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I. INTRODUCTION

In order to reach higher acceleration gradients in linear accel-
erators, it is advantageous to use a higher accelerating RF fre-
quency, which in turn requires smaller accelerating structures.
As the structure size becomes smaller, rectangular structures
become increasingly interesting because they are easier to con-
struct than cylindrically symmetric ones. [1,2] One drawback
of small structures, however, is that the wakefields generated
by the beam in such structures tend to be strong. Recently, it
has been suggested that one way of ameliorating this problem
is to use rectangular structures that are very flat and to use flat
beams. [3] In the limiting case of a very flat planar geometry,
the problem resembles a purely two-dimensional (2-D) prob-
lem, the wakefields of which have been studied in Ref. [4].

In this work we consider the purely 2-D problem that is
sketched in Fig. 1. The beam is considered to be infinitely
long in the horizontalx-direction; it propagates with the speed
of light c in the longitudinalz-direction from z = �1 to
z = +1. The beam distribution in they-z plane is arbitrary.
The environment consists of boundaries which are independent
of x, but are otherwise unrestricted; for example, in they-z
plane they can be of arbitrary shape, and they can be made
of metal, dielectric or plasma material. We do assume, how-
ever, that the beam trajectory is entirely in free space and that it
nowhere intersects the boundaries. A test chargee in the beam
(or trailing the beam) also moving in thez-direction at the speed
of light samples the force due to the wakefield generated by the
beam. For these conditions, a theorem that we call the “planar
wake theorem” was proven in Ref. [4]. The theorem states that
the total transverse wake kick received by the test charge is inde-
pendent of they-positions of the beam and the test charge, and
is also independent ofD, the longitudinal separation between
the beam and the test charge (see Fig. 1). In addition, the the-
orem states that thelongitudinalwake kick is also independent
of y, though it does not say anything about itsD-dependence.

In this report, in Section II, we rederive the planar wake the-
orem. In Section III, we add a corollary to the theorem, ap-
plicable to the case when, in addition to the above conditions,
the boundaries also have up-down symmetry. For this case, we
will prove that the transverse wake kick not only is constant,
but in fact is equal to zero. The proof consists of a simple ap-
plication of the planar wake theorem. However, it was Ref. [3]
which triggered the present extension to the theorem. Finally,
in Section IV, we make additional observations concerning the
wakefields in very flat 3-D accelerating structures.
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II. THE PLANAR WAKE THEOREM

The planar wake theorem was proven in Ref. [4], but it is
reproduced here in more detail, starting with the Maxwell equa-
tions. From the symmetry of the problem, we know that the
only nonvanishing field components areEy, Ez andBx, and all
components depend only ony, z andt (and are independent of
x). The charge density� and current density~j are related by
~j = c�ẑ. The Maxwell equations then become

@Ey

@y
+

@Ez

@z
= 4��

@Bx

@z
�
1

c

@Ey

@t
= 0

@Bx

@y
+
1

c

@Ez

@t
= �4��

@Ez

@y
�

@Ey

@z
+
1

c

@Bx

@t
= 0 : (1)

The instantaneous Lorentz force components are given by

Fy(y; z; t) = eEy + eBx

Fz(y; z; t) = eEz : (2)

Combining Eqs. (1) and (2), we obtain
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Figure 1: A sketch of our 2-D problem, showing the beam and
its environment.



Note that the right hand sides of Eq. (3) all contain the operator
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We are interested in the wake kickc�~p, which is obtained by
integrating the wake force along the path of the test charge from
z = �1 to z = +1, i.e.

c�py;z(y;D) =

Z
1

�1

Fy;z(y;D + ct; t) dt ; (4)

wherey is the vertical coordinate of the test charge andD is the
longitudinal separation between the driving beam and the test
charge. (Our convention is such that, for a test charge trailing
the driving beam,D < 0.) Substituting Eqs. (3) into Eq. (4) we
obtain integrals of the formZ
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which in all cases equals zero, since the integrand is pro-
portional to the total derivativedG(D + ct; t)=dt and since
G(D + ct; t) approaches zero asjtj ! 1. It therefore follows
that
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which proves the planar wake theorem.
The proof of the planar wake theorem parallels a similar, per-

haps more familiar, result for the case of cylindrically symmet-
ric boundaries. In the cylindrically symmetric case, among the
results that are obtained are that the wake kick of a monopole
beam is independent of the transverse position of both the beam
and the test charge, that the transverse wake kick of a dipole
beam depends linearly on the radial position of the driving beam
and is independent of the transverse position of the test charge,
and that the longitudinal and transverse wake kicks of any mul-
tipole obey the Panofsky-Wenzel theorem. [5]

Note that the boundary properties never enter into our proof
of the planar wake theorem; the theorem is valid independent
of the shape and material of the boundary. For example, the
boundary can be only above or below the beam trajectory, or on
both sides of the beam. It can also consist of several separate
parts, as indicated in Fig. 1. It can be made of a fuzzy material,
such as a gradually fading plasma. The boundary can even sep-
arate parts of the beam, as long as the boundary is 2-D planar
and as long as by changingy the beam path does not cross any
boundary.

Also note that for our problem, the wake kick is also indepen-
dent of they position of the driving beam. This is because the
wakefield is a response to the primary field carried by the driv-
ing beam, and the primary field at the boundaries is independent
of they-position of the beam in a 2-D planar geometry.

In Ref. [4] two examples of 2-D planar wakefields with open
geometry were explicitly found by analytical methods. The
boundaries in both cases are wedge-shaped, made of perfectly
conducting metal, and are only on one side of the beam path (see
Figs. 2(a) and 2(b)). By solving the Maxwell equations it was
found that the transverse wake kick received by the test charge
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Figure 2: Two exactly soluble cases.

due to the wakefield generated by a rod beam (i.e. one that is in-
finitely long inx and a delta function in they- andz-directions)
of line charge density�0 is given by

c�py (y; y0; D < 0) =

(
2�e�0 for Fig. 2(a)

�e�0 for Fig. 2(b) ;
(7)

wherey0 is they-offset of the rod beam. We note that the trans-
verse wake kick is independent ofy, y0 andD, as the planar
wake theorem states. It is also interesting that the result, Eq. (7),
does not depend on�, the wedge angle. Although Eq. (7) ap-
plies only to a rod beam, the wake kick for a more generaly-z
beam distribution can be obtained by simple superposition.

III. A COROLLARY TO THE THEOREM

The planar wake theorem has an interesting corollary when
the 2-D boundaries have the additional property of up-down
symmetry, as is sketched in Fig. 3(a). In this case, the trans-
verse wake kicks due to the upper and the lower halves of the
boundaries canceleach other and the net transverse kick be-
comes zero. Note that the beam does not need to observe up-
down symmetry and that it can have ay off-set.

To prove this corollary, let us first consider a rod beam. Since
the wake kick does not depend on they-positions of the beam
and the test charge, we can choose to locate both along the sym-
metry axisy = 0 without changing the result. But for such a
configuration the transverse wake kick must vanish due to the
symmetry of the problem. Finally, we can extend this result to
an arbitraryy-z beam distribution by applying superposition,
and the corollary follows.

Note that the corollary applies to the totalintegratedwake
kick received by the test charge. Theinstantaneouswake force
is not necessarily zero. In case the boundary has translational
symmetry,i.e., is independent of thez-position, the instanta-
neous transverse wake force would, of course, also vanish. Note
also that the up-down symmetry of the boundary is required for
the corollary to hold; the transverse wake kick is not zero due
to the 2-D planar geometry alone. It vanishes only when the
additional requirement of up-down symmetry is applied.

Another application of the planar wake theorem is when the
boundary on one side of the beam path is a perfectly conduct-
ing plate, as sketched in Fig. 3(b). In this case, one must have
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Figure 3: (a) An example of up-down symmetric boundaries,
for which the corollary to the planar wake theorem applies. (b)
Another example with a perfectly conducting plate on one side
of the beam path.

�pz / �(D). To demonstrate this, consider a test charge that
travels immediately next to the surface of the plate. For this test
charge,Fz necessarily vanishes and thus�pz = 0. An appli-
cation of the planar wake theorem then predicts�pz = 0 for a
test charge with any vertical positiony. The only way this can
happen is when�pz(D) / �(D).

IV. DISCUSSIONS

We have shown that in a purely 2-D planar geometry, if the
boundaries have up-down symmetry, then the transverse wake-
fields are zero. With the accelerating structures for future linear
colliders continuing to be made smaller, one might ask if the
use of very flat rectangular structures and flat beams can aid
in eliminating the wakefield problem. This question obviously
requires more study. Below we make only a few preliminary
observations:

1. A very flat 3-D structure is not the same as a 2-D pla-
nar structure. In a 3-D structure there are effects asso-
ciated with the edges of the structure and the edges of
the beam. These effects may degrade the quality of the
beam, in a process that begins at the edges and gradually
moves toward the interior of the beam. A possible cure
is to design the structure in such a way that the internal
part of the structure sees “impedance-matched” edges in
the sense that the wakefield seen by particles sufficiently
away from the edges behaves as if the structure is truly
2-D (see Fig. 4). [6] Or one might consider a higher-
order-mode damped structure designed with RF absorbers
installed along the structure, perhaps in the edge region
(see Fig. 4). This should at least help the long range wake
effects associated with the edges.
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Figure 4: A very flat rectangular structure which may behave as
2-D planar. The beam moves in the direction into the page.

2. Even in a purely 2-D structure it may turn out that an ini-
tial, slight un-evenness of the beam distribution in thex-
direction, or a tilt of the beam in thex-y plane, leads to
unstable growth as the beam propagates down the linear
accelerator. This question requires a study of collective in-
stabilities. [7,8]

3. Although the net transverse wake kick will tend to vanish
in a flat, rectangular structure, it may turn out that the lon-
gitudinal wake kick is larger than desirable. (For the purely
2-D examples of Fig. 2, for example, the longitudinal kick
actually diverges. [4])

4. For the case of cylindrical symmetry a so-called “single
mode” rf cavity has been proposed. [9] It is a cavity that
features few or no higher order modes at the cost of a sig-
nificant reduction in shunt impedance. With a very flat,
rectangular structure it is conceivable that we can avoid the
transverse wakefield problem with little sacrifice in shunt
impedance.
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