (228) 

As a check on these relations, the superpotential (212) has R = 2, as needed 
to preserve the R symmetry. By (226), this superpotential would also have 
d = 3, which is the correct value for this to be a marginal perturbation. 

In supersymmetric &CD, the /3 function coefficient bo is given by (38) and 
vanishes at Nf = 3N,. At this point, the bilinear U in (228) comes down to 
d = 1 and becomes a free field. For larger values of Nf , the dual theory can 
no longer be consistently described as a superconformal fixed point, but this 
is just as well, because the original QCD is known not to be scale-invariant in 
this regime. Rather, it is a theory with weak gauge interactions whose strength 
decreases logarithmically at large distances. 

In a similar way, the dimension of the bilinear T reaches 1 at Nf = 3N,/2. 

This value has another significance; since the beta function coefficient of the 
dual theory is 

bo = 3gc - Nj = 2N, - 3N, , (229) 

this is the value of Nf below which the dual theory becomes infrared-free. 
From this information, we can put together the following picture of the 

behavior of supersymmetric QCD for values of Nf greater than N,. For Nj = 
(N, + l), the asymptotic particles are the mesons T and baryons B and B and 
their superpartners. For the next few values of Nf , the asymptotic particles are 
the mesons T and the dual quarks q and ‘, interacting through an infrared-free 
supersymmetric Yang-Mills theory of SU(Gc). Above Nf = 3N,/2, however, 
the theory goes to a nontrivial infrared fixed point which is an attractor for both 
the original and the dual Lagrangian. As Nj increases, this fixed point theory 
looks less and less like the dual Yang-Mills theory and more and more like a 
weakly-coupled version of the original Yang-Mills theory. Finally, at Nf = 3N,, 
the fixed point comes to zero coupling in the original supersymmetric Yang- 
Mills theory. For still higher values of Nf, the asymptotic particles are the 
original quarks, interacting through an infrared-free supersymmetric Yang- 
Mills theory of SU(N,). The whole picture of the evolution of supersymmetric 

Yang-Mills theory with Nj is displayed in Figure 12. 
An interesting aspect of the plan shown in this figure is that, as Nf 

decreases, the qualitative behavior of the theory contains increasingly more 
strong-coupling, nonperturbative dynamics for the original quarks and gluons. 
We proceed from a free region, to a fixed-point region, to a region of confine- 
ment, to the extreme region of the Affleck-Dine-Seiberg superpotential. On 

the other hand, along this same axis, the dual theory changes from a strongly- 
. ? -coupled, confining theory to a free theory. Where one coupling is weak, the 
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Figure 12: Seiberg’s plan of the behaviourof supersymmetricyang-Mills theory as a function 

of the number of flavors Nf 
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dual coupling is strong. This behavior strongly motivates Seiberg’s idea that 
the relation of the original and dual pictures is a non-Abelian generalization 
of electric-magnetic duality. 

Although our analysis in this section has been given for supersymmetric 

&CD, it is highly suggestive that a similar behavior could appear in ordinary 
nonsupersymmetric &CD. For a sufficiently small number of flavors, we have 
color confinement and chiral symmetry breaking due to the expectation value 
of the quark bilinear (3). H owever, for larger values of Nf, the theory could 
go to an infrared fixed point which corresponds to an asymptotic non-Abelian 
Coulomb phase with no chiral symmetry breaking. Some time ago, Banks 
and Zaks argued that such a phase always appears for Nf sufficiently close to 
the critical value at which the theory loses asymptotic freedom.sg And there 
is some evidence from numerical lattice simulations that QCD with the gauge 
group SU(3) no longer exhibits confinement and chiral symmetry breaking for 
Nf > 7.s2 It will be very interesting to learn whether the complete picture 
that Seiberg has assembled for supersymmetric QCD has a direct analogue in 
nonsupersymmetric &CD. 

To conclude this section, I would like to note two interesting checks of 

Seiberg’s duality. Argyres, Plesser, and Seibere3 have studied the duality 
starting from N = 2 supersymmetric &CD, by introducing explicit breaking 
to N = 1. They have exhibited a point in the Coulomb phase of the N = 
2 theory such that the reduction to N = 1 gives the Seiberg dual theory, 
and they have shown that this point can be continuously connected to the 
standard picture of supersymmetric QCD at weak coupling through a path in 
the N = 2 Coulomb phase. Bershadsky, Johansen, Pantev, Sadov, and Vafa!j4 
have recently identified Seiberg’s duality in a stringy context, as a T-duality 
of certain Type IIB compactifications. 

8 Generalizations of non-Abelian Duality 

Seiberg’s work described in the previous section gives a unified picture of the 
behavior of N = 1 supersymmetric SU(N,) Yang-Mills theories with Nf flavors 
for the whole range of possible values of Nf . We might draw from this analysis 

the insight that it is interesting to consider the systematics of other families of 
supersymmetric Yang-Mills theories with varying numbers of flavors. In this 
section, I will briefly discuss a few interesting cases. In the past year, many 
examples of strong-coupling behavior in N = 1 supersymmetric Yang-Mills 
theories have been explored. There is no space here for a complete review of 

this subject, but I hope that these examples will give an idea of the richness 
I r -of the phenomena that have been uncovered. 
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8.1 SO(N,) and Sp(2nc) 

The simplest generalizations of Seiberg’s duality occur in vectorlike SO(N,) 

and Sp(2n,) gauge theories with Nf flavors of quarks and squarks in the fund- 
mental representation. I will now explain how the systematics of SU(N,) gauge 
theories presented in Section 7 extends to these theories. 

Consider first SO(N,) gauge theories with NJ flavors of quarks and squarks 
Qi in the representation of dimension Nf . The global flavor symmetry of this 
theory is SU(Nf) x US. The ,B f unction of the theory is given by 

b. = 3(Nc - 2) - Nj (230) 

The fundamental and adjoint representations of SO(N,) have anomaly coef- 
ficients n, as in (37), equal to 2 and 2(Ne - 2), respectively. Thus, for this 
theory we can make a table similar to (50). Let A represent the anomalous 
U(1) flavor symmetry of the Qi. Let R and R AF represent the canonical and 
non-anomalous R symmetries; RAF is given by 

RAF= R+ 
Nf-Nc+2A 

Nf 

Let Tij be the gauge-invariant chiral superfield Qi 
tensor of the flavor SU(Nf). Then we have 

(231) 

Qj ; this is a symmetric 

A R RAF 

Qi +1 0 (Nr + 2 - Nc)IN.t 
A 0 +1 $1 

Abe 2Nf -2(Nf + 2 - Nc) 0 

detT 2Nf 0 2(Nj + 2 - Nc) 

(232) 

A nonperturbative superpotential for this theory must be invariant under 
A and must have R charge 2. From the data in the table, the only possibility 
is 

l/(Nc-2-N,) 

(233) 

Thus, we expect that, for Nf < (N, - 2), a superpotential is-generated in the 
matter described by Affleck, Dine, and Seiberg, while for Nf > N,, there is an 
electric-magnetic duality. 

The duality of the theory for large Nf has been worked out by Intriligator 
. %- -and Seiberg.‘j5 The dual theory is an SO(Nf - N, +4) gauge theory with dual 
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quark superfields qi in the Nf representation of the SU(Nf) flavor group, the 
gauge singlet superfield T”j, and the superpotential 

(234) 

This theory satisfies the ‘t Hooft anomaly conditions at the origin of moduli 
space in a manner similar to that of the SU(N,.) duality. 

For intermediate values of Nf, there are some interesting special casess5 
For Nf = N, - 4, the theory is described at weak coupling by expectation 
values (Qi) which generically break SO(N,) to an SO(4) pure gauge theory. 
Since SO(4) = SU(2) x SU(2), this theory has two SU(2) gaugino condensates 
which are equal in magnitude. For each of these condensates, the Zz symmetry 
of the theory gives two choices (fl) for its phase. If the two condensates are 
chosen parallel, we obtain the superpotential (233). If the two condensates 
are chosen antiparallel, we obtain a second branch of the theory with zero 
superpotential and a nontrivial moduli space. This second branch is also found 
in the case Nj = N, - 3, reflecting the possibility of a cancellation between the 
contributions to the superpotential from the SO(3) gaugino condensate and 
from explicit instanton effects. In this latter case, a new chiral field qi in the Nf 
representation of SU(Nf ) . is needed to satisfy the ‘t Hooft anomaly condition. 
For Nj = N, - 2, no superpotential can be generated. The weak-coupling 
description of the theory has SO(N,) broken to SO(2) = U(l), so the theory 
has a Coulomb phase. The new fields qi from the previous case are generated 
by decoupling from magnetic monopoles in this theory. For Nf = N, - 1, the 
theory is described by a dual SO(3) gauge theory with the superpotential 

W = Ti’qi ‘qj - det T . (235) 

Beginning with Nf = N,, we find the generic situation for large Nj described 
in the previous paragraph. There are additional complications for the special 
cases of N, = 3,4. 

For Sp(2nc) gauge theories, the situation is rather more straightforward.s6 
For these theories, the number of flavors must be even to avoid discrete gauge 
anomalies. Thus, we introduce an even number Nf = 2nj of supermultiplets 
Qi in the fundamental 2n,-dimensional representation. The global flavor sym- 
metry of this theory is SU(2nj) x Un(1). The ,8 function of the theory is given 

by 
bo = 3(2n, + 2) - 2nj . (236) 

The fundamental and adjoint representations of have anomaly coefficients n 
+ -equal to 2 and 4(n, + l), respectively. Let A again represent the anomalous 
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U(1) flavor symmetry of the Qi. Let R and R AF represent the canonical and 
non-anomalous R symmetries; RAF is given by 

RAF= R-I- 
nj - 72, - 1 

A. 
nj 

(237) 

Let Tij be the gauge-invariant chiral superfield Q” .Qj ; this is an antisymmetric 
tensor of the flavor SU(2nj). Then the table of quantum numbers reads 

A R RAF 

Q” +1 0 (nj - 1 - n,)/nj 

x 0 $1 +1 

Abe 4nj -4(nj - 1 - n,) 0 

detT 4nj 0 4(nj - 1 - n,) 

(238) 

Since T is an antisymmetric matrix, its determinant factorizes as the square 
of simpler object, the Pfaffian Pf T. 

A nonperturbative superpotential for this theory must be invariant under 
A and must have R charge 2. The unique possibility is 

WeRZ c. g 

( > 

ll(nc+l-nf) 

(239) 

This superpotential is generated for all cases nj < nc + 1. In the case nj = 

(n, + l), the theory h as a moduli space of vacua with a nonperturbatively 
modified constraint 

pf T = A%c+l) (240) 

For nj = (n, + 2), the theory h as a moduli space of vacua with the superpo- 
tential 

W=PfT. (241) 

For nj 2 (n, + 3), the theory is dual to an Sp(2(nj - n, - 2)) gauge the- 
ory with quark superfields qi in the sj representation of SU(2nj) and the 

superpotential 

W=Pjqj’qj. (242) 

Thus, the vectorlike supersymmetric Yang-Mills theories based on the classi- 

cal groups SU(N,), SO(N,), and Sp(2n,) all show similar patterns in their 
. -qualitative behavior. ? 
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8.2 Examples with chiral matter content 

The systematics of N = 1 supersymmetric Yang-Mills theories becomes strang- 
er when we consider models with more general representations. An interesting 
example to consider next is the SU(N,) model with a symmetric tensor mul- 

tiplet S and Nj multiplets Q” in the N, representation. This is a chiral guage 
theory, and the cancellation of gauge anomalies requires NJ = N, + 4. This 
theory has a large number of possible gauge-invariant chiral fields, of which 
the two simplest are 

U = det S , j@ = Qi S Qj , (243) 

a singlet and a symmetric tensor of the flavor group SU(Nj). 
Pouliot and Strassler have found that the properties of this theory are 

matched by a dual gauge theory with the gauge group SO(S).‘j7 The dual 
theory contains Nj multiplets qi in vector representations, one multiplet p in 
the spinor representation, and gauge singlet fields U and M”j. The dual theory 
has a nontrivial superpotential 

(244) 

Reciprocally, the SO(8) theory with the same charged matter content qi, p 
and zero superpotential is dual to an SU(N,) gauge theory with a symmetric 
tensor multiplet S, quarks Q”, and the additional gauge singlet fields 

. _ 
T=P.P, N”j = qi . qj (245) 

and the superpotential 

W = NijQi .S.Qj+TdetS. (246) 

This is a bizarre transformation. In the forward direction, we began from 

a chiral gauge theory, but the dual was a vectorlike theory. In the reciprocal 
relation, we began from a vectorlike theory and found a chiral theory as the 
dual. This turns out to be a common phenomenon in the more complex ex- 
amples of non-Abelian duality. The first example was found by Pouliot in an 
SO(7) mode1.s8 

Similar examples can be found in models with antisymmetric tensor rep- 

resentations. Consider, for example, SU(N,) Yang-Mills theory with an anti- 
symmetric tensor representation Aij, M multiplets Qi in the N, representa- 
tion, and N multiplets Ga in the Iv, reprsentation, and zero superpotential. 
Anomaly cancellation requires N = N, - 4 + M. As M is increased, this the- 

, ? pry exhibits a progression of behaviors, with a nonperturbative superpotential 
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generated for M 5 2, a constrained moduli space with a nonperturbative cor- 
rection for M = 3, and a moduli space of vacua with a superpotential for 
M = 4.6’ Pouliot has shown that, for M 2 5, this theory has as a dual which is 
an SU(M-3) x Sp(2(M-4)) gauge theory. Th e matter content is rather large. 
Let me denote the fundamental representation by f and the antisymmetric 
tensor representation by a, and write for each multiplet the content under the 
gauge group and the non-Abelian part of the flavor group. Then each multiplet 
belongs to a representation of SU(M - 3) x Sp(2(M - 4)) x SU(M) x SU(N). 

In this notation, the dual theory contains the multiplets 

x : (f>f;l,l), P : (f, 1; 111) , 

a : (q 1; 1,l) ) iri : (f,kTJ), 

e : (l,f;l,T> , M : (Ll;f,.f) > 

H : (l,l;l,a), B : (l,l;f,l) (247) 

interacting through the superpotential 

W=Mi@+H!~+Bp~+az?. (248) 

This theory brings us into territory that is interesting for another reason. 
SU(N,) gauge th eories with antisymmetric tensor representations provide the 
simplest examples of supersymmetric Yang-Mills theories with spontaneously 
broken supersymmetry. Some time ago, Affleck, Dine, and Seiberg pointed 
out that the SU(5) gauge theory with one 10 and one 5 matter superfield 

71 spontaneously breaks supersymmetry. The intuitive reason for this is easy 
to understand from the considerations of Section 4: The origin of field space 
where the 10 and 5 have zero vacuum expectation values is destabilized by 
nonperturbative dynamics, as we found there. But, since it is not possible 
to build a gauge-invariant chiral field from these ingredients, there are no 
D-flat directions along which the vacuum can escape to infinity. Recently, 
Murayama? has made this a g r ument quite concrete by studying the SU(5) 

gauge theory with a 10, two %, and a 5 with a mass term that decouples one 

5 +5 pair. The argument can be repeated for every larger odd value of NC. In 
those theories, there is a D-flat direction along which the theory can escape to 
infinity, but at the end of this trajectory the theory is broken only to SU(5). 

Thus, there is no possible vacuum state that preserves supersymmetry. 

The example just discussed shows the possibility of exploring dynamical 
supersymmetry breaking using duality. Indeed, Pouliot showed that, when one 

decouples M flavors in the dual picture, the resulting theory has a superpo- 
, r _tential which does not allow an F-flat vacuum configuration?’ 
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By combining the various ingredients that I have discussed in these lec- 
tures, working with non-simple gauge groups and including explicit as well 
as dynamical superpotentials, it is possible to construct a wide variety of 
models of dynamical supersymmetry breaking. Intriligator and Thomas have 
presented a catalogue of supersymmetry-breaking mechanisms that appear in 
these modelsr3 and many examples are now being generated. 

On the other hand, the broad picture of non-Abelian duality in N = 1 
supersymmetric Yang-Mills theory remains far from clear. Many examples of 
duality have been generated in the past year, many more than I have space 
to review, but as yet there is no broad picture of the systematics of this phe- 
nomenon. The recent papers 74175 are two recent attempts to bring order to 
the N = 1 gauge theories, neither completely successful. Most likely, there are 
many strange things still to be learned about these models. 

In this atmosphere of promise and confusion, I end these lectures. I wish 
you, the reader, good luck in finding the connections among supersymmetric 
Yang-Mills theories that are still hidden. I hope that we will also be able to 
find a place for the wealth of phenomenon these theories provide in realistic 

‘models of Nature. 
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