
SLAC-PUB-7358
November 1996

PHYSICS PROSPECTS FOR THE SLAC B-FACTORY *

David H. Coward

Stanford Linear Accelerator Center

Sta)zjord Univer.sit:~,,5t cll)ford, California .94:10.9

Abstract -.

A very brief presentation of the physics prospects for the SLAC B-Factory, now under

construction, is presented.

Presented at tile
~Sth Interna,tionaJ Col~ferel)ce on High I;nergy l’ll)~sj(’s

Warsaw, Polancl

25-31 <July 1996

“Work supported by the Department of’ Energy uncler contract [) E-~4C;ol;-76SFO0515.
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A very brief presentation of the physics prospects for the SLAC B-Factory, now under construction, is presented.

1 Introduction

CP violation has been an enigma since its discov-
ery in the decays of neutral kaons in 1964.1 The
present version of the Standard Model can accom-
modate CP violation by means of a non-zero phase
in the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix. However, CP violation in the kaon system
occurs at the part per mine level and the Stan-
dard Model’s predictions for CP violation have
not been conclusively tested. In contrast to the
kaon system, B-mesons decay into a variety of fi-
nal states, many of which could exhibit CP viola-
tion and therefore offer multiple tests of the Stan-
dard Model. Several large efforts currently are in
progress to create dedicated experiments or facto-
ries which will produce large quanties of B-mesons
which, in turn, should give large numbers of CP-
violating decays. The large number of produced
B-mesons will also give a copious supply of other
“less-interesting” decays which may mask the de-
sired CP-violating decays.

The time-dependent CP asymmetry a~cp (t)

for I?”- or 1? -mesons to decay into a CP eigenstate
fCP, is given by: 2’3

r(~o(f)+ fCP)– r@O(~)j fcp)
afcp(t) =

r(~o(~) + ?Cp) + r(BO(t) ~ fcp) “

If the mixing is governed by a single mixing phase
I#Mand a single amplitude, with weak decay phase
~D dominates the decay, then:

la~cp(t)l = sin2(q5~ - @D)sin(AMt) ,

where AM = MBk – M~2 is the mass difference
between the high-mass and low-mass neutral B-

mesons.
Unitarity of the CKM matrix requires, for ex-

ample, that

Vtbvt: + Vcbvc; + V.bvu”d = O .

This expression can be represented by a triangle
in the complex plane, where the angles are:

o “ ar+%)’
‘ = arg(--)’
‘ = arg(--)

In the Wolfenstein parametrization of the CKM

matrix, the elements VUb and Vtd carry the phase
contributions. Relationships between the leading

CKM coefficients and several of the B-meson de-
cay channels have been tabulated by Quinn 4 and
are shown in Tables 1 and 2.

At the e+e- B-Factory (PEP-II and its assoc-
iated detector BaBar 5) now under construction

at SLAC, the BO and Do will be produced in a
O—O. . .

coherent B B m]tlal state at the center-of-mass
energy of the 3?(4S). The decay, for example, of
the BO into a flavor-identifying mode will “tag”

the event. Decays from the recoil B may show
CP violation through their time-dependent decay
asymmetries. Because the e+ and e– beams will
have very different energies, the B- and ~-mesons
will have spatially separated decay vertices which
will be measured very accurately with a silicon-
tracking detector located very close to the inter-
action point, thus allowing reconstruction of the
time-separation of decays. Estimates have been
made of the tagging performance in BaBar. 5 Over-
all, it is anticipated that 34% of the produced

BO~O events at the T(4S) will be tagged, with
21% of the produced events having a kaon tag and
13% having a lepton tag. These tagging efficien-
cies include dilutions due to wrong-tag probabili-
ties. Measurements of asymmetries in many decay
channels will be made in BaBar, with the goal be-
ing to overconstrain the unitarity triangle.

..
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Table 1: Leading CKM decay coefficients for decays b ~ q~’s

Decay CKM Factors Bd Modes Bs Modes

(Order in A) (Angle Measured) (Angle Measured)

Tree Dominant Penguin

b ~ C~S Vcb V: VCbV;, $1{~ @#
(A’) (A’) (P) (o)

b * S~S o Vcb V: ~Ks 4W’
(A’) W (o)

b ~ U?iS Vub V:, Vtb V:$ 7r’JK0 ]f’+~<- , ~<op

(A4) (A’) (Direct CP Violation) (Direct CP Violation)

b - d~s o
b * CiiS Vtb V:, o DOK + 7r+7r-K Do7ro + 7r+7r-7r’J

(As)

b -+ U?S Vub V:, o 81< -+ ir+r-K ~omo ~ ~+r-mo

(As) (7)

2 sin2,B

The decay BO -+ J/@K~ is a well-understood de-
cay both from a theoretical as well as an exper-
iment al point-of-view. This is because the domi-
nant penguin diagrams have the same weak phase
as the tree diagram (see Table 1). The estimated
reconstruction efficiency for this decay is 599Z0for
aI{~-~ +m– final state, and 3570 for a Ii: -+
r“mo final state. The accuracy to which sin 2@
will be measured from a 30 fb–l data sample
(one year of realistic operation at the T(4S)
at the PEP-II design peak luminosity of 3 x
1033CWZ-2S-1) is given in Table 3.5

3 sin2@

This angle can be determined by studying B-
meson decays into two pions. Despite the ap-
parent simplicity, the decay BO ~ T+m- is hard
to detect. The major particle backgrounds come
from continuum production at the T(4S) center-
of-mass as well as from misidentification of kaons
from the decay BO - K+ T–. As a result, the
analysis has to deal with rejection factors at the
10-5 to 10-6 level and requires a precise knowl-
edge of detector systematic. Similar problems ex-
ist in the analyses of the decays BO + mOTOand
B+ ~T+#

There are a number of theoretical questions
as well. The BO ~ TOTOdecay is expected to
be color-suppressed. Both QCD and electromag-

netic penguin diagrams will contribute, although
calculations G’7’8indicate that electroweak penguin
contributions will be small. QCD penguin dia-
grams give 1 = O ~ir final states. This is in con-
trast to the decay B+ -+ T+ ir” in which the fi-
nal state of two pions has only 1 = 2. Therefore,
the prescription for untangling these theoretical ..
uncertainties is that BaBar measure the rates for
BO x T+m– and B+ -+ T+ To, and the time asym-
metry for BO ~ T+m-. (The time asymmetry for
BO ~ T“mo will not be measured.)

Snyder and Quinng looked at final-state inter-
ference effects in BO decays to any one of three pm

final states. They have shown that, in principle,
a multi-parameter maximum likelihood fit to the

time-dependent Dalitz plot for BO or Do decaying
to m+m- To can be used to extract both sin 2a and
cos 2CY.It also may be possible that the two decays

0 + and B+ ~ p+r” could be included inB+~pir
the analysis. This would give an independent fit
for the weak phase of the penguin contributions.
However, detection of the p+ To decay will be dif-
ficult because of the 27r0sin the final state.

Table 3 shows the accuracy to which sin 2a
will be measured, under the assumption that
contributions from penguin diagrams can be ne-
glected, from a 30fb-1 data sample collected at
the T(4S).

Buras, Lautenbacher, and Ostermaier 10 have
made extensive next-to-leading order QCD cal-
culations for B-meson decays and have produced
envelopes of sin 2P versus sin 2a as a function of
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Table 2: Leading CKM decay coefficients for decays b ~ q~’d

Decay CKM Factors Bd Modes B, Modes
(Order in A) (Angle Measured) (Angle Measured)

Tree Dominant Penguin
b * czd VcbV:d vt b V; ?J7r, D+ D- 4K.S

(As) (As) (P)t (Direct CP Violation)
b - szd o vt b V; qhr”, I{sKs 41{s

(N) (Direct CP Violation) (B)t
b -+ uzd v“ bVu”d ~b~d mr, pT, alm pI{s, T“li’s

(As) (As) (a)t (7)t
b * diid o
b * ciid VCbV:d o Do7rc’+ 7r+7r–7ro Do 1{.s - 7r+T- Ks

(A’) ~°K5 ~ T+ ir- K5 81{s * T+ir- K5
b * uzd VUbV;d o (-) (-)

(A4)
t Neglecting small direct CP-violation effects.

other QCD parameters whose accuracy improves
with time. These envelopes are plotted in Figure 1
along with the experimental errors that should be
obtainable at BaBar for the projected data sam-
ples. It is clear from this figure
make an important contribution
tests of the Standard Model.

4 [VUbl

that BaBar can
to CP-violation

As was noted earlier, one of the goals of the BaBar
physics program is to rigorously test the Standard
Model and try to overconstrain the unitarity tri-
angle. As such, it is important to make measure-
ments that test the closure of the triangle. Since
the length of the leg of the triangle opposite the
angle ,B is proportional to Vu”b,an accurate mea-
surement of IVubI is warranted.

One method uses data taken near the end-
point of the lepton momentum spectrum from in-
clusive semileptonic l?” decays. The semileptonic
decay rate 1’(13° -+ Xul+v) is proportional to
lVUb1,and the problem lies in converting the mea-
sured rate into a value of IVub1. There are un-
certainties in the subtraction of “feeddown” lep-
tons from the cascade quark decays of the type:
b ~ c * lepton.

Another method involves making measure-
ments of exclusive semileptonic decays of the form
B“ ~ XU-!?+V,where X. is ~-, p-, or w-.
There are theoretical uncertainties in the reso-

nant rate calculations and questions of nonreso-
nant contributions that may limit the ultimate ac-
curacy of Ivubl by this method.

With its large data sample, BaBar will be
able to make separate measurements of the inclu-
sive and exclusive semileptonic branching ratios ..
for both charged and neutral B-meson decays. Be-
cause the separation of the decay vertices of the
1?- and ~-mesons will reduce greatly the combina-
torial problem of assigning a particular particle to
one of the two decaying B-mesons, BaBar should
be able to fully reconstruct one of the B-mesons
in the event and have a cleaner reconstruction of
the semileptonic decay of the other B-meson. The
separation of the two B-mesons will also be very
useful in the measurements of small branching ra-
tios.

5 sin2~

A measurement of sin 27 will be very hard, One
method would require that PEP-II be run at the
center-of-mass energy of the ‘Y(5S) so that BaBar
could detect B~ ~ p°K5 decays. This method
suffers from three effects: (1) the T(5S) is a

smaller resonance than the T(4S); (2) B~~5 fi-
nal states are only a fraction of the decays of
the T(5S); and (3) BaBar has been optimized
for ‘T(4S) decays and not for T(5S) decays. Of

course, at the same time l?~~~ mixing also would
be measured.
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Table 3: Errors on the measurement of sin 2(4M – +JD) for various channels for a 30jb-1 data sample. The A-tag sample
includes those events tagged with a lepton which has a high probability y of being a primary lepton from a semileptonic B 0

decay, while the B-tag sample includes all other tagged events (mainly kaon tags).

u u u

Final State BR sin 2(4M – 4D) A Tags B Tags All Tags

J/IJ K? 5 x 10-4 sin 2/3 0.15 0.13 0.098
JjQ K; 5 x 10-4 0.25 0.21 0.16
J/W K“ 16 X 10-4 0.29 0.25 0.19
D+D- 6 X 10-4 sin 2/3 0.32 0.27 0.21
D*+D*- 7 x 10-4 0.24 0.20 0.15
D** D+ 8 X 10-4 0.15

Combined sin 2P 0.059
~+r- 1.2 x 10-5 sin 20 0.29 0.27 0.20

I P~ 5.8 X 10-5 0.16 0.16 0.11 I
aln 6 X 10-5 0.24

Combined sin 2a 0.085
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Figure I: Plots of sin 2P vs sin 2a. The projections by Buras et al., 10 b~ed on increasingly more accurate experiment~

and theoretical knowledge of CKM matrix elements, quark mixing, and other QCD parameters, are given, for the years
shown, by the regions inside the “banana-shaped” plots in the figures. Also shown are the projected errors in sin 20 and

sin 26 that should be achieved by BaBar from data samples of the sizes indicated.
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An alternative method looks for the decays

l?+ ~ ~o~{+ (B- ~ DO1i-) or El” ~ ~“l<”o

(B” + D“I<*o), where I{*” ~ K+r-, and
observes Do decays to CP eigenstates such as
m+ir-. Unfortunately these decays are Cabibbo-
-suppressed and thus expected to be small. The

interference is between the Do and Do contribu-
tions. For this method to be successful, it will be
necessary to measure accurately a number of EL
and D-meson branching fractions.

6 Conclusions

In conclusion, the field of 1? physics at BaBar
promises to be rich! Only now are all the op-
tions and opportunities being explored that will be
available when the experimental physics program
starts in two years. Our theoretical colleagues are
having fun trying to understand how penguin di-
agrams and other higher-order QCD effects will
contribute.
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