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ABSTRACT

The determination of as (~~) using o(~? ) calculations of hadronic ‘vent ‘haPe

observable in e+e- annihilation is reviewed. The large scatter among ~s(~~) values

determined from different observable may be interpreted as arising from the effect of

uncalculated higher-order contributions. The application of ‘optimised’ perturbation

theory and PadA approximants in an attempt to reduce this effect is discussed.
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One of the most important tasks in high energy physics is the precise

determination of the strong coupling as(~j). Not only does measurement of

~~ (M;) in different hard processes and at different hard scales Q provide a

fundamental test of

(QCD), but it also

element ary particles

the theory of strong interactions, Quantum Chromodynamics

allows constraints on extensions to the Standard Model of

[1]. The large set of as(~j) measurements is consistent with

a central value of about O.117 with an uncertainty of +0.005 [2]. However, nearly

all measurements are limited by theoretical uncertainties that derive from lack of

knowledge of higher-order perturbative QCD contributions, or of non-perturbative

effects, or both. It is hence vital to reduce the size of the limiting theoretical

uncertainties which may, or may not, be concealing new physics.

an

Here hadronic event shape observable in e+e– annihilation are considered. For

infra-red- and collinear-safe observable X:

:&(x, ~)= w(p)A(X) + m2(P)~(x,p) + d(P) C(x, P)+ ~(d(~)) (1)

where ~ = aS/2r and p is the renormalisation scale. To date only the coefficients

A(X) and B(X, p) have been calculated [3,4]. The 15 hadronic event shape

observable used in the recent as (M;) determination by the SLD Collaboration [5]

were employed. - Distributions of these observable were measured [5] using a sample

of about 50,000 hadronic 2° decay events. The data were corrected for detector bias

effects such as accept ante, resolution, and inefficiency, as well as for the effects of

initial-state radiation and hadronisation, to yield ‘parton-level’ distributions, which

can be compared directly with the QCD calculations. The EVENT program [6] was

used to calculate the coefficients A and B in Eq. (l).
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First, the O(a~) calculation, using the physical scale p = Mz, was fitted [7] to the

measured parton-level distributions by minirnising X2 w.r.t. variation of Am. Each

resulting A= v~ue was translated into Q9(~~) and is sho:n, with experiment

errors [5], in Fig. 1(a). There is considerable scatter among the 15 ag (M;) values.

Similar results have been observed previously [8]. Since the same data sample was

used to measure each observable, and since the observable are highly correlated,

this scatter is very significant and can be interpreted as arising from uncalculated

higher-order perturbative QCD contributions, which a priori may be of different

sign and magnitude for the different observable. The average as (M;) value and

corresponding r.m.s. deviation are listed in Table 1.

This procedure was repeated [7] using the experimentally-optimised-scale

approach [9] in which a simultaneous fit of A= and p to each observable was

performed. Each resulting Am v~ue W~ translated to ag (M;) and is shown

in Fig. l(a). For D~” no minimum in X2 W.r.t. variation Of P ‘n ‘he ‘ange

10–4 < P2 /~j < 102 could be found [7]. Again, there is large scatter among the

14 ag(~j) values. For most observable the experimentally-optimised scale yields a

lower value of a~(~j) than the physical scale because the optimised scale is typically

smaller than Mz, requiring a smaller value of A= in order to fit the data [10]. The

average ag (M;) value and r.m.s. deviation are listed in Table 1. The r.m.s. deviation

is comparable ‘with that resulting from the choice of the physical scale, implying

that use of the experimentally-optimised scale does not serve to reduce uncalculated

higher-order effects.

From the p-dependence a ‘renormalisation scale uncertainty’ on Qg(M;) can

be defined [5] for each

such uncertainties the

observable; these are shown as bands in Figs. 1,2. Within

~~ (M;) values determined from the different observable
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using either the physical or experimentally-optimised scales

arbitrary procedure leads to a large uncertainty of +0.0106

are consistent, but this

on the average value of

Q.(M;) [5].

The best resolution of this

to higher order in perturbation

not yet been achieved. In the

situation would be to calculate the observable

theory, a difficult and unattractive task that has

absence of O(aj ) QCD calculations it has been

suggested that the O (a:) calculations can be ‘optimised’ by choosing a specific value

of the renormalisation scale. Since the all-orders result would be independent of

renormalisation scale, Stevenson suggests that p be chosen according to the ‘Principle

of Minimal Sensitivity’ (PMS) [11], so that ~a(X, p)/dp = O. Grunberg suggests

that p be chosen to give the ‘fastest apparent convergence’ (FAC) of the series [12],

so that the second-order term in Eq. (1) vanishes. Brodsky, Lepage and Mackenzie

advocate that P be chosen to remove the ~f -dependence of the second-order term in

Eq. (l), effectively incorporating quark and gluon vacuum polarisation contributions _

into the definition of the strong coupling [13].

For each observable the PMS, FAC and BLM optimised scales were calculated

[7] and used in turn in a fit of the O(a~) calculation to each measured distribution

to determine A= and hence ~S(~~). The results are shown ‘n ‘ig. l(b); ‘n

the case of the oblateness O an acceptable fit with the BLM scale could not be

obtained. For each observable the PMS- and FAC-derived as(~j) values are

very similar, whereas, in some cases, the BLM-derived as (M;) value differs from

them. This behaviour follows from the correlation between the scale value and the

corresponding Am required to fit the data [10]. For a given observable the PM S- and

FAC-derived as (M;) values are often, though not always, close to that determined

using the experimentally-optiti sed scale. Furthermore, for most observable the
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PMS-, FAC- and BLM-derived as (M;) values all lie within the range encompassed

by the renormalisation scale uncertainty defined in Ref. [5], though for p, BW, DI,

D~”, Df and (BT), the BLM- (PMS/FAC-) derived values lie below this range.

For any of the

among the a~(~j)

the as(~~) values,

PMS, FAC or BLM scale choices there is considerable scatter

values from all the observable. In each case the average over

and corresponding r.m. s. deviation, are shown in Table 1. The

r.m. s. deviations are comparable with those resulting from choice of the physical and

experimentally-optimised scales, implying that higher-order effects contribute roughly

equally in all of these procedures.

An approach for estimating higher-order perturbative contributions to, as well as

the sum of, perturbative QCD series is based on Pad6 Approximants (PA). The PA

[N/M] to the series:-

S = SO + SIX + S2X2 + . . . + SN+MXN+M

is defined [14]:

where N and M

aO+alx+ a2x2+. ..+aNx N

[N/M] =
l+ b1x+b2x2+. ..+ bMxM’

(2)

(3)

are integers such that N ~ O and M >0, and

[N/M] = S + ~(XN+M+l). (4)

The coefficients ai (O < i < N) and b~ (1 < j < M) are obtained by multiplying

Eq. 4 by the denominator of Eq. 3 and equating coefficients of like powers of x. By

consideration of the terms of O(XN+M+l ) one can obtain an estimate of the coefficient

SN+M+l. Furthermore, for an asymptotic series [N/M] can be taken to be an estimate

of the sum (PS) of the series to all orders.
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Inthecase of hadronic event shape observables the PA [0/1] can be defined for

the series Eq. (1) and, for each bin of each observable, was used to derive an estimate

of the coefficient C of the O (a:) term [15]. The PA prediction for C was added to

the exact O(a~) calculation to obtain an estimate of the series to O(a~). For each

observable the calculation was fitted to the data [51usingP = ‘z ~and‘he‘esulting -

as(M;) values are shown in Fig. 2(a). The O (a:) estimate does not provide a good

fit to the BT data [15] and this observable is excluded from further discussion. In

each case the ~~ (M;) value derived using the O (a:) estimate is lower than that

derived using the O(a~) calculation, which is expected since C is positive [15], and the

O(a~ ) a,(~~) value lies near the lower bound given by the scale uncertainty on the

O(a~ ) result. To the extent that the PA O(a~) estimate is accurate, this implies that

the renormalisation scale uncertainty resigned to the O(a~ ) as (M;) value from each

observable is a reasonable estimate of the effect of the missing O(a~ ) contribution.

The average and r.m.s. deviation of the 14 a~(~j) values are listed in Table 1.

The scatter is noticeably smaller than in any of the O(o~) cases, implying that the

Pad& method provides at least a partial approximation of higher-order perturbative

QCD contributions to event shape observable.

Finally, the PS [0/1] was used as an estimate of the sum of the asymptotic series

and as (M;) was extracted by comparison with the data in a similar manner [151.

The ~s (M;) values- are shown in Fig. 2(b). Typically, for each observable> the PS

~$ (M;) value is close to the PA O(a~ ) value. Again the fit to BT is very poor [15].

The average and r.m.s. deviation over the set of 14 as(~j) values are listed in Table

1. Though the average value is close to that obtained using the PA O(aj) estimate,

the r.m.s. deviation is somewhat larger, implying that the PS [0/1] provides a poorer

estimate of the sum of the series than the PA [0/1] estimate to O(a~).
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In summary, as (M;) has been determined by fitting O(a~ ) QCD predictions of

15 hadronic event shape observable to e+e– annihilation data at the 2° resonance

collected by the SLD experiment. Five prescriptions for choosing the renormalisation

scale were used, namely the physical, experimentally-optimised, PMS-, FAC- and

BLM:optimised scales. Though the average as (~~) value, taken over all ‘he

observable, differs among these five procedures, the scat ter among the as (M;) values

from different observable is equally large in each case, the r.rn.s. deviation being

about 0.008, implying that these specific renormalisation scale choices do not offer any

numerical advantage in terms of the accuracy of O (a:) perturbative QCD predictions

of e+e– event shapes.

If Pad6 Approximants are used to estimate the O(a~) terms the scatter among the

as (M;) values from different observable is reduced to +0.0035. This is comparable

with the combined experiment al error and hadronisation uncertainty on a single

observable measured at Q = Mz [5]. Since the accuracy of the Pad6 Approximant

method can only be verified a posterior, exact calculation of the O (a:) terms in order

to confirm these results is extremely desirable.
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Procedure

Physical scale

Exp. opt. scale

PMS scale

FAC scale

BLM scale

Pad6 O(a~)

Pad6 sum

a
0.1173 + 0.0071

0.1123+ 0.0079

0.1123+ 0.0080

0.1088* 0.0075

0.1147+ 0.0035

0.1148+ 0.0052

Table 1: Mean and r.m.s. ~~ (M;) values determined using different theoretical

procedures.

Figure Captions

FIG. 1. Values of ~.(~j) from QCD fits to the data using: (a) PhYSiCal (solid -

circles), and experiment ally-optimised (open circles) scales; (b) PMS- (solid circles),

FAC- (solid triangles), and BLM- (open squares) optimised SCaleS. In all cases ‘nly

experiment al error bars are shown. For each observable the shaded region indicates

the total uncertainty estimated in Ref. [5], dominated by the contribution from wide

variation of the renormalisation scale.

FIG. 2. Values ‘of ~.(~j) from QCD fits to the data using: (a) PA 0(~~) estimate

(squares); (b) pad~ sum (PS) (crosses). In all cases only experimental error bars

are shown. For each observable the shaded region indicates the total uncertainty

estimated in Ref. [5], dominated by the contribution from wide variation of the

renormalisation scale.
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