
I

SLAC-PUB-7381
hep-ph/9612307
December 1996

CP Violation in K Decays
and Rare Decays *

GERHARD BUCHALLA

Stanford Linear Accelerator Center
Stanford University, Stanford, CA 94309, U.S.A.

. ... . ..

Abstract

The present status of CP violation in decays of neutral kaons is reviewed. In addition selected :

rare decays of both 1{ and B mesons are discussed. The emphasis is in particular on observ-
able that can be reliably calculated and thus offer the possibility of clean tests of standard “
model flavor physics.

Invited Talk presented at the Workshop on

Heavy Quarks at Fixed Target, St. Gear, Germany, 3-6 October 1996

--

*Work supported by the Departmentof Energy under contract DE-AC03-76SFO0515.



I

1 Introduction

The violation of CP symmetry is one of the most important issues in contemporary particle
physics. First, it is a topic of fundamental interest in itself. Together with C violation, CP
violation provides one with an absolute definition of matter versus antimatter. It is also one
of the three necessary conditions for the generation of a baryon asymmetry in the universe.
Studies of this phenomenon allow one furthermore to probe standard model flavordynamics, -
which is the part of this theory that is least understood and contains most of the free model

parameters, including the single CP violating CKM phase 6. Therefore CP violation is also
closely linked to the open question of electroweak- and flavor symmetry breaking.
The experimental information on CP violation, on the other hand, is still very limited. Thirty-

+ – decays, its observation has so far been restrictedtwo years after the discovery in 1<~ + x T
exclusively to decays of neutral kaons, where it could be identified in just a handful of modes

+ – 1<~ + ~“zo, 1<~ + xpv, 1<~ + nev and ~<L + ~+r–~). All of these effects are(]<L+~~,

described by a single parameter &. The question of direct CP violation in 1< + mm,measured
by the parameter &’/& is not yet resolved conclusively.
It is clear from these remarks that further detailed investigations of CP violation in kaon

decays are highly desirable. This includes c, &’/&, but also further possibilities in rare decays
such as..1{~ + nOe+e– or ~<L + T“vti. Since CP violation and flavordynamics are intimately

related, important additional and complementary information on this topic will come from
studying-rare decays in general, which may or may not be CP violating. Interesting opportuni-

ties are given by 1<+ + T+vti and rare B decays such as B + X.V, B + X3 VU, B + X,l+l-,

B + 1+1-, and it is natural to include them in a discussion of CP violation in 1< decays.

Crucial tests of CP violation will also be conducted by studying CP asymmetries in decays
of B mesons. This very important and interesting field is covered by the contribution of M.

Gronau (these proceedings) and will therefore not be discussed in this talk.
The outline is as follows. After these introductory remarks we briefly summarize the the-

oretical framework that is employed to describe CP violating and rare decay processes. In
section 3 w~ review the theoretical status of CP violation in 1{ + TX decays, described by
the parameters & and &’/&. The rare decays 1<+ + n+vti and 1<~ + x“vu, the latter of which
probes CP violatioq are discussed in section 4. Section 5 briefly summarizes the status of

+ –. Section 6 addresses the radiative decay B + X,V and the~{~ + T“e+e- and ~{L + p p

rare decay modes B + p+p– and B + X,vti are described in section 7. Our emphasis in

discussing rare decays is on short-distance dominated and theoretically clean processes, which
offer excellent prospects for future precision tests of SM flavor physics. A selection of further

interesting modes is briefly mentioned in section 8. We conclude with a summary in section

9.

2 -Theoretical ~amework

—

—

In the standard model rare and CP violating decays are related to loop-induced flavor chang-
ing neutral current (FCNC) processes. This is illustrated in Figure 1 which shows the un-

derlying electroweak transitions at the quark level. However, quarks come only in hadronic
boundstates. The treatment of FCNC processes is thus in general a very complex theoretical

1



I

b’s*
dti,+QcD

Figurel: Typical diagrams for FCNCprocesses inthe standard model.

problem: It involves electroweak loop transitions at high (Mw, m~) and intermediate (me)
energies in conjunction with QCD radiative effects at short and long distances, including

non-perturbative strong interaction boundstate dynamics. To make this problem tractable

a systematic approximation scheme is necessary that allows one to disentangle the interplay

of strong and weak interactions. Such a tool is provided by the operator product expansion
(OPE). It can be used to write the quark level transition in the full theory, illustrated in Fig.
1, in the following form., .,.-. n

(1)
ivA

where the Qi are a set of local four fermion operators (usually of dimension six), Ci are the
associated Wilson coefficient functions and VCI<-Mdenotes schematically the relevant CKM

parameters. The detailed form and number of the relevant operators depends on the process
under consideration. Operators of dimension higher than six are suppressed by inverse powers
of the heavY mass scale (e.g. Mw, mt) and can usually be neglected for low energy B and If

meson decays.
Using a somewhat less formal language, operators and Wilson coefficients are in essence noth-

ing more than effective interact ion vertices and effective couplings, respect ively. The expres-
sion on the lhs of (1) can be viewed as a (low energy) effective Hamiltonian, approximating
FCNC interactions among quarks and leptons at energies far below the Mw scale. The cru-
cial feature of the OPE approach is that it provides a factorization of short distance and long

distance contributions. The short distance physics from scales O(MW ) down to p k 1 GeV is

factorized into the Wilson coefficients, which can be calculated in perturbation theory, includ-

ing- QCD effects. The contribution from long distance scales below y on the other hand, is

isolated into the matrix elements of the operators Qi between physical hadron states. These
have to be treated non-perturbatively, for instance in lattice QCD (see S. Gusken, these pro-

ceedings). The scale p that separates the short distance and long distance regime is arbitrary

in principle. It has to cancel between the Wilson coefficients and the matrix elements. For

pract;cal purposes, however, one would like to choose p rather low in order to include as much
of the physics as possible into the calculable coefficient function. On the other hand it is

essential for the present approach that QCD be still perturbative at scale p, otherwise the
calculation of Ci would b7eak- down. Therefore p must not be too low. Preferably it should
also be close to the relevant scale in the hadronic matrix elements, without of course violating

the requirement of perturbativity. Valid choices are p = ~(~b) for B decays and p k 1 GeV
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Table 1: Important input parameters.

Vcb lvub/~,l -mt(mt) BK

0.040* 0.003 0.08&0.02 167&6GeV 0.75 k 0.15
! i ,

for 1{ decays.
There has been continuing progress during recent years in our understanding of FCNC

processes within the standard model. First of all, relevant input parameters have become

better known due to ongoing progress in both theory and experiment. The most important
quantities that enter in constraining the CKM phase 6 from the measured value of & (kaon

CP violation) are the CKM angles Vcb, IVub/VCb1, the top quark mass m~, and the hadronic
bag parameter BK.

V.b is already quite well known from exclusive and inclusive semileptonic B decay, based
on heavy quark effective theory (HQET) [1] and heavy quark expansion techniques [2, 3],

respectively (see also T. Mannel, these proceedings). For IV.b I the situation is less favorable,

but the recent observation of B + (m, p)iv at CLEO [4] is promising for future improvements
on this topic. The rather precise determination of mt by CDF and DO [5] is a remarkable
achievement, in particular for the field of rare decays as it fixes one of the most important

pole
input ‘parameters: Note that the pole mass value mt = 175 ~ 6 GeV measured in experiment

corresponds to a running (MS) mass of tit(mt) = 167 i 6 GeV. The latter mass definition is
more suitable for FCNC processes where top appears only as a virtual particle. The value of

BK from lattice calculations is still not very precise at present, but systematic uncertainties
are becoming increasingly bet ter under cent rol [6, 7]. In Table 1 we summarize the values

of the input parameters that were used for most of the results to be presented below. The
standard model predictions quoted in sections 4, 5 and 7 are based on [8] as updated in [9].

Further progress has been achieved over the past several years through the calculation

of next-to-leading order (NLO) QCD corrections in renormalization group (RG) improved
perturbation theory to the Wilson coefficients for most of the rare and CP violating FCNC
processes. - ‘At leading order, leading logarithmic corrections of the form (a. ln(Mw/p))”,
which are contributions of 0(1) due to the large logarithm multiplying a,, are resummed to
all orders, n = O, 1, ... .. At NLO relative O(a, ) corrections of the form a, (a, ln(Mw/p))” can

be “systematically included. This topic is reviewed in [8], where more details and references
can be found. Here we would just like to summarize the main points that motivate going

beyond the leading logarithmic approximation in weak decay hamiltonians.

●

●

●

●

First of all, the inclusion of NLO corrections is necessary to test the validity of pertur-
bation theory.

Without NLO QCD effects a meaningful use of the scheme-specific QCD scale parameter
Am is not possible.

Unphysical scale dependence can be reduced by going beyond LO.

The Wilson coefficients ‘by themselves are unphysical quantities and in general scheme
dependent. This scheme dependence is an O(a,) (NLO) effect, that is important for a
proper matching to lattice matrix elements.

3
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3.1

In some cases the phenomenologically interesting ret-dependence is, strictly speaking, a

NLO effect (e.g. for &’/&, I<L + ~“e+e-, B + X,e+e-).

If the ret-dependence enters already at leading order (as is the case e.g. for 1{ + ~vti,

the top contribution to &, B + p+p- or B + X,7), a NLO QCD calculation allows one

to make a meaningful distinction between the running mass m~(mt) ~ m~ and m~”~’.
As we have seen the difference of % 8 GeV between both definitions already exceeds the -
current experimental error of 6 GeV.

CP Violation in Ko + flm – &, &’

Preliminaries

CP violation was originally discovered in l{L + T+ K- decays. Among the few cases of CP
violation in lfL decays observed since then, the rr modes are still the best studied examples

of CP non-conservation and continue to be under active investigation. The physical neutral
kaon states are I<L and I<s and the two-pion final states they decay to can be T+m- or ~“zo.
If CP was a good symmetry, I<L would be CP odd and could not decay into two pions. As a
measure of CP violation one introduces therefore the amplitude ratios

(2)

If CP violation is entirely due to mixing (indirect CPV), then q+- = qoo. Any difference
between q+_ and qoo is thus a measure of direct CP violation. To very good approximation

one may write
q+_=&+&’ qoo = E – 2E’ (3)

where the observable quantities & and S’ parametrize indirect and direct CP violation, respec-

tively. &’/< is known to be real up to a phase of a few degrees. It can thus be measured from
the double ;atio of rates

1~+-/voo12 = 1 + 6Re&’/& (4)

Using standard phase conventions the theoretical expressions for s and &’/& can be written to
very good approximation as

i~,~ ImMlz

& = e &AMK

E’ (ImA2 ImAo—
& {;l~l ReA2 - ReAo )

(5)

(6)

where M12 is the off-diagonal element in the 1<0—l~” mass matrix and AMK the l<L —1<s mass

difference. Ao,z are transition amplitudes defined in terms of the strong interaction eigenstates
1<0 and XT states with definite isospin (1 = O, 2), (1 = O,21711<0) s A0,2 exp(i60,2). 6.,2 are

strong interaction phases and complexities in A0,2 arise only from CKM parameters. The
smallness of w > ReA2/R;Ao ‘x 1/22 reflects the famous Al = 1/2 rule.

In all current theoretical analyses of ~’/~, the values of w, l&Iand ReAo,2 in (6) are taken from
experiment. ImAo,2, which depend on the interesting short-distance physics (top-loops, CKM
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Table 2: NLO results for ~i with A% = (325 + 110) MeV, ~C(mC) = (1.3 + 0.05) GeV,

mt(mt) = (170 + 15) GeV. The third column shows the uncertainty due to the errors in Am
and quark masses. The fourth column indicates the residual renormalization scale uncertainty

at NLO in the product of qi with the corresponding mass dependent function from eq. (9).
These products are scale independent up to the order considered in perturbation theory. The
central values of the QCD factors at LO are also given for comparison.

NLO(central) Am, m~ scale dep. NLO ref. LO(central)

nl 1.38 &35% +15% [121 1.12,.

V2 0.574 *0.6% +0.4% ~13j 0.61

V3 0.47 53% &7% (141 0.35

phase) are then calculated using an effective Hamiltonian approach (OPE) as described in
section 2.

Experimentally & is known very precisely, whereas the situation with &’/& is still somewhat
unclear. The current values are

., .,.-.

3.2 Theoretical

I&l= (2.282* 0.019) ~10-3 (7)

Re~ =
{

(23 t 7) ~10-4 NA31[1O]

(7.4 + 5.9) ~10-4 E731[11]
(8)

&

Status of & —

The parameter c is determined by the imaginary part of M12 which in turn is generated by
the usual AS = 2 box-diagrams. The low energy effective Hamiltonian contains only a single

- operator (zs)v–A(ds)v_A in this case and one obtains

Here Ai = ~~w~, fti = 160 MeV is the kaon decay constant and the bag parameter Bfi- is
defined by

[
BK = BK(p)[a~)(p)]-2/g 1 +

ay)(p)

4X ‘3 1 (lo)

The index (3) in eq. (10) refers to the number of flavors in the effective theory and J3 =

307/162 (in the NDR scheme).
The Wilson coefficient multiplying BK in (9) consists of a charm contribution, a top contri-
bution and a mixed top-charm contribution. It depends on the quark masses, xi = m~/M~,
through the functions So. The ~i are the corresponding short-dist ante QCD correction fac-

tors (which depend only ;lighlly on quark masses). Detailed definitions can be found in [8].
Numerical values for VI, q2 and q3 are summarized in Table 2.

Concerning these results the following remarks should be made.

5



I

Figure 2: The &-constraint on the unitarity triangle.

& is dominated by the top contribution (W 7070). It is therefore rather satisfying that
the related short dist ante part q2So(zt ) is theoretically extremely well under control,

as can be seen in Table 2. Note in particular the very small scale ambiguity at NLO,

+0.4% (for 100 GeV < p~ < 300 GeV). This intrinsic theoretical uncertainty is much
reduced compared to the leading order result where it would be as large as +9Yo.

The qi factors and the hadronic matrix element are not physical quantities by themselves.

Wh@n quoting numbers it is therefore essential that mutually consistent definitions are
employed. The factors qi described here are to be used in conjunction with the so-called
sch~me- (and scale-) invariant bag parameter BK introduced in (10). The last factor on

the rhs of (10) enters only at NLO. As a numerical example, if the (scale and scheme
dependent) parameter ~~(p) is given in the NDR scheme at p = 2GeV, then (10)
becomes BK = BK(NDR, 2 GeV) . 1.31.1.05.

The quantity BK has to be calculated by non-perturbative methods. Large Nc ex-
pansion techniques for instance find values BK = 0.75 * 0.15 [15, 16, 17]. The results

obtained in other approaches are reviewed in [8]. Ultimately a first principles calcu-
lation: should be possible within lattice gauge theory. Ref. [6] quotes an estimate of
BK(NDR, 2 GeV) = 0.66 i 0.02 t 0.11 in full QCD. The first error is the uncertainty of

the quenched calcdation. It is quite small already and illustrates the progress achieved
in controlling systematic uncertainties in lattice QCD [6, 7]. The second error repre-
sents the uncertainties in estimating the effects of quenching and non-degenerate quark
masses.

Phenomenologically & is used to determine the CKM phase 6. The relevant input param-

eters are BK, mt, Vcb and lVUb/Vcb1. For fixed BK, mt and VCb,the measured l&Idetermines a
hyperbola in the p-q plane of Wolfenstein parameters (Figure 2). Intersecting the hyperbola
with the circle defined by IVUb/VCb\determines the unitarity triangle (up to a two-fold ambigu-

ity). As any one of the four input parameters becomes too small (with the others held fixed),
the SM picture becomes inconsistent. Using this fact lower bounds on these parameters can
be derived [18]. The large value that has been established for the top-quark mass in fact helps
to maintain the consistency of the SM.

—



3.3 Theoretical Status of &’/&

The expression (6) for &’/& may also be written as

&l ——
– @l&~ReAO (

ImAO – ~ImA2
&— w )

(12)

ImAo,2 are calculated from the general low energy effective Hamiltonian for AS = 1 transitions. -
Including electroweak penguins this Hamiltonian involves ten different operators and one has

GF 10
ImAo,2 = –ImAt —~~Y~(P)(Qi)o,2 (13)

%=3

Here yi are Wilson coefficients and (Qi)o,z - (mn(l = O,2)1Qi11<o), At = ~,w~.
For the purpose of illustration we keep only the numerically dominant contributions and write

&’ w GF—— (Im~t Y6(Q6)0 – ~Y8(Q8)2 +...
&— 2]&lReAo )

(14)

Q6 originates from gluonic penguin diagrams and Q8 from electroweak contributions. The

matrix elements of Q6 and Q8 can be parametrized by bag parameters ~6 and ~s as

{[

2

(Q6)0 = -4 ~
m~

2 ins(p) + m~(p) 1 ()‘?{(f~- fT)~‘6N ; 2~6s

(Q8)2 N W
[

m~

12m~t-f= ~BS ~ (:)2 B8

ins(P) + red(P)

(15)

—

(16)

~ B6 = B8 = 1 corresponds to the factorization assumption for the matrix elements, which

holds in the large NC limit of QCD.

Y6(Q6)0 and y8(Q8)2 are positive numbers. The value for &’/& in (14) is thus characterized by a
cancellation- of compet ing cent ribut ions. Since the second cent ribution is an electroweak effect,

suppressed by N a/a, compared to the leading gluonic penguin N (Q6)0, it could appear at
first sight that it should be altogether negligible for &’/&. However, a number of circumstances
actually conspire to systematically enhance the electroweak effect so as to render it a very
important contribution:

‘. Unlike Q6, which is a pure AI = 1/2 operator, Q8 can give rise to the mm(l = 2) final

state and thus yield a non-vanishing ImA2 in the first place.

● The O(a/a, ) suppression is largely compensated by the factor l/w R 22 in (14), reflect-

ing the AI = 1/2 rule.

● By contrast to (Q6)0, (Q8)2 is not chirally suppressed ( (Q6)0 vanishes in the chiral limit,
where fK + f=). As a consequence the matrix element of Q8 is somewhat enhanced
relative to the matrti element of Q6.

● ‘y~(Q8)2 gives a negative contribution to e’/~ that strongly grows with mt [19, 20]. For

the realistic top mass value it is quite substantial.
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Table 3: Estimates of B6 and B8 and calculations of &’/&. (g) refer; to the assumption of a

Gaussian distribution of errors in the input parameters, (s) to the more conservative ‘scanning’
of parameters over their full allowed ranges.

B6 B8 B6,~ ref. &’/& ref. (&’/&)/lo-4

1.0 ● 0.2 1.0 & 0.2 large NC [23] [24] [-1.2, 16] (s)

[0.2,7.0](g)

1.0 + 0.2 1.0 + 0.2 lattice [25, 26, 27, 28] [29] [0.6, 5.6] (g)

1.0 + 0.4 2.2 & 1.5 chiral quark model [30] [31] [-50,14] (s)

-1.3 -0.7 [32] [33] [5.8, 14.0]

Table 4: Results for the running strange quark mass (in the MS scheme). The lattice results
correspond to the quenched approximation. The numbers in brackets are estimates for the

unquenched case.

m,(2 GeV)/MeV

145 + 20 QCD sum rules [34, 35, 36] -
127 + 18 lattice (Rome) [37]. ... ...

90+ 20(55– 70) lattice (Los Alamos) [38]

95+ 16 (54 – 92) lattice (Fermilab) [39]

The Wilson coefficients yi have been calculated at NLO [21, 22]. The short-distance part is .
therefore quite well under control. The remaining problem is then the computation of matrix –

elements, in particular B6 and B8. The cancellation between these contributions enhances

~ the relative sensitivity of &’/& to the anyhow uncertain hadronic parameters which makes a
- precise calculation of &’/& impossible at present. The results found in various recent analyses

are collect ed in Table 3.

Recently, the issue of the strange quark mass has received increased attention due to new
lattice results reporting lower than anticipated values. As we have seen in (15), (16) the
matrix elements of Q6 and Q8 are expected to behave as l/m~, up to B-factors. This result is

based on the factorization ansatz, which holds in the large Nc limit of QCD, and reflects the
particular, scalar-current type structure of Q6 and Q8. The phenomenological predictions thus
show a marked dependence on the strange quark mass used in the analysis. Generally &’/~

will increase with decreasing m~. The estimates for &’/& in Table 3 are based on strange quark

masses in the ball park of m,(2GeV) = 130 MeV. Table 4 collects a few recent determinations
of m, from QCD sum rules and from lattice calculations.

Using the low ms values indicated by the very recent Los Alamos and Fermilab lattice
results Buras et al. [24] find

0< &’/&<43. 10-4( scanning) (17)

-2.1-10-4< &’/& <18.7. 10-4( Gaussian) (18)

for m~(2 GeV) = (86 * 17) MeV. This is compatible with both experimental results (8),
within the rather large uncertainties. Using m, (2 GeV) around 130 MeV, on the other hand,

8
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Figure3: Leading order electroweak diagrams contributing to I{+~vti inthe standard model.

the results are consistent with E731, but somewhat low compared to NA31 (see the first line
of Table 3).

In conclusion, the SM prediction for &’/& suffers from large hadronic uncertainties, re-
inforced by substantial cancellations between the 1 = O and 1 = 2 contributions. Despite

this problem, the characteristic pattern of CP violation observed in 1< a TT decays, namely

.s = 0(10<3) and “s’ = 0(10–6) (or below), is well accounted for by the standard theory, which
can be considered a non-trivial success of the model.

On the experimental side a clarification of the current situation is to be expected by the
upcoming new round of ~’/s experiments conducted at Fermilab (E832), CERN (NA48) and

Frascati (KLOE). The goal is a measurement of &’/& at the 10-4 level. The demonstration
that S’ # O would constitute a qualitatively new feature of CP violation and as such be of
great importance. However, due to the large uncertainties in the theoretical calculation, a

~ quantitative use of this result for the extraction of CKM parameters will unfortunately be

severely limit ed. For this purpose one has to turn to theoretically cleaner observable. As we

will see in the next section, rare 1< decays in fact offer very promising opportunities in this
direction. -;

4 The Rare Decays K+ + T+VD and KL + T“vti

The decays 1< ~ Kvfi proceed through flavor changing neutral current effects. These arise in
the standard model only at second (one-loop) order in the electroweak interaction (Z-penguin
and W-box diagrams, Figure 3) and are additionally GIM suppressed. The branching fractions
are thus very small, at the level of 10–10, which makes these modes rat her challenging to detect.

However, 1< ~ rv~ have long been known to be reliably calculable, in contrast to most other

decay modes of interest. A measurement of If+ ~ ~+vti and l<L ~ m“vti will therefore be an
ext refiely useful test of flavor physics. Over the recent years important refinements have been
added to the theoretical treatment of 1< ~ nvv. These have helped to precisely quantify the

meaning of the term ‘clean’ in this context and have reinforced the unique potential of these
observable. Let us brieffy su-mmarize the main aspects of why 1( ~ mvti is theoretically so

favorable and what recent developments have contributed to emphasize this point.

—

—.
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Table 5: Compilation of important properties and results for 1{ ~ xvfi.

]{+ + T+vfi I(L + TOUfi

CP conserving CP violating

CKM ~d ImVt~Wd w JCP N q

contributions top and charm only top

scale uncert. (BR) k20% (LO) ~ h5% (NLO) +10% (LO) ~ 31% (NLO)

BR (SM) (0.9 + 0.3). 10-10 (2.8 + 1.7) ~10-”

exp. limit <2.4 .10-9 BNL 787 [48] <5.8 .10-5 FNAL 799 [49]

First, I{ ~ mvti is semileptonic. The relevant hadronic matrix elements (~[(~d)v_~ ]1{)
are just mat rix elements of a current operator between hadronic states, which are already
considerably simpler objects than the matrix elements of four-quark operators encoun-

tered in many other observable (1{ – 1( mixing, &’/&). Moreover, they are related to
the matrix element

(TOI(3U)V-A]I<+) (19)

by isospin symmetry. The latter quantity can be extracted from the well measured

leading semileptonic decay If+ ~ m“lv. Although isospin is a fairly good symmetry,

it is still broken by the small up- down quark mass difference and by electromagnetic

effects. These manifest themselves in differences of the neutral versus charged kaon

(pion) masses (affecting phase space), corrections to the isospin limit in the formfactors ‘
and electromagnetic radiative effects. Marciano and Parsa [40] have analyzed these .

corrections and found an overall reduction in the branching ratio by 10% for 1<+ ~ m+vfi ‘“
and 5.6% for l<L ~ X“vfi.

Long distance contributions are systematically suppressed as O(A~CD/m~) compared to

the charm contribution (which is part of the short distance amplitude). This feature is

related to the hard (N m:) GIM suppression pattern shown by the Z-penguin and W-box
diagr;ms, and the absence of virtual photon amplitudes. Long distance contributions
have been examined quantitatively [41, 42, 43, 44, 45] and shown to be numerically
negligible (below % 5% of the charm amplitude).

The preceding discussion implies that 1< ~ nvti are short distance dominated (by top-
and charm-loops in general). The relevant short distance QCD effects can be treated

in perturbation theory and have been calculated at next-to-leading order [46, 47]. This
allowed to substantially reduce (for If+) or even practically eliminate (~(L) the leading
order scale ambiguities, which are the dominant uncertainties in the leading order result.

In Table 5 we have summarized some of the main features of If+ ~ r+vu and ~fL ~ m“u~.

The ieutral mode proceeds through CP violation in the standard model. This is due to the
definite CP properties of 1{0, no and the hadronic transition current (3d)V– A. The violation

of CP symmetry in ~fL + Z“vti arises through interference between 1<0 – 1{0 mixing and the
decay amplitude. This m-echanism is sometimes refered to as mixing-induced CP violation.
Now, in the standard model, the mixing-induced CP violation in ~{L ~ ~“vti is by orders of

+ –, for instance. Any difference in the magnitudemagnitude larger than the one in ~{L ~ m m

10
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Figure 4: Unitarity triangle from 1< * ~vu.

of mixing induced CP violation between two l<L decay modes is a signal of direct CP viola-

tion. In this sense, the standard model decay J{L ~ T“vti is a signal of almost pure direct CP
violation, revealing an effect that can not be explained by CP violation in the 1{ — K mass
m“atrix alone.
While already 1<+ ~ T+vti can be reliably calculated, the situation is even better for
l<L ~ m“vti. Since only the imaginary part of the amplitude (in standard phase conven-
tions) ‘con~ributes, the charm sector, in Ii+ ~ K+vti the dominant source of uncertainty, is

completely negligible for It’L ~ m“vfi (O.l% effect on the branching ratio). Long distance con-
tribution: ( % O.lYo) and also the indirect CP violation effect ( % lYo) are likewise negligible.

In summary, the total theoretical uncertainties, from perturbation theory in the top sector and
in the isospin breaking corrections, are safely below 2 — 370 for B(l{L ~ T“vti). This makes
this decay mode truly unique and very promising for phenomenological applications. (Note
that the range given as the standard model prediction in Table 5 arises from our, at present,

Y limited knowledge of standard model parameters (CKM), and not from intrinsic uncertainties
in calculating B(I{L + T“vti)).

With a measurement of B(l{+ ~ n+vfi) and B(KL ~ T“vfi) available very interesting
phenomeno~ogical studies could be performed. For instance, B(l<+ e m+vti) and B(l{L ~

m“vv) together determine the unitarity triangle (Wolfenstein parameters p and q) completely
(Figure 4). The expected accuracy with +10% branching ratio measurements is comparable
to the one that can be achieved by CP violation studies at B factories before the LHC era

[50]. The quantity B(lfL ~ ~“vti) by itself offers probably the best precision in determining
Im~~ w~ or, equivalently, the Jarlskog parameter

(20)

The prospects here are even better than for B physics at the LHC. As an example, let us
assure; the following results will be available from B physics experiments

sin2~ = 0.40 * 0.04 sin2~ = 0.70 ● 0.02 Vcb= 0.040 * 0.002 (21)
--

—.

The small errors quoted for sin 2a and sin 2P from CP violation in B decays require precision
measurements at the LHC. In the case of sin 2a we have to assume in addition that the
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theoretical problem of ‘penguin-contamination’ can be resolved. These results would then
imply ImAt = (1.37* 0.14). 10–4. On the other hand, a tlOYo measurement B(lfL + m“vti) =

(3.0*0.3) 10-’1 together with m,(m,) = (170 *3) GeV would give ImA, = (1.37*0.07) ~10-4. “

If we are optimistic and take B(l<L + r“vfi) = (3.0* 0.15) .10-11, mt(mt) = (170 * l)GeV,
we get ImAt = (1.37 * 0.04) . 10–4, a truly remarkable accuracy. The prospects for precision
tests of the standard model flavor sector will be correspondingly good.

The charged mode 1{+ + n+vfi is being currently pursued by Brookhaven experiment -

E787. The latest published result [48] gives an upper limit which is about a factor 25 above the
standard model range. Several improvements have been implemented since then and the SM
sensitivity is expected to be reached in the near future [51]. For details see the contribution
of S. Kettell (these proceedings). Recently an experiment has been proposed to measure
1{+ + m+vti at the Fermilab Main Injector [52]. Concerning l{L + m“vti, a proposal exists

at Brookhaven (BNL E926) to measure this decay at the AGS with a sensitivity of 0(10-12)

(see [51]). There are furthermore plans to pursue this mode with comparable sensitivity at
Fermilab [53] and KEK [54]. It will be very exciting to follow the development and outcome

of these ambitious projects. The ‘holy grail of kaon physics’ could finally come within reach.

5 KL + ~“e+e- and KL + ~+p-.,.,.-.

5.1 1(LA ~“e+e-
This decay mode has obvious

advantage of charged leptons,

similarities with l<L + T“vti and the apparent experimental
—

rather than neutrinos. in the final state. However there are -

a number of quite serious difficulties associated with this very fact. Unlike neutrinos the –
elect ron couples to photons. As a consequence the amplitude, which was essentially purely

: short distance in l<L + r“vu, becomes sensitive to poorly calculable long distance physics

- (photon penguin). Simultaneously the importance of indirect CP violation (N &) is strongly
enhanced and furthermore a long distance dominated, CP conserving amplitude with two-

photon int~rmediate state can contribute significantly. Treating l{L + T“e+ e- theoretically
one is thus faced with the need to disentangle three different contributions of roughly the same
order of magnitude.

● Direct GP violation: This part is short distance in character, theoretically clean and

has been analyzed at next-to-leading order in QCD [55]. Taken by itself this mechanism
0 + – branchingratio of (4.5 t 2.6) . 10–12 within the standard model.leads to a I<L + T e e

● Indirect CP violation: This amplitude is determined through ~ & . A(I<s ~ ~“e+e– ).

The Ifs amplitude is dominated by long distance physics and has been investigated in

chiral perturbation theory [56, 57, 58]. Due to unknown counterterms that enter this

analysis a reliable prediction is not possible at present. The situation would improve
with a measurement of B(lfs + T“e+ e- ), which could become possible at DA@ NE.
Present day estimates for B(l{L + ~“e+e - ) due to indirect CP violation alone give
typically values of (1 – 5) . 10-X2.

● The CP conserving two-photon contribution is again long-distance dominated. It has

been analyzed by various authors [58, 59, 60]. The estimates are typically a few 10-12.

12
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Improvements in this sector might be possible by further studying the related decay
l<~+no~ywhose branching ratio has already been measured tobe(l.7* 0.3) 10-6.

Originally it had been hoped for that the direct CP violating contribution is dominant.
Unfortunately this could so far not be unambiguously established and requires further study.
Besides the theoretical problems, lfL + n“e+e- is also very hard from an experimental point

of view. The expected branching ratio is even smaller than for ~fL + K“vfi. Furthermore

a serious irreducible physics background from the radiative mode ~fL + e+e–~~ has been
identified, which poses additional difficulties [61]. A background subtraction seems necessary,
which is possible with enough events. Additional information could in principle also be gained
by studying the electron energy asymmetry [58, 60] or the time evolution [58, 62, 63].

~{L + p+p- receives a short distance contribution from Z-penguin and W-box graphs similar
to I{ ~ TVfi. This part of the amplitude is sensitive to the Wolfenstein parameter p. In
addition I<L + p+p– proceeds through a long distance contribution with two-photon inter-

mediate state, which actually dominates the decay completely. The long distance amplitude
consists of a dispersive (A~iS) and an absorptive contribution (A~b~). The branching fraction. ... . ..
can thus be written

~(~{L + p+p-) = \As~ + A~is[2 + lA.b~12 (22)

2 — 68 f 0.3) . 10–9 [61]. Ad~, on theUsing ~(~<~ + ~~) it is possible to extract lAab.[ – ( .
other hand can not be calculated accurately at present and the estimates are strongly model
dependent [64, 65, 66, 67, 68]. This is rather unfortunate, in particular since B(I<L ~ p+p-),

unlike most other rare decays, has already been measured, and this with very good precision

~(~<L+ ~+~-) =
{

(6.9 f 0.4) ~10-9 BNL 791 [69]
(7.9 i 0.7) ~10-9 KEK 137 [70]

(23)

For compa~son we note that B(I<L ~ p+p-)sD = (1.3+ 0.6). 10-9 is the expected branching

ratio in the standard model based on the short-distance contribution alone. Due to the fact
that Ad~~is largely unknown, ~{L + p+p- is at present not a very useful constraint on CKM

parameters.

6 The Radiative Rare Decay B + X37

The radiative decay B + X,y is justifiably one of the highlights in the field of flavor changing
neutral currents. First of all, its rate is of order G~a, while most other FCNC processes are

2 2 This leads to a relatively sizable branching fraction of 0(10–4). The decay isonly w GFa .

accessible to experiment already today and its branching ratio has been measured at CLEO

[71]
E(B + X$y) = (2.32* 0.67) .10-4 (24)

—

At the same time the inclusive transition B + X,? can be systematically treated by standard
theoretical techniques such as heavy quark expansion and renormalization group improved
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perturbation theory. It is sensitive to short distance physics and provides therefore a good
test of flavordynamics. Extensions of the standard model, for instance the Two-Higgs-Doublet
Model [72, 73, 74, 75, 76], models with three Higgs-doublets [77], minimal SUSY [78, 79, 80]

or left-right symmetric models [81] receive important constraints from B + X.7.
In the following we shall briefly sketch the theoretical status of B ~ X.7 in the standard
model.
The basic itructure of the b + s~ transition is quite interesting from a theoretical point of
view. Schematically one has, in the leading log approximation [82]

(25)

F(mt) is a function describing the top quark mass dependence. The large logarithmic QCD
corrections N a, ln(Mw/p), p = ~(mb), are resummed to all orders. Their contribution is
formally 0(1 ), of the same order as F(mt ). Technically these effects, although of leading order,

are generated from two-loop contributions, whereas usually leading logarithmic effects arise
at the one-loop level. This peculiarity is due to the radiative nature of the FCNC in b ~ s~.
Numerically one finds B(B + X,7) x 1.2 .10-4 neglecting all QCD effects, but = 2.8 .10-4
includjng $he tower of leading logarithmic corrections. This illustrates the decisive impact of

short distance QCD effects on the prediction of B(B + X.7). With this feature B + Xs~ is

the protQtype example for the importance of perturbative QCD corrections in weak decays.

A somewhat unwelcome side effect of the predominance of QCD contributions is the rather
strong scale (p) ambiguity of the result at leading order [83, 76], implying an uncertainty of

*25% in the braching fraction (for rob/2 s p s rob). This is the dominant uncertainty in the
leading order prediction of B(B ~ X.7). Several other, somewhat less prominent sources of

—

_ error

●

●

●

●

●

exist.

Long distance contributions arise from intermediate (CC) bound states coupling to the
on-shell photon. Their impact on the branching ratio is expected to be of the order

< 1~ [84, 85, 86].

The theoretical prediction of B(B + X,7) is normalized to B(B + XCIV), which
depends on mC/mb. The corresponding error is about 6%.

The ratio l~~Wb/VCb12 entering ~(~ + Xsy)/B(B + X.lv) is quite well constrained to

0.95 * 0.03 from CKM unitarity and using input from &Ii”and B – ~ mixing.

The uncertainty from the error in a,(~z) is % 10%. The errors due to the experimental
values for B(B ~ XCIV) and mt are small.

Non-perturbative contributions to B(B - X,7) from subleading terms (N 1/m~) in the
~eavy quark expansion have also been analyzed [87]. They are likewise negligible.

The essential step for further improvement is therefore a complete and consistent NLO
calculation. For an overview bf the various parts of such an analysis and detailed references
see [8]. The last two major ingredients in this very complex calculation have recently been
performed and results were reported at the 28th International Conference on High Energy
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Physics (ICHEP 96) in Warsaw. NLO QCD corrections to the matrix elements have been
addressed by Greub, Hurth and Wyler [88] and the three-loop contribution to the NLO renor-
malization group evolution has been worked out by Chetyrkin, Misiak and Munz [89]. The

preliminary result reads

B(B + X,7) = (3.3+ 0.5) .10-4 (NLO, preliminary) (26)

The error represents the total uncertainty, including the one from residual scale dependence.
The latter has decreased as expected, from +25% to about *6% after incorporating the NLO
correct ions. Eq. (26) can be compared with the leading order result B(B + XS~)LO =
(2.8 ~ 0.8) ~10-4 and with the experimental number in (24). Although the central value
of (26) is apparently higher than the experimental 2.32 . 10–4, it is still premature to draw

definitive conclusions.
Exclusive channels, such as B + 1{*7, have also been studied [90, 91, 92, 93], but are more
difficult from a theoretical point of view.

7 The Rare Decays B. + ~+p- and B + X~vV

These- decays are both theoretically very clean since they are entirely dominated by virtual
top contributions which proceed at very short distances. The relevant Feynman graphs are
Z-penguin and W-box diagrams similar to those for If + TVU. Next-to-leading order QCD
corrections” essentially eliminate the leading order scale uncertainty of *10% to merely *1 Yo

in the branching ratios [46].

The branching ratio for B. ~ p+p- is proportional to IVt. 12and ~~,. Detailed expressions
can be found in [8]. The standard model expectation is B(B. ~ p+p–) = (3.6 + 1.8) .10-9,

I based on ~B. = (210* 30) MeV. The current experimental upper limit on the branching ratio
“ is 8.4 .10-6 [94].

+ – the theoretical prediction is about an order of magnitudeFor the related mode B~ ~ p p
lower than for B. ~ p+ p- and an upper limit of 1.6 .10-6 has been set by CDF [94]. The

decays could become accessible at the LHC. Their ratio

B(B~ ~ p+p-) T(B~) m~~ . fad &d 2

B(BS d p+p-) = r(B~) m~. f~~ v,,
(27)

is a measure of IVt~/VtS1, once SU(3) breaking effects in fBd/ fB, are properly taken into
account. Results for other final states, Bd,~ + e e+ - or ~+~- are summarized in [8].

The inclusive decay B + Xsvfi is similar to B, ~ p+p-. The disadvantage is a more
challenging experimental signature. Advantages of B ~ X. vu over B, ~ p+ p–, on the other
hand, are the absence of the strong helicity suppression, resulting in a much larger branching
fractim, and the inclusive nature of the decay, which allows a reliable calculation of the

matrix element with heavy quark expansion and perturbative QCD. The ratio of B(B ~
X3vti)/B(B ~ X~vti) is a clean measure of lU~/W,l.

The decay B a Xsvti re~eiv~d renewed interest after a proposal to extract an upper limit
on its branching fraction from available data by Grossman et al. [95]. Subsequently this led
to an upper bound of 7.7 .10-4 by the ALEPH collaboration [96], already quite close to the

—
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standard model range B(B + X,vv) = (3.8 t 0.8) . 10–5. The result constrains scenarios of
new physics [95]. In view of the experimental situation and the theoretically clean character
B + X. vfi clearly deserves further attention.

8 Other Opportunities

There are several other possibilities to investigate flavor physics by studying rare decay modes.
In the field of B decays the inclusive mode B ~ X,l+l- (1 = e, p, ~), for instance, has

been widely discussed in the literature. The next-to-leading order QCD corrections are known

[97, 98]. The decay branching ratio, dilepton invariant mass spectrum, forward-backward

charge asymmetry and lepton polarization could be useful probes of the standard model and
its extensions [99, 100, 101, 102, 103].

A particular class of rare kaon decays are the modes l{L + pe, 1<+ + ~+pe and I<L +

rope, which violate lepton flavor and are altogether forbidden in the standard model. Current
1° They will be improved by futurelimits for their branching ratios are at the level of = 10- .

experiments (see the talks by S. Pislak, W. Molzon and E. Ramberg, these proceedings) down
to the 10-12 level, corresponding to a sensitivity to scales of typically a few hundred TeV.
This might be a way to probe, albeit indirectly, high energy scales not accessible by any other. ... ...
met hod.

Besides 1{ and B physics, also D mesons might yield interesting clues on flavordynamics.
Here standard model effects are generally very small and long-distance contributions usually

play an essential role. Still the charmed meson sector could provide a window for new physics.
This topic has been reviewed by Burdman [104], where more

found. A general reference for new physics in FCNC processes

-9 Summary

We have ~aviewed the present status of CP violation in kaon

details and references can be 1

is Hewett et al. [105].

decays and discussed selected

rare decays of both 1< and B mesons. To conclude we summarize some of the main issues.

.. The field of CP violation and rare decays is an important probe of flavordynamics.

● Short distance QCD corrections have by now been calculated at next-to-leading order

for almost all cases of practical interest.

● So far the parameter &in the neutral kaon system is still the only signal of CP violation
observed in the laboratory. Important phenomenological constraints can be derived from
this measurement.

● The situation of whether &’/& is zero or not will soon be clarified experimentally with

an accuracy of 1O–4. This could establish an important, qualitatively new aspect of CP

violation. The quantitative use of this result for the extraction of CKM parameters,

however, is severely-limfted by large hadronic uncertainties.
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●

●

Precise extractions of CKM quantities along with accurate standard model tests will be
possible with theoretically clean observable. A prime candidate is the ‘golden reaction’
l<L + T“vfi, which is in particular an ideal measure of the Jarlskog parameter JCP.

Complementary information from as many other sources as possible is needed and could
be provided for by CP violation studies with B decays and various rare decays like

1<+ + r+v~, B + X$~, B 4 Xsvv or B + Xspfp-.

In our presentation we have largely focussed on such decays that can be calculated reliably.
In this spirit one may group the various observable, roughly, into classes according to their
theoretical ‘cleanliness’:

Class 1 (’gold plated)): li~ + n“vu; 1<+ + T+vfi, B + Xs,dvfi

Class 2 (very clean): ~(Bd + /+l-)/B(B. + l+l-); AMB~/AMB.

Class 3 (moderate uncertainties and/or improvements possible): e, B + X,7; l(L +
~oe+e–, B + X~l~l–

Class 4 (large hadronic uncertainties): &’/&, l{L + p+p -

he”’quantities that have already been measured, &, B + Xs~, 1{~ + p+p-, or that are

about to be observed (&’/&, If+ + n+vti) are seen to cluster mainly in the lower part of
this list. ‘Let us hope that future experimental developments will eventually map out the full ~

range of possibilities, including the unique instances where unambiguous and clear theoretical
predictions can be made.

-.
—
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