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1. Introduction

Microwave single bunch instability in circular accelerators has been known for
many years. The instability usually arises when the number of particles in the bunch
exceeds some critical value, Nc , which can vary depending on the parameters of the
accelerating regime. Typically the instability leads to the growth of the bunch length
("turbulent bunch lengthening") and the increased energy spread of the beam [1]. The
origin of the microwave instability is usually associated with unstable oscillations of the
bunch caused by high-frequency part of the impedance of the vacuum chamber.

Recent observations in the SLC damping ring at SLAC [2] with a new low-
impedance vacuum chamber revealed some new interesting features of the instability. It
was found that in some cases, after initial exponential growth, the instability eventually
saturated at a level that remained constant through the accumulation cycle. In other regimes,
a relaxation-type oscillations were measured in nonlinear phase of the instability. In many
cases, the instability was characterized by a frequency close to the second harmonic of the
synchrotron oscillations. Similar effects have been observed in LEP for the oscillations of
the bunch length [3].

A vast literature devoted to the microwave instability mostly focuses on the linear
theory. The main objective of this theory is to predict the frequency, growth rate and the
structure of the perturbation as a function of beam parameters. Especially important for the
experiment is determination of the threshold of the instability for a given wake in the
accelerator. Mathematically, the linear problem reduces to a set of integral equations whose
solution usually invokes elaborate numerical methods [4-6].

A solution obtained in the linear theory, however, cannot explain the time
development of the instability above the threshold. Several attempts have been made to
address the nonlinear stage of the instability. Using numerical simulation method
D'yachkov and Baartman studied a mechanism that generates sawtooth oscillations in a
single bunch instability [7]. Simulation of the SLC damping ring instability that also
showed nonlinear oscillations of the amplitude has been performed in Ref. [8]. Recently
Heifets proposed a theory of nonlinear oscillations considering nonlinear phase of the
instability as a new equilibrium around a nonlinear resonance [9]. However, being based
on either computer simulations or some specific assumptions regarding the structure of the
unstable mode, these works, in our view, do not give a consistent and universal description
of the nonlinear stage of the instability.

An attempt of a more general consideration of the problem based on nonlinear
Vlasov equation is carried out in this paper. We adopt an approach recently developed in
plasma physics for analysis of nonlinear behavior of weakly unstable modes in dynamic
systems [10,11]. Assuming that the growth rate of the instability is much smaller than its
frequency, we find a time dependent solution to Vlasov equation and derive an equation for
the complex amplitude of the oscillations valid in the nonlinear regime. This equation, after
proper normalization, contains only two dimensionless parameters, and can be easily
solved numerically. It turns out that even without detailed knowledge of the nature of the
instability, we can qualitatively analyze and predict different patterns of the signal that can
be observed in the experiment in a weakly nonlinear regime.

The paper is organized as follows. In Section 2 we formulate the stability problem
in terms of Vlasov equation with a right hand side due to the effect of synchrotron
radiation. In Section 3, a brief review of the linear theory for a single bunch instability is
given. Section 4 contains a general derivation of an equation for the evolution of the
amplitude of weakly unstable oscillations near the threshold of the instability. A detailed
calculation of nonlinear part of the equation is presented in section 5. In Section 6 we
include synchrotron radiation term into nonlinear equation and introduce dimensionless
variables that minimize the number of free parameters in the equation. Analysis of the
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solutions and results of numerical computations are presented in Section 7, and in Section 8
we discuss the main results of the paper.

2. Basic Equations

We start from the equation of motion in longitudinal direction (see, e.g., Ref. [12]):

˙ , ˙ ,z c K z t= − = ( )ηδ δ , (1)

where z  is the longitudinal coordinate, δ  is the relative energy deviation, η  is the slip
factor, the dot indicates differentiation with respect to time t , and

K z t
c

z
r

T
dz n z t w z zs e

z

, ,( ) = − ′ ′( ) ′ −( )
∞

∫ω
η γ

0
2

0

. (2)

In Eq. (2) ω s0  denotes the unperturbed synchrotron frequency, T0  is the revolution period,

re  is the classical electron radius, γ  is the relativistic factor, n z t,( )  is the longitudinal beam

density, n z t dz N,( ) =
−∞

∞

∫ , where N  is the number of particles in the beam, and w z( ) is the

longitudinal wake function. The first term in Eq. (2) corresponds to the potential of the
accelerating voltage, and the second term describes the wakefield generated by the bunch.

Equations of motion (1) can be obtained from the following Hamiltonian:

H z t c
c

z
r

T
dz dz n z t w z zs e

z

z

, , ,−( ) = + − ′′ ′′( ) ′′ − ′( )∫ ∫
′

∞

δ ηδ ω
η γ

1
2 2

2 0
2

2

0 0

, (3)

in which z  plays a role of a coordinate, and −δ  is the conjugate momentum.
We will use a distribution function ψ x p t, ,( )  of the particles in the bunch such that

integrating over δ  gives the particle density

n z t N z t d, , ,( ) = ( )
−∞

∞

∫ψ δ δ . (4)

This distribution function satisfies the Vlasov equation with a Fokker-Planck "collision"
term on the right hand side,

∂ψ
∂

ψ
t

H R+ { } =, , (5)

where we have the Poisson brackets on the left hand side, and R  describes the effect of the
synchrotron radiation (see, e.g., [13]),

R D= +





∂
∂δ

γ ψδ κ ∂ψ
∂δ

. (6)

In Eq. (6) γ D  is the damping time for the amplitude of the synchrotron oscillations and κ
is the diffusion coefficient associated with the quantum nature of the radiation.
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In the equilibrium state the distribution function ψ  and the Hamiltonian H  do not
depend on time. The equilibrium solution of Eq. (6) was given by Haissinski [14],

ψ δ δ
ησ

z
H z

c E

, exp
,( ) = × −
−( )





const 0
2

, (7)

where σ κ γE D=  is the rms energy spread of the beam in the absence of the wake, and
H0  is the equilibrium Hamiltonian.

It is convenient to introduce dimensionless variables,

x
z

p t F
z E

s z= = − = =
σ

δ
σ

τ ω σ ψ, , ,0 , (8)

where σ z  is the rms length of the beam without wake, σ σ η ωz E sc= 0 . In these variables
the Hamiltonian (3) takes the form

H x p p U x, , ,τ τ( ) = + ( )1
2

2 , (9)

where the "potential energy" U  is

U x x I dx S x x dpF x p
x

, , ,τ τ( ) = − ′ ′ −( ) ′( )
∞

−∞

∞

∫ ∫1
2

2 , (10)

with

I
Nr

T
e

s z E

=
0 0γω σ σ

, (11)

and

S x dzw z
x s

( ) = ( )∫
0

σ

. (12)

Note that the function S  is a dimensionless function of its argument.
Let us now perform a canonical transform from x  and p  to action and angle

variables, J  and θ , of the equilibrium Hamiltonian H0 , and denote by Ṽ  the deviation of
the potential energy from the equilibrium in Eq. (9). Since H0  depends on J  only, the total

Hamiltonian H J tθ, ,( ) takes the form

H J H J V Jθ τ θ τ, , ˜ , ,( ) = ( ) + ( )0 . (13)

The Vlasov equation for F  in terms of action – angle variables is

∂
∂τ

ω ∂
∂θ

∂
∂

∂
∂θ

∂
∂θ

∂
∂

F F V

J

F V F

J
Rs+ + − =

˜ ˜
, (14)
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where ω ωs s J= ( ) is the frequency of synchrotron oscillations with the wake taken into

account, ω s J dH dJ( ) = 0 . Suppose that F J0( ) is the equilibrium distribution function, and

δ θ τF J F F J, ,( ) = − ( )0  is its deviation from the equilibrium. Then δF  satisfies the
following equation,

∂δ
∂τ

ω ∂δ
∂θ

∂δ
∂θ

∂
∂

∂δ
∂θ

∂δ
∂

∂δ
∂

∂δ
∂θ

F F V F

J

V F

J

V

J

F
Rs+ − − + =

˜ ˜ ˜
0 , (15)

where

δ θ τ θ θ θ δ θ τ˜ , , , , , , ,V J I dJ d K J J F J( ) = − ( ) ( )∫ 1 1 1 1 1 1 , (16)

and K J J S x J x J, , , , ,1 1 1 1θ θ θ θ( ) = ( ) − ( )( ) .
We note that equations (15) and (16) are exact because we did not make any

approximation in the derivation above.

3. Linear Theory

In linear theory, the last two terms on the left hand side in Eqs. (15) must be
discarded. We assume that the perturbation of the distribution function oscillates with the
frequency ω ,

δ θ ωτF f J e i= ( ) +−
1 , c.c., (17)

where for the sake of brevity we use the notation "c.c." to denote a complex conjugate of
the first term.

The perturbation of the potential Ṽ  is

Ṽ Ve i= +− ωτ c.c.. (18)

Since V  is a periodic function of θ , we can expand it in Fourier series,

V v J en
in

n

= ( )
=−∞

∞

∑ θ . (19)

For simplicity we will neglect here the effect of the synchrotron damping in the
linear theory by dropping the R -term in Eq. (15). This greatly simplifies the linear analysis
and is usually assumed in the literature. However, as we will see in Section 7, the effect of
the synchrotron damping is crucial for the nonlinear stage of the instability and will later be
included in the derivation of the nonlinear equations.

Substituting Eqs. (17) and (19) into Eq. (15) gives in linear approximation

− + = ′ ( )
=−∞

∞

∑i f
f

F inv J es n
in

n

ω ω ∂
∂θ

θ
1

1
0 , (20)

where ′ =F F J0 0∂ ∂ . A solution to Eq. (20) is
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f F
nv J

n
en

s

in

n
1 0= − ′ ( )

−=−∞

∞

∑ ω ω
θ . (21)

Now, substituting this equation into Eq. (16) yields an infinite set of integral equations that
determine eigenfrequencies and eigenfunctions for the collective oscillations of the bunch:

v J I dJ F J K J J
mv J

m Jn nm
m

sm

( ) = ′( ) ( ) ( )
− ( )

∞

=−∞

∞

∫∑ 1 0 1 1

0

1

1

,
ω ω

, (22)

with the kernel given by

K J J d d e K J Jnm
i m n, , , ,1 1

0

2

0

2

1 1

1
2

1( ) = ( )∫∫ −( )
π

θ θ θ θ
ππ

θ θ . (23)

The integral on the right hand side of Eq. (22) defines an analytical function in the upper
half plane of the complex variable ω ; for Imω ≤ 0  the integral must be analytically
continued into the lower half plane. For a real value of ω , the integration is performed
along a contour in the complex plane which bypasses the singular points of the integrand
below the pole (see, e.g., [12]). The residues of the integral (22) are associated with the
Landau damping effect.

4. Nonlinear Theory

Let us assume that the instability has a threshold corresponding to a critical value of
the parameter I Ic=  with the frequency at the threshold ω ω= c  ( Imωc = 0). We will be
interested in the analysis of the nonlinear phase of the instability in the vicinity of the
threshold when the growth rate of the instability, Γ , is much smaller than ωc, Γ << ωc . In
other words, we assume that the instability is weak and develops on a time scale which is
much larger then the period of the oscillations. It turns out that in this case one can separate
a "slow" time scale on which the amplitude evolves from "fast" oscillations with the
frequency ωc and derive nonlinear equations for the evolution of the amplitude of the
instability by averaging over ωc. In this section we will give a general description of the
approach following a similar analysis in the theory of nonlinear plasma oscillations [15].

First, we rewrite the result of the previous section in a concise form,

ˆ ,L I Vω ω( ) = 0 , (24)

where the linear operator L̂  represents a set of integral equations (22) and (23),

ˆ ,L I V e v J I dJ d KF J
nv J

n J
in

n
m

n

sn

ω θ
ω ωω

θ( ) ≡ ( ) − ′( ) ( )
− ( )









∫∑∑

=−∞

∞

=−∞

∞

1 1 0 1
1

1

, (25)

and Vω  is a Fourier harmonic of the function Ṽ  corresponding to the frequency ω ,

V v J en
in

ω
θ= ( )∑ . Note that at this point we can also include in L̂  a contribution from the

Fokker-Planck term R . A particular form of the operator L̂  is not essential for the analysis
in this Section.
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The frequency of the oscillations ωc at the threshold and the corresponding
eigenfunction V u

c cω ≡  are determined by the equation

ˆ ,L I uc c cω( ) = 0. (26)

We now need to define a scalar product of two functions u  and w  of the phase
space variables J , θ . Let us denote this product by u w,( ) . Usually, scalar multiplication
in Hilbert space is given in terms of an integration of the product uw* over J  and θ  with
some weight function. The exact choice of the weight function is not important for what
follows, and we do not specify it here. For a given scalar product, we can define an

operator L̂+  conjugate to L̂  satisfying the following condition for two arbitrary functions u
and w ,

u Lw w L u, ˆ , ˆ( ) = ( )+ . (27)

We will assume that the operator L̂+  is known and together with the solution of Eq. (26)
the solution wc  of the conjugate problem

ˆ ,L I wc c c
+ ( ) =ω 0 (28)

is available. Note that solution of Eq. (28) represents a linear problem and in each particular
case can be accomplished by standard methods of numerical analysis.

We now consider a situation when I  slightly exceeds the threshold, I I Ic= + ∆ ,
with ∆I Ic<< . Taking into account nonlinear terms in the Vlasov equation we will assume
that they are much smaller than the linear ones. That is to say, we are expecting that the
instability, after initial exponential growth, will eventually saturate at a level where the
amplitude of the oscillations is relatively small. If this is not a case, and the instability
evolves to a highly nonlinear regime, our theory will only be applicable for a relatively
short period of time following the linear growth. Fortunately, as we will see in Section 7,
in many cases the damping associated with synchrotron radiation indeed limits the growth
of the instability, and the whole process is described within a framework of a weakly
nonlinear approximation.

With nonlinear terms, the equation for the Vω  can now be written as

ˆ , ˆL I V Nω ω ω( ) = , (29)

where N̂ω  is a Fourier transform of the nonlinear term neglected in the linear analysis. The

operator N̂ω  depends on the parameter I , and acts on the function Vω .
Following a general prescription of nonlinear theory of oscillations [15], we will

assume the following type of solution (in time representation) for Eq. (29)

˜ , ,V A u e V Jc
i c= ( ) +[ ] + ( )−τ θ τω τ c.c. ∆ . (30)

where Au Vc >> ∆ . The first term in Eq. (30) describes oscillations with the eigenfunction

uc , frequency ωc and varying amplitude A τ( ) , and the second term is a correction due to
the deviation of the exact eigenfunction from uc . It is important to emphasize here that
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A τ( )  is supposed to be a slow function of time, ∂ ∂τ ωln A c<< . It also means that the

spectrum Aω  of the function A τ( )  is represented by a narrow peak (the width of the peak is
much smaller than ωc) localized near the zero frequency.

We now need to make a Fourier transform of Eq. (30) and substitute it into Eq.
(29). Since we are interested in the frequency range close to ωc, an approximate relation
holds:

Ṽ A u V
c cω ω ω ω≈ +− ∆ . (31)

In Eq. (31) we neglected the term containing A
cω ω+  which is peaked around ω ω= − c . Eq.

(29) now reads

ˆ , ˆL I I A u V Nc cc
ω ω ω ω ω+( ) +( ) =−∆ ∆ . (32)

Making a Taylor expansion of the linear part and neglecting the product ∆ ∆I Vω  one finds

ˆ ,
ˆ ˆ

ˆL I V A
L

u IA
L

I
u Nc c c c cc c

ω ω ω ∂
∂ω

∂
∂ω ω ω ω ω ω( ) + −( ) + =− −∆ ∆ , (33)

where the derivatives of the operator L̂  are evaluated at ω ω= c , I Ic= . We can annihilate
the first term in Eq. (33) by a scalar multiplication with wc  and using Eqs. (27) and (28).
The result is

ω ω ∂
∂ω

∂
∂ω ω ω ω ω−( ) 





+






= ( )− −c c c c c cA w
L

u IA w
L

I
u w N

c c
,

ˆ
,

ˆ
, ˆ∆ . (34)

We now multiply Eq. (34) by ei cω τ  and make an inverse Fourier transform to time τ :

∂
∂τ

ω ∂
∂ω

ω τA
i A ie w N w

L
ui

c c c
c+ = − ( )





−

∆ , ˆ ,
ˆ 1

, (35)

where

∆ ∆ω ∂
∂

∂
∂ω

= −











−

I w
L

I
u w

L
uc c c c,

ˆ
,

ˆ 1

(36)

is a linear frequency shift due to the change of I . Note that in Eq. (35), after the inverse
Fourier transform, N  represents a function of time rather than ω .

Without the right hand side it follows from Eq. (35) that the amplitude A  will vary
with time as exp −( )i∆ωτ  which is a trivial consequence of the fact that in linear theory

V i∝ −( )exp ωτ  with ω ω ω= +c ∆ . In the next section we will find the nonlinear term
averaged over fast oscillations which adds nonlinear dynamics to Eq. (35).

5. Derivation of Nonlinear Equations
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The nonlinear terms in our problem arise from the last term in kinetic equation (15).
We need to approximately solve this equation and find N  in Eq. (29). In order to simplify
the derivation, we first consider the case when R = 0. In the next section a generalization
for R ≠ 0 will be given.

Since nonlinear term is assumed to be small, it will be accurate enough to neglect

∆V  term in its evaluation. Hence, Ṽ A u ec
i c≈ ( ) +−τ ω τ c.c.  where uc  is decomposed into

Fourier series over θ ,

u u J ec n
in

n

= ( )
=−∞

∞

∑ θ . (37)

We will also represent the perturbation of the distribution function δF  as

δ θ τ θ τ θ τω τ ω τF f J e f J f J ei ic c= ( ) +[ ] + ( ) + ( ) +[ ]− −
1 0 2

2, , , , , ,c.c. c.c. , (38)

where f0 , f1  and f2  are slow functions of time (as A τ( )) in the sense that ∂ ∂ ωt c<< .
Substituting Eq. (38) into Eq. (15) we note that, as calculations show, the main

contribution comes from the resonant terms in δF  that are differentiated with respect to J .
This allows us to neglect the last term in Eq. (15) to obtain

∂
∂τ

ω ∂
∂θ

∂
∂θ

∂
∂

∂
∂θ

∂
∂

f f V f

J

V f

Js
0 0 1 1 0+ − − =

˜ ˜* *

, (39)

∂
∂τ

ω ω ∂
∂θ

∂
∂θ

∂
∂

f
i f

f V f

Js
2

2
2 12 0− + − =

˜
, (40)

∂
∂τ

ω ω ∂
∂θ

∂
∂θ

∂
∂

∂
∂θ

∂
∂

∂
∂θ

∂
∂

f
i f

f V F

J

V f

J

V f

Js
1

1
1 0 0 2 0− + − − − =

˜ ˜ ˜ *

, (41)

where the asterisk indicates complex conjugating. The last two terms in Eq. (41) imply that
we can split the function f1  into linear (L) and nonlinear (NL) parts,

f f fL NL
1 1 1= + , (42)

where f L
1  satisfies the equation of linear theory,

∂
∂τ

ω ω ∂
∂θ

∂
∂θ

∂
∂

f
i f

f V F

J

L
L

s

L
1

1
1 0 0− + − =

˜
, (43)

and f NL
1  is the nonlinear correction arising from the higher order terms in the kinetic

equation,

∂
∂τ

ω ω ∂
∂θ

∂
∂θ

∂
∂

∂
∂θ

∂
∂

f
i f

f V f

J

V f

J

NL
NL

s

NL
1

1
1 0 2 0− + − − =

˜ ˜ *

. (44)

In equations for f0  and f2  we can substitute f L
1  for f1 .
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Let us consider first Eq. (43) for the linear part of the distribution function. This is
in fact the same equation as Eq. (20), however, we now want to find its solution in time
domain rather than in frequency domain. We expand f L

1  in Fourier series in θ ,

f g J F eL
n

in

n
1 0= ( ) ′

=−∞

∞

∑ ,τ θ , (45)

and find from Eq. (43) an equation for gn,

∂
∂τ

ω ω τg
i n g inA un

s n n− −( ) = ( ) . (46)

This equation can be easily solved,

g inu J A e dn n
i n s= ( ) ( ) −( ) −( )∫ τ ττ τ ω ω

τ

1

0

1
1 . (47)

We now consider equation (39) for f0 . The dominant terms in this equation will be
those that do not depend on θ ; nonzero n  terms will cause only small oscillations in f0  at
the frequency n sω , without systematic changing of its amplitude. Keeping only n = 0
terms we have

∂
∂τ

∂
∂

∂
∂

f
inAu

J
g

F

Jn n
n

0 0= +
=−∞

∞

∑ * c.c.. (48)

When differentiating with respect to J  in Eq. (48), it is sufficient to differentiate the

exponential term exp i n Jsτ τ ω ω−( ) − ( )( )[ ]1  in the solution (47) only; all other terms will
be relatively small because we assume that the time scale on which the nonlinear effects
become essential is such that τω s >> 1,

∂
∂τ

τ ω τ τ τ τ τ τ ω ω
τf

in A u u F d A en n s
i n

n

s0 3
0 1 1 1

0

1= ( ) ′ ′ −( ) ( ) +− −( ) −( )

=−∞

∞

∫∑ * * c.c.. (49)

Now we can integrate this equation, yielding

f in F u u d A d A es n n
i n

n

s

0
3

0 1 1

0

2 1 2 2

0

2 1 2

1

= ′ ′ ( ) −( ) ( )∫ ∫∑ − −( ) −( )

=−∞

∞

Re * *ω τ τ τ τ τ τ
τ

τ τ ω ω
τ

. (50)

In a similar fashion the following equation can be obtained for f2 ,

∂
∂τ

ω ω ∂
∂θ

τ ω τ τθ τ τ ω ω
τf

i f
f

in A u F e d A es n s
in i n

n

s2
2

2 3 2
0

2
1 1

0

2 1− + = ( ) ′ ′ ( ) − −( ) −( )

=−∞

∞

∫∑ , (51)

with the solution

f in F u e d A d A es n
in i n

n

s

2
3

0
2 2

1 1

0

2 1 2 2
2

0

1 2

1

= ′ ′ ( ) −( ) ( )∫ ∫∑ − − −( ) −( )

=−∞

∞

ω τ τ τ τ τ τθ
τ

τ τ τ ω ω
τ

. (52)
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We now have to substitute f0  and f2  into Eq. (44). As calculations show, the

leading contribution to f NL
1  comes from f0 ; nonlinear terms arising from f2  turns out to be

small in parameter Γ ω s . Keeping only f0  and performing differentiation with respect to J
in the exponential terms only we find

∂
∂τ

ω ω ∂
∂θ

∂
∂θ

∂
∂

ω τ τ τ τ τ τθ
τ

τ τ ω ω
τ

f
i f

f V f

J

in u u F e d A d A e

NL
NL

s

NL

s n n
in i n

n

s

1
1

1 0

5 2

0 1 1

0

2 1 2

2

2

0

2 1 2

1

− + =

= − ′( ) ′ ( ) −( ) ( )∫ ∫∑ − −( ) −( )

=−∞

∞

˜

Re ,* *

(53)

with the solution

f in u u F d A

d A d A e

NL
s n n

n

i n s

1
5 2 2

0 1 1

0

2 2

0

3 2 3

2

3

0

2
1

1 2 3

2

= − ′( ) ′ ( )

× ( ) −( ) ( )

∫∑

∫ ∫

=−∞

∞

− − +( ) −( )

ω τ τ

τ τ τ τ τ τ

τ

τ
τ τ τ τ ω ω

τ

*

*Re .

(54)

Finally, since time τ  is supposed to be much larger than ω s
−1, one can use the following

mathematical identity when integrating over τ ,

dx dye x yixy

−∞

∞

−∞

∞

∫ ∫ = ( ) ( )2πδ δ , (55)

which in application to Eq. (54) after changing the variables σ τ τ= −1 2 , ζ τ τ= − 1, yields

f i n n u u e

F

J
d A d A A

NL
s s n n

in

n
1

5 2 2

0

0

2
2

0

2

2

2

= − ′( ) −( )

× −( ) − −( ) − −( )

=−∞

∞

−

∑

∫ ∫

π ω δ ω ω

∂
∂

ζ τ ζ ζ σ τ ζ σ τ ζ σ

θ

τ τ ζ

*

* .

(56)

We have found a nonlinear part of the perturbation of the distribution function f NL
1 . As we

see, this function is proportional to the third order of the amplitude A . On the linear stage
of the instability, when A  is small, f NL

1  can be neglected, however as A  grows, the
nonlinear term becomes more important and eventually competes with the linear part f L

1 .

Notice also, that due to the presence of delta-function δ ω ω−( )n s , the nonlinear term is

peaked at the resonant values of the action Jn , such that n Js nω ω( ) = .

6. Effect of Synchrotron Damping and Nonlinear Equation for the Amplitude

In the previous section we neglected the effect of the synchrotron radiation in the
Vlasov equation. To include the R -term we need to transform it first to J − θ   variables. In
doing so we notice that, because of strong localization near the resonant values Jn  of the
perturbed distribution function, the leading term in R  will be the one containing the second
derivative with respect to J . In other words, the most important effect of the synchrotron
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radiation will be the quantum diffusion of particles in the phase space rather than energy
loss. Keeping only the second derivative in R  gives

R D J
F

J
= ( ) ∂

∂

2

2
. (57)

The diffusion coefficient D  was found in Ref. [14] and equals

D J J JD s( ) = ( )γ ω . (58)

The derivation of f NL
1  given in Section 5 can now be repeated with the diffusion

term R  on the right hand side of the Vlasov equation. For the sake of brevity we will omit
this derivation here referring the reader to Ref. [16] where a similar problem was worked
out for nonlinear plasma oscillations problem. In our case, the inclusion of the diffusion
reduces formally to appearing of a exponential factor in the integrand of Eq. (56),

f i n n u u e

F

J
d A d A A e

NL
s s n n

in

n

Bn

1
5 2 2

0

0

2
2

0

2 2

3

2

2
2

= − ′( ) −( )

× −( ) − −( ) − −( )

=−∞

∞

− − +





∑

∫ ∫

π ω δ ω ω

∂
∂

ζ τ ζ ζ σ τ ζ σ τ ζ σ

θ

τ τ ζ ζ σ ζ

*

*

(59)

where B n D Jn s n= ′( ) ( )2 2ω , and Jn  is the value of the action at the n-th resonance,

n Js nω ω( ) = .

We are now in position to find the nonlinear term N̂  in Eq. (35). Since it will be

multiplied by exp i cω τ( ), we need a component in N̂  that oscillates as exp −( )i cω τ , so that
the right hand side in Eq. (35) would be a slowly varying function of time. From Eq. (16)

and Eq. (38) we see that such a term in Ṽ  is

δ θ θ θ θ τ θ τω τ˜ , , , , , , ,V I e dJ d K J J f J f Jc
i L NLc= − ( ) ( ) + ( )( )− ∫ 1 1 1 1 1 1 1 1 1 1 , (60)

which gives for N̂

N I e dJ d K J J f Jc
i NLc= − ( ) ( )− ∫ω τ θ θ θ θ τ1 1 1 1 1 1 1, , , , , . (61)

With this expression, the right hand side of Eq. (35) becomes

2

2

4

0

2
2

0

2 2

3
2

π ω

ζ τ ζ ζ σ τ ζ σ τ ζ σ
τ τ ζ ζ σ ζ

I K J F n

d A d A A e

c n n s
n

Bn

( ) ′ ′

× −( ) − −( ) − −( )

=−∞

∞

− − +





∑

∫ ∫ * ,

(62)

where

K J w
L

u d e w K u un c c
in

c n n( ) =






( )
−

∫,
ˆ

, *∂
∂ω

θ θ

1

2 , (63)
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and the scalar product w Kc ,( ) in Eq. (63) is performed with respect to variables J  and θ
in K J J, , ,1 1θ θ( ).

To further simplify the analysis we will assume here that only one term dominates
in the sum of Eq. (62). This assumption is correct if the variation of the frequency ω s J( )
within a distribution function is not very large so that equation n Js n cω ω( ) =  has a solution
only for one value of n . Omitting the sum sign in Eq. (62) gives the following nonlinear
equation for the amplitude A ,

∂
∂τ

ω π ω

ζ τ ζ ζ σ τ ζ σ τ ζ σ
τ τ ζ ζ σ ζ

A
i A I K J F n

d A d A A e

n n s

Bn

+ = ( ) ′ ′

× −( ) − −( ) − −( )∫ ∫
− − +





∆ 2

2

0 0
4

0

2
2

0

2 2

3
2

* .
(64)

In this form, Eq. (64) contains two complex and one real parameters. For numerical
solution it is convenient to reduce the number of the parameters by choosing new variables.
First, we denote the real part of the coherent frequency shift by Ω , ∆ Ω Γω = + i , and
introduce the absolute value ρ  and the phase φ  of the complex factor in front of the integral

so that 2 0 0
4π ω ρ φI K J F n en n s

i( ) ′ ′ = − . With new variables

a A
B

e g
B

B
n

i

n
n= = =

ρ
ξ ττ

5 6 1 3
1 3Ω Γ

, , , (65)

equation (64) becomes

∂
∂ξ

ζ ξ ζ ζ σ ξ ζ σ ξ ζ σφ
ξ ξ ζ ζ σ ζa

ga e d a d a a ei− = − −( ) − −( ) − −( )∫ ∫
− − +





0

2
2

0

2 2

32
2

* . (66)

The parameter g  here plays a role of dimensionless growth rate of the instability that is
measured in time units related to the synchrotron damping rate. Note that now Eq. (66)
contains only two real parameters, g  and φ .

7. Analysis and Solutions of Nonlinear Equation

A complete analysis of nonlinear dynamics of the instability in any particular case
requires computing of the coefficients in Eq. (66) which can only be done based on the
solution of the linear problem described in Section 3. In the general case, this constitutes a
major computational task, which lies beyond the scope of the present paper. Rather than
trying to find a particular solution to nonlinear problem for a given set of beam parameters
we will outline here possible scenarios by numerically solving Eq. (66) for different values
of g  and φ .

First, note that equation (66) admits an asymptotic solution in the form of
a i= × ( )const exp λξ  that corresponds to oscillations with a constant amplitude and a

coherent frequency shift λ . This solution is valid in the limit ξ → ∞  and exists only if
φ π< 2 . It is given by the following formula that can be easily verified by direct
substitution into Eq. (66),
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a g e i=
( )

−18
1

1 3
1 6 1 2

Γ cos
tan

φ
ξ φ , (67)

where  Γ 1 3( )  stands for the gamma function. According to this solution, the steady state

amplitude a  increases in proportion to the square root of the dimensionless growth rate,
g1 2 . It turns out however, that this solution is only stable for relatively small values of the
parameter g  [10].

We have solved numerically Eq. (66) for several sets of g  and φ . The results are
presented in Figs. 1 – 3.

In Fig. 1 we show solutions for φ = 0  and various values of g  starting with a
sufficiently small value of a  so that initially the nonlinear term is unimportant. For small
values of g , g < 0 4. , we see that the solution, after initial exponential growth, reaches the
equilibrium after several oscillations. With increasing g , the oscillations become more
pronounced, and finally at g = 0 48.  a steady state solution with periodic oscillating
amplitude sets up. Further increasing g  beyond the value of 0 5.  causes the period of those
oscillations to break up which, after initial transient period, results in a relaxation-type
behavior of the amplitude . For even larger g , g > 0 8. , the nonlinear term cannot stabilize
the system any more and the amplitude starts to grow without limit.

Fig. 2 shows solutions for φ π= 4 . In this case the amplitude oscillations appear
to be less stable and runaway solution develops already for g = 0 5. .

As was mentioned above, a stable asymptotic solution exists only if φ π< 2 .

Numerical solutions indicate that for φ π> 2  all the solutions diverge with unlimited

growth as ξ → ∞ . An example of such a solution is shown in Fig. 3. We see that, in this
case, the nonlinear term cannot stop the instability whose amplitude continues to grow and
eventually goes beyond the limit of applicability of the present theory.

8. Conclusion

In this paper we applied the theory of weakly nonlinear unstable oscillations to the
case of a single bunch instability in circular accelerators. We derived an equation which
describes evolution of the amplitude of the instability and depends only on two
dimensionless parameters – a normalized linear growth rate of the instability g , and a phase
of nonlinear term φ . We found that for small values of φ  the nonlinear term has a
stabilizing effect and, for not very large values of g , results in the saturation of the
instability at some level. Larger values of g  lead to relaxation type oscillations of the
amplitude. In the case of φ π> 2 , within the limits of the applicability of our theory, the
nonlinear term does not prevent the growth of the amplitude.

As was mentioned before, a complete comparison of our theory with the experiment
requires solution of equations of the linear theory and determination of the parameters in the
nonlinear equation. Due to computational complexity of this problem we did not attempt to
solve it in this paper. However, even without knowing the exact parameters, we can try to
compare different patterns of the signal that have been measured in the experiment with
solutions obtained in the theory. In such a comparison we only pay attention to qualitative
behavior of the amplitude such as growth, oscillation and saturation at some level.

Even visual comparison of the instability signal from Ref. [2] shows a clear
resemblance to our curves. In one case (Fig. 5 of Ref. [2]), after injection in the ring, the
amplitude of signal from spectrum analyzer tuned to a sideband frequency began to grow
monotonically and after some time of the order of synchrotron damping time saturated at
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approximately constant level. This situation is very similar to our Fig. 1a. In another case
(Fig. 4 of Ref. [2]), oscillations with decreasing amplitude were observed, which can be
identified with Fig. 1a or 1b. In later measurements [17], amplitude oscillations with
approximately constant modulation were measured. This situation reminds our Fig. 1e.
Unfortunately, at this time we are not able to compare with the experiment theoretical
predictions for the period of the nonlinear oscillation, although preliminary crude estimates
indicate they are about of the same order.

In conclusion, our theory shows qualitative agreement with the signals observed in
the SLC Damping Ring single bunch instability. Further work is planned to make a more
definite comparison of the theory and the experiment.
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Fig. 1. Plots of the absolute value of the amplitude, a , versus time ξ  for φ = 0 . a –
g = 0 1. , b – g = 0 3. , c – g = 0 4. , d – g = 0 48. , e – g = 0 5. , f – g = 0 6. , g – g = 0 7. , h –
g = 0 8. .
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Fig. 2. Plots of the absolute value of the amplitude, a , versus time ξ  for φ π= 4 . a –
g = 0 1. , b – g = 0 2. , c – g = 0 3. , d – g = 0 4. , e – g = 0 5. .
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Fig. 3. Plot of the absolute value of the amplitude, a , versus time ξ  for φ π=  and
g = 0 1. .
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