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1 Introduction

The microwave instability is usually described by linearizing Vlasov equation in the angle-

action variables 1, @ and assuming that the interaction of azimuthal harmonics p.(1) of the
distribution function p is weak, where

The argument implied here is that the Hamiltonian flow smears out particles over invari-
ant tori characterized by the action variables, and the remaining azimuthal dependence of

the distribution function is small. Indeed, such an approach successfully describes bunch
spectrum and the threshold of the microwave instability. However, recently there have been
interesting observations of bunch centroid and bunch shape oscillations above instability
threshold at LEP [1] and the damping ring at SLAC [2]. There are also indications that
the oscillations sometimes occur in localized region in the longitudinal coordinate instead of

affecting the entire longitudinal distribution as one expects by an action-angle analysis.
In this paper we describe an alternative approach to the problem of bunch stability using

decomposition of the Fokker-Plank equation in the system of nonlinear equations for the
moments of the distribution function. In particular, this approach allows us to avoid the
conventiona~ action-angle decomposition. The

moments, are expressed in the Cartesian z — 6

physical quantities we are interested in, the

phase space. To close the infinite hierarchy

-.
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of moments equations, we assume that higher order correlations are small. Alt bough
both the action-angle and the Cartesian languages must be equivalent before truncation,
they may have different speed of convergence depending on the problem being studied. It is

hoped that Cartesian expansion approach would converge faster for the cases corresponding

to those observed recently above threshold. This approach, is well known in kinetic theory.
It has been used recently by Wurtele et al. citeWurtele in their study of the threshold of the
instability. The recent experimental observations made us interested in it again. This note
is a progress report of our work.

2 Moments of the distribution function

Longitudinal motion of a particle is described in terms of the distance z of a particle from
the position of bunch center in the RF bucket (z >0 for a particle in the head of a bunch),

and the deviation 6 = p — p. of the momentum from the momentum p. of an equilibrium
particle at the zero current. We use the dimensionless coordinates q = z/oO, p = –6/60 and

dimensionless time s = w,t, where 00 is the rms bunch length, 60 is the rms energy spread,
and w, /2r is synchrotron frequency at the zero current, w~ao = a6co.

We start with the Fokker-Plank equation for the distribution function p(q, p,s), (with

f~q~PP(q,P,s) = 1)7
dp dp du(q) dp ap
~+p—– —

dq ~q ~ = ?g[~o~ +PP]
(2)

where ~ is radiative decrement, and the equilibrium temperature To = 1 in the dimensionless
variables we choose. The self-consistent potential u(q) is --

du(q)
— =q-~~mdq’f(q’>.)~’[(q’ -q)~ol.dq 9

(3)

Here f(q, s) = Jdpp(q, p, s), and W$(z) is the wake-field, W~(z) = O at z <0, describing the’

energy loss Apco = –e2W$(z) of a trailing particle due to the field excited by a point-like
leadi~g particle with the separation z >0 between particles. The coefficient A is proportional
to the number of particles per bunch, Nb:

(4)

Let us define the average of an arbitrary function @(q, p,s) with the distribution function:

~(q,~)f(q)s) = /dPP(q> P,s)@(q,P,s) (5)

In particular, for @ = p“ we get for n = O, 1,..,4 correspondingly

df
~+ :(Ff) = o, (6)

(7)
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(8)

(9)

(lo)

This derivation is quite analogous to the derivation of the equations of hydrodynamics from
the kinetic equation. The first equation is the continuity equation assuring conservation of
mass, the second equation corresponds to the conservation of momentum, etc.

The system of Eqs. (6)-(10) has a steady-state solution f(q), df/ds = O,

(11)

F=O, ~= To=l, ~=o, p=3, (12)

This solution corresponds to the Haissinski solution [4]

P~(q>Pj~)= pOe-[#+U(g)l, f~(q) = foe-u(g), (13)

and results for p“ corresponds to the averaging p’ = J dppne-P2f2/ J dpe-P212, i.e. p =

2mr(m + l/2)/sq~t(x) for even n = 2m and is equal to zero otherwise.
Define functions o(q, s), ~(q, s), ~(q, s), ~5(q, s): -.

V(q, s) = p (14)

T=l+~(q, s)=(p–~)2 (15)

((q, s) = (P- P)3 (16)

3 + r(q, s) = (p – p)4 (17)

(5 = (P – P)5 (18)

The average-moments can be written now as

p = V(q, s) (19)

p=l+7+v2 (20)

(21)F=~+3V+3VT+V3

(22)~=3+r+4v[ +6v2+6v2~+v4

p = {5 + 15V + 5VT + 10V2( + 10V3 + 10V3T + V5. (23)

Note that these moments are functions of the Cartesian longitudinal position q and time
s. -.
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3 Basic equations

Define @(q,s) as a perturbation of the distribution function around the Haissinski solution

Eq. (13) according to

f(~,s) = fH[l + @(q,s)]. (24)

Note that conservation of number of particles gives

for all s.
The potential Eq. (3) has two parts u = U.+ UI where UOis the Haissinski self-consistent

potential
duo(q)_=q–~

dq /
w dq’fH(q’)W$[(q – q’)ao] (26)

9

and
dul(q) = _~ ~

dq /
dq’~(q’, s) fH(q’)Wf[(q – q’)ao].

9

(27)

The system of Eqs. (6-10) can be continued indefinitely. To close the system, we need
some way to define the higher moments ~, ~, r, (5, .. in terms of the lower moments. The

obvious criterion is the requirement that the truncated system of equations has to have
correct spectrum of coherent bunch oscillations at least in the case of the zero beam current.

To close the system of two equations with variables @, v it is sufficient to put ~ = O.

Similarly, taking ( = O we get the system for three variables ~, v, and ~. To get a closed --
system of four equations, we can define r(q, s) by the condition

3+T = (p–p)4 = 3[(p–p)2]2 =3(1 +7)2. (28)

The coefficient here is defined by the number of pairs (p – @)2 which can be chosen out of
four multipliers (p – ~)4.

Stiilarly, to get a system of five equations, we can define (5 by the condition

- (P- P)5= 1O(P- F)2(P- F)3= 10(1+ ~)( (29)

where the coefficient is chosen in the same way.

After some algebra, for example, the system of four Eqs. (6)-(10), with the definitions of
@ and r given by Eqs. (20)-(24), takes the form

84
~ + v’ – U:v = –(@v)’ + U:vo, (30)

4-74,
g+$’+T’ –u;T+u; +7v=–vv’ +—

1+4 ‘
(31)

87
~ + 2V’ + (’ – u:< + 277 = –VT’ – 2TV’ – ~+’,

l+@
(32)

--
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8(
~ + 37’+ 37< = –3TT’ – 3~V’ – V(’, (33)

where prime means taking derivative with respect to q.

Similarly, to derive the system of five equations, we use Eq. (29). One find that Eqs.
(31-33) remain the same, while Eq. (34) should be replaced by

8(
~ -37’ + 6U~T + r’ – u~r + 37~ = 377’ – v[’ – 3v’~ – 3r2u~ + &[6T + 372- r], (34)

ar
~+12v’–6u:[ +lO<’+4y(r–37) = –vr’–4rw’– lO76c~6+6<7U&7U&– %(1+7). (35)

To understand how many equations are needed to describe the instability, let us con-

sider the system in the simplest case with ~ = O neglecting nonlinear terms in the RHS of
equations. This gives the system of two equations

which in turn can be reduced to one equation for V(q), v(q, s) = V(q) exp[q2/4
zero current and neglecting damping, we get the Schrodinger-type equation

V“+[02+;-:]V=0

(36)

(37)

i~s]. At

(38) --

For an arbitrary Q, one of two solutions grows as V m eg2/4at large q, giving VfH ~ const,
which is unphysical. To avoid such a solution, 02 has to be quantized, giving the spectrum

of bunch oscillations at zero current: Q: = n, n = 0, 1,... Compared with what is expected’
under the condition, namely 0. = n, one notes that only the lowest frequency (n = O and 1)
give the correct result. This is the result of taking into account only two equations for @ and
v. T6 get correct frequencies of multipole oscillations, it is necessary to take into account
more variables.

Keeping three equations in the system of Eqs. (6-10) we were able to get correct spectrum
of dipole and quadruple oscillations, four equations would give correct spectrum including

sextupole oscillations, etc. To minimally describe the experimental observations, one must
include at least three or four variables.

For the sake of simplicity, let us take an impedance as a sum of pure resistive and
inductive terms (delaying the subtle question of divergence of the impedance at w 4 m).

In CGS units.
Lw

z(w) = R– i—.
c;

Here COis velocity of light. The wake for this model is

-- Aw$(qo,) = Re6(q) + Le6’(q),

(39)

(40)
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where the effective R~ and Lc are

R, = 4T:~, L,=fi. ~ (41)
0:

The model has been studied before in terms of the interaction of the azimuthal modes of the

distribution function and results are available [5]. In this model,

U&= ~– R, fH(q) + L. f&(q); U! = –RefH@ + L.(fH@)’. (42)

The Haissinski solution for the model is defined by

R.fH – q
fk=–u;fH=l+LfH,

e

(43)

and, normally, has only one maximum ~~ = O. Correspondingly, uo(q) has only one minimum
and does not satisfy the assumption of the Baartman-Dyachkov model [6] about a potential
having two minima.

For such a model, the linearized system of three variables can be reduced to a second-

order equation. Without radiation damping and for the time dependence e–zos it takes the
form

u“ — a(q)v’ + b(q)v = O, (44)

where
R~fH + u~LefH

a(q) = u; +
3 + LefH

(45)

b(q) = ~ + ~ fH [~2 - ‘:(1 + ‘efH) + RefHu~ + LefH(u&)2].
(46) --

e

The new function V(q),

v(q) = V(q)e~ Joq~g’”(g’) (47).

satisfies the Schrodinger-like equation:

v“ + ~+; fH[Q2-uefj]v= o, (48)
e

with the effective potential

3 + L.fH 2 3 + L.fH ,
ue~~ = u;(1 + LefH) – (Re + Leu&)uLfH + 4 a(q)– 2 a (q). (49)

At large distances, Iql ~ m, Eq. (49) is similar to Eq. (38)

v“ + [‘2:1/2- :]V = o, (50)

giving spectrum 02 = 3n+l, n = O, 1,... The eigen functions define the asymptotic behavior

of v(q) in terms of the Hermitian polynomials fi.(x)

(51)
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where

G~,,A,, = X KAak,kx~’X~”. (59)
l,m,k

In the linear approximation, the RHS should be dropped. The eigen values A define the

mode frequencies w. = ImA. and the decrements y. = ReA. of the n-th mode. The number
of modes is equal to nv x h. Fig. 1 shows the mode frequencies for different h and n. in
the case when the wake is turned down, R. = L, = O. For the fixed n. = 3, the number of

modes increases with h, but all new modes either increase degeneracy of the existing modes
or add new spurious modes with higher frequencies, see Fig 1(a). For this reason, we choose
in the following h = n.. Fig. 1 (b) shows modes for n. = 3,4,5 variables, and h = n.. The
number of correct modes increases with n. as it was mentioned above with one exception of

~= 1.77 at n. =5.
Variation of the frequencies with the wake-field parameter A is shown in Fig. 2 for

n – h = 4 and the radiation damping y = 0.01. Variation of the damping y. with A is~—

shown in Fig. 3.

The set of Eqs. (59-60) can be split in two subsets, one for oscillating modes with ImA # O
and another one for a quasi-static modes with ImA = O. The oscillating modes come in pairs
with the same ReA. We indicate pairs of oscillating modes with v, U, v, u = 1, ... nV: AV = A~,
X“ = (XV)*. The quasi-static modes are indicated with the index c, c = 1,... nC.

To simplify solution of the system of equations, we can average out fast oscillating terms.
Although the resonance interaction between modes is possible at certain parameters L,, R.
and may describe interesting physics of mode splitting and of mode recombination (see Fig.
2), we are not interested in such special cases because the saw-tooth instability does not
have resonance character taking place at some range of currents rather than at one certain --
current.

Averaging out oscillating terms, we get

(60)

(61)

(62)

The coefficients G~,C+ G:,v = [G~,C+ G~,U]*. Therefore, g, = g;, and Eqs. (60)-(62) can be
written for the variables gc, Igu12.

~ + ACgC= – ~ G~; ,C2gC,gC2– ~[G;,c + ~,V]lgv[2 c= l,.., nC, (63)
c1,C2 V=l

dlgV12
~ + (Av + A:)lgv12 = – ~[G:,c + G:,. + C.c]g.lgu 12, C = l,.., nV. (64)

c=1--
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There is always a trivial solution gC = lgV12 = O corresponding to the Haissinski solution.

Small fluctuations around such a solution may lead to instability only if ReAV <0. In this
case, g. grows with time

19.12= 9.(0)2exP{- ~ ds[2ReA. + ~.g.]}, ~. = [G:,c + G;,. + cc] (65)

provided gV(0) # O. That drives growth of g. and the growing g. may stop growth of g..
Numerical analysis shows, at least for the impedance model Eq. (39), that, for R, >0,

and n. = h = 4 there is only one pair of unstable modes with ReAU < 0 and two c-type
modes. Retaining only these modes, we get the system of three equations for X = gCl,

Y =gCz, and Z = lgv12

dX
~ + AIX = –aIIX2 – a12XY – ~lZ, (66)

dY
~ + A2Y = –a22Y2 – a21XY – ~2Z, (67)

~ + A3Z = –~lXZ – K2YZ, (68)

where A1,2 = ACI,C2, A3 = Av + C.C., aII = G:; ,cl, a22 = G:;,C2, ~12 = G:;,C2, ~21 = G:;,cl,

P1,2 = G::+ = G;:, K1,2 = [G:,cl , + G:, 2,. + C.C]. The system reminds the system of

equations for the Lorenz attractor [71 and can describe quite different motion depending on
parameters.

The trivial solution X = Y =.2 = O corresponds to the Haissinski solution. Generally, --
there are other fixed points X = Y = 2 = O in the 3-D phase space X, Y, Z. In the vicinity
of a fixed points, stability depends on the eigen values of the system linearized around the

fixed point. Variation of the 3-D volume around a fixed point with time depends on the
trace of the Jacobian Jo@(X, s) = DXo(s)/DXp(0). For the system Eq. (67-69),

TTJ(s, X) = Al + A2 + As + (2all + a21 + ~l)X + (a12 + 2QZZ+ ~2)Y. (69)

For the impedance model Eq. (40), for large R., Al and A2 are positive while A3 is

negative. In th;s case, the fixed point at the origin is instable and the instability starts with
exponent ially growing Z. The growing Z drives X and Y and their growth can stop the
instability when I~lX + ~2Yl > IA31. After that, Z exponentially decay while X and Y can
stay about constant at their maximum Xn~Z, Ymaz until Z becomes so small that the driving

terms ~Z in the equations for X and Y can be dropped. After that X and Y decrease and

the system can go back to the origin. Unfortunately, at least for the case nu = h = 4 we
were unable to find the proper parameters. The dynamics we found is shown in Fig. 4. The
time dependence of Z and X corresponds to our expectations. However, the system does not
come back to the initial conditions we used, X(0) = Y(0) = 0, Z(0) = 10–6. It is not clear
at the present time whether this is related to the way we truncate the system or something
else.
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