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Abstract

Radiation damping and quantum excitation in an electron damping ring and

a straight focusing channel are reviewed. They are found to be the two

limiting cases in the study of a general bending and focusing combined

system. In the intermediate regime where the radiation formation length is

comparable to the betatron wavelength, quantum excitation can be

exponentially suppressed by focusing field. This new regime may have

interesting applications in the generation of ultra-low emittance beams.
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INTRODUCTION

Many applications of particle accelerators require very low emittance beams. In an electron

damping ring, synchrotron radiation created by bending magnets is utilized to damp the

beam emittance in all three degrees of freedom. It is well known [1, 2] that the damping

effect is counteracted by quantum excitation due to random photon emissions, which leads

to an equilibrium beam emittance when the damping and excitation rates balance.

On the other hand, we have shown [3, 4] that in a straight, continuous focusing channel,

the transverse damping rate is independent of the particle energy, and that no quantum

excitation is induced. In fact, the final normalized emittance in a generic focusing system is

limited only by the uncertain principle and is equal to one half of the Compton wavelength

of the electron, which is much smaller than the equilibrium emittance achieved in a normal

damping ring.

In this paper, we first review these distinct results. In order to illustrate the transition

between bending systems and focusing ones, we study the radiation effects on particle

beams in a system where both bending and focusing are present. We show that, in general,

quantum excitation can be suppressed by the focusing environment because a photon

emission does not take place instantaneously. Finally, we investigate the possibility of an

ultra-low emittance damping ring based on this effect.

AN ELECTRON DAMPING RING

In an electron damping ring, the transverse focusing quadruples are present to confine the

beam. Their contribution to the radiation effects is secondary relative to the bending

dipoles. The typical length associated with a photon emission (the radiation formation
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length) is on the order of ρ γ/  [1, 2], where ρ is the bending radius and γ  is the electron

energy in units of its rest energy. The standard treatment of quantum excitation can be

quasi-classical because the radiation formation length is much shorter than the average beta

function β . Thus, one can model the radiation to be instantaneous with a continuous

spectrum of frequencies and treat the quantum nature of radiation as fluctuations about the

average rate.

On the average, the radiation from the bending dipoles takes away the electron’s momenta

in all three degrees of freedom, while the rf acceleration only replenishes the longitudinal

momentum of the electron. Thus, the transverse damping rate is comparable to the energy

damping rate which is given by the characteristic damping constant

Γb
e

E

dE

dt

r c= =1 2

3

3

2

γ
ρ

, (1)

where r e mce = 2 2/  is the classical electron radius.

Although the position of the electron does not change instantaneously right after a photon

emission, the horizontal betatron displacement is suddenly changed as a result of the

equilibrium orbit shift

δ ηβx
u

E
= − , (2)

where u is the photon energy,η  is the dispersion function, and we have assumed that

d dsη / = 0 for simplicity. Because of the random nature of this sudden change, the

transverse normalized emittance diffuses at a rate [1, 2]
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where   D hc mc= /  is the Compton wavelength for electron. The equilibrium is reached

when the damping rate is equal to the quantum excitation rate. Thus, we obtain

  
( ) ~ ~ε γ η

βρ
γ
υN

c
cmin

D
D

3 2 3

3 . (4)

In the last step of Eq. (4), we have used the smooth approximation so that the dispersion

function is η β ρ~ /2  and the betatron tune is υ ρ β~ / . Eq. (4) indicates that the

equilibrium emittance increases with higher particle energy, and decreases with higher

betatron tune. It already suggests that stronger focusing (i.e., increasing the tune) can allow

for the lower emittance. Before we study the radiation effects due to focusing in a general

system, we first look at the simpler situation of a straight focusing channel.

A STRAIGHT FOCUSING CHANNEL

Following Ref. 3 and 4, we consider a planar focusing system that provides a continuous

parabolic potential Kx2/2, where K is the focusing strength. An electron of energy E

oscillates in the transverse x direction while moving freely in the longitudinal z direction

with a constant longitudinal momentum pz in the absence of radiation, i.e.

  

E m c p c p c Kx
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p c
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Defining the transverse frequency as ω z zKc E= 2 / , we obtain from a simple quantum

mechanical analysis that

  
E n p E nz z z( , ) = + +



hω 1

2
, (6)

where n = 0, 1, 2,... is the transverse quantum level and is related to the normalized beam

emittance by

  
εN c cn n= + ≈D D

1

2 beam
beam for large n. (7)

Eq. (6) indicates that n is another independent constant of motion besides pz in the absence

of radiation. Instead of building a semi-classical model for the photon emission process,

we can calculate the change of the transverse quantum level (ultimately related to the

evolution of the normalized beam emittance) directly by conservation laws before and after

a photon emission (namely, the conservation of total energy and total longitudinal

momentum). A simple kinematical argument shows [3, 4] that n must drop after an

arbitrary photon emission. The existence of the focusing field suppresses the direct

transverse recoil and absorbs the excess transverse momentum. Therefore, no quantum

excitation is induced to the transverse emittance in this focusing system.

When the transverse oscillation amplitude is very small, the transverse motion looks like a

one-dimensional harmonic oscillator in the co-moving frame of the electron. It is

straightforward to obtain the damping rate in that frame and transform back to the lab

frame, then we have
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d
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r K

mc
N e

N c N

ε ε ε= − ≡ −2

3
Γ , (8)

where Γc er K mc= 2 3/( )  is the energy-independent damping constant given in Ref. 3 and 4.

In the case of arbitrary transverse oscillation, the transverse motion exhibits a figure of

eight motion in the co-moving frame. The damping rate can be calculated using a

semiclassical method or using the Lorentz-Dirac radiation damping force [4] and can be

written in the form

d

dt E

dE

dt
N

c N N

ε ε ε= − −Γ 3

4

1
. (9)

The second term of Eq. (9) comes directly from the energy loss, similar to the radiation

damping in a normal damping ring. It is the dominant term when the oscillation amplitude

is large. However, the direct momentum suppression due to the transverse focusing  gives

rise to an additional term for the damping (the first term in Eq. (9)), which becomes more

significant as the oscillation amplitude becomes smaller.

In the absence of quantum excitation, the electron damps to the transverse ground state (n =

0) that corresponds to a theoretical minimum emittance for the beam:

  ( ) / ~minε N c= −D 2 10 13 m . (10)

This ultimate emittance is limited only by the uncertainly principle, and is analogous to the

diffraction limited photon beam emittance because the Compton wavelength here plays the

role of natural wavelength for the electron.

We notice that the damping constant Γc is independent of energy and is proportional to the

focusing strength K. The damping effect is usually negligible for any practical straight
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focusing device. Thus, we extend this effect to a bent focusing system where the electron

beam can be recirculated for a long period of time.

A BENT FOCUSING SYSTEM

In a system where the radiation effects due to focusing are as important as those from

bending, the quasi-classical picture of instantaneous photon emissions may not be valid

because the oscillation wavelength can be the same order as the radiation formation length.

In this case we can follow the treatment of the above section and calculate the evolution of

constants of motion when the radiation is turned on. Let us consider a simple model with

continuous focusing superimposed by a global bending field. Suppose a reference electron

with momentum p0 has a circular trajectory with radius ρ , then the vector potential for the

uniform bending field in a curvilinear coordinates system (x, s, y) is [5]
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Let the continuous focusing force (-Kx) be in the transverse x direction and neglect the

dynamics in the other transverse y direction, the total energy of the electron can be

decomposed as
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where the equilibrium orbit displacement x p p c Ks eε ρ= −( ) ( )0 /  and the betatron oscillation

frequency ω βs e sK c E c= ≡2 / /  are both functions of ps. Similar to the straight channel

analysis, the total energy of the electron

  
E n p E n K xs s s e( , ) = + +



 −hω ε

1

2

1

2
2 (13)

is a function of n and ps, with n = 0, 1, 2,... being the transverse quantum level. Both n

and ps are constants of motion in the absence of radiation.

The change of the transverse quantum level n due to spontaneous radiation can be

calculated with first-order, time-dependent perturbation theory. Since we are interested in

the total radiation effects, we can integrate over the angular and frequency distribution of

the radiated photons to obtain the total transition rate Wfi, it can be shown that [6]

dn

dt
n n W

e

mc
n

e

mc
F

f n p
fi

s

= −( )

= − −( ) + −

∑ '

exp( )
( )

( ' , ' )
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2 3
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χ γ
ρ
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χ
, (14)

where

F( ) ,

/

χ χ χ χ χ

χ ρ γ
β

= + + + +

≡

55 3 330 262 3 300 48 32 3 4

and =
radiation formation length

reduced betatron wavelength
 .

(15)

From Eq. (7), the evolution of the normalized emittance is then given by
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where Γ b is the damping constant defined in Eq. (1). Equation (16) describes the general

result of radiation (anti-)damping (the first term) and quantum excitation (the second term)

in this combined function system. We can now take various limits for different situations.

For example, when χ ρ γ β<< <<1 or / , Eq. (16) reduces to

  

d

dt
N

b N c b N c

ε ε
χ

ε γ
ν

= +








= +








Γ ΓD D
55 3

96

55 3

963

3

3 , (17)

whereυ ρ β= /  is the betatron tune in this smooth system. The first term of Eq. (17) is

anti-damping  instead of damping because the combined function system studied here has a

negative horizontal damping partition number (Jx = -1) [1]. However, the second term of

Eq. (17) gives the same quantum excitation rate as using the quasi-classical model in an

electron damping ring (see Eq. (3) with η β ρ~ /2 ).

When χ ρ γ β>> >>1 or / , Eq. (16)  also predicts the correct result for a straight focusing

channel ( ρ → ∞ ), i.e.,

d

dt
N

b N c N

ε χ ε ε= − = −Γ Γ2 . (18)

As expected, no quantum excitation is induced in the straight focusing channel.

In the intermediate regime where the radiation formation length is on the order of reduced

betatron wavelength (ρ/ γ ~ β ), the quantum excitation is exponentially suppressed

according to Eq. (16) and starts to depart from Eq. (3) based on the quasi-classical model

(see Figure 1). The transverse energy spectrum of the electron is highly discrete due to the
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strong transverse focusing force, and excitation (jumping up transverse levels) becomes

impossible for almost all photon emissions. Therefore, the betatron oscillation is

adiabatically suppressed to the new ideal orbit during the radiation process.
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FIGURE 1. Quantum excitation rate in units of   Γb cD , predicted by (a) quasi-classical model, i.e.,

Equation (3) and (b) quantum mechanical calculation, i.e., the second term of Equation (16).

Finally, we note that all of the above results can be extended to alternating-gradient and

separated function systems when longitudinal variations of both bending and focusing

fields are short compared with the radiation formation length [6]. Thus, the beam in such

lattices will damp instead of anti-damp. We consider a realistic lattice design in the

following section.

A FOCUSING-DOMINATED DAMPING RING

In this section, we study the parameters of a focusing-dominated damping ring where

quantum excitation can be strongly suppressed. Suppose that the ring is composed of many

repetitive cells. Each cell of length 4L consists of four basic elements of equal length L:



11

focusing quad, bend, defocusing quad, and another identical bend. Both quads have the

same field gradient g. Furthermore, we assume that the phase advance per cell is 60

degrees. If we treat the bending as gradual and the cell as a basic FODO cell with drift

space 2L, we obtain

L
E

g
[ ]

[ ]

/

cm
[MeV]

Tesla/cm
≈









6

1 2

. (19)

The averaged beta function (reduced betatron wavelength) for the 60 degrees cell is

β
π π

= =24

2

12L L
. (20)

By choosing χ ≈ 1 or the averaged ring radius ρ γβ γ β≈ = 12 L / , quantum excitation is

kept at the minimum level and the equilibrium emittance is on the order of the Compton

wavelength.

These simple lattice scaling formulas suggest that in order to design a compact ring, it is

favorable to use high-gradient focusing quads and low-energy electron beams. As an

example, we assume that permanent magnet quads have a field gradient g = 4 Tesla/cm,

and we take the electron energy to be 25 MeV, we then arrive at

L = = =1 0 3 9 1 9. , . , . cm    cm    mβ ρ . (21)

The transverse damping rate is about the same for both the focusing effect and the bending

effect since ρ γ β/ ≈ . The two damping constants are

Γ Γb c= = −0 11 1. sec . (22)
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The transverse size that corresponds to the Compton wavelength is

  
σ

γ
βx

c= = × −D
1 8 10 6.  cm. (23)

The energy loss per turn is mainly due to the bends, as long as the betatron amplitude is not

too large. Thus, we have

∆ ΓE
c

Eb( ) = ≈per turn  eV
2

0 11
πρ

. . (24)

It can be replenished by either radio-frequency or betatron-type acceleration. The

equilibrium energy spread is determined by the effect of discrete photon emissions, and is

given by

  

σ γ
ρ

E
cE

= = × −D
2

5

2
1 6 10. . (25)

However, at such low energy, space charge and intra-beam scattering effects are

significant. It might be conceivable to operate the ring below the transition energy

when ρ β ν γ γ/ = ≡ >t  is satisfied, then the Coulomb interaction between electrons,

together with the external focusing environment, tend to stabilize the beam by the

crystallization effect [7]. Other collective effects such as wakefields and beam-gas

scattering can also influence the stability of the system and may determine the final beam

emittance. These effects have yet to be studied in this new regime of operation.
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