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In the �nal-focus system of a linear collider, the e�ect of longitu-
dinal space charge can be signi�cant. A diverging or converging
ultra-relativistic beam experiences a longitudinal space-charge
force which is independent of the beam energy. This force,
though weak and often neglected, causes an energy variation
across the bunch which depends on the beam size, beam-pipe
radius and bunch population and this may a�ect the chromatic
correction of a beam line. Because of the inherent large chro-
maticity of a typical �nal-focus system, a very small energy vari-
ation, induced in the �nal focus, can lead to an intolerable in-
crease of the spot size at the interaction point. The space-charge
force, thus, gives rise to a limit on bunch intensity beyond which
the resulting spot-size increase will degrade the collider perfor-
mance. In this paper, we evaluate the e�ect of the longitudinal
space charge and derive intensity limits for three existing or pro-
posed �nal foci.
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1 INTRODUCTION

The purpose of a �nal-focus system for a linear collider is to demagnify a high-

energy electron (or positron) beam to a minuscule vertical spot size at the inter-

action point (IP). The last focusing before the IP is achieved with two or three

strong quadrupoles, a so-called �nal doublet or triplet. At these quadrupoles the

values of the beta functions are huge, up to tens or hundreds of kilometers, and,

as a result, the system is highly chromatic.

The chromaticity is conventionally canceled by upstream sextupole magnets

at locations with nonzero dispersion, i.e., where there is a correlation between a

particle's transverse displacement and its energy deviation. In order to achieve

the desired small spot sizes at the IP, the chromaticity needs to be compensated

very accurately for all particles in a bunch. But, small changes to the particle

energy distribution which occur between the sextupoles and the �nal quadrupoles

will impair this chromatic correction and may lead to an increase of the IP spot

size.

The chromatic contribution to the vertical spot size at the IP can be written

��y

�y
= �y (��)rms; (1)

where the dimensionless number �y characterizes the vertical chromaticity of the

�nal doublet, and (��)rms denotes the rms di�erence of the particle-energies at

sextupoles and �nal quadrupoles, divided by the average beam energy Eb. The

term ��y of Eq. (1) has to be added in quadrature to the design spot size.

As an example, �y � 6000 in the �nal focus of the Stanford Linear Collider

(SLC) at the Stanford Linear Accelerator Center (SLAC) [1], �y � 26; 000 for

the Final Focus Test Beam (FFTB) at SLAC [2], and �y � 32; 000 for the Next

Linear Collider (NLC) design [3]. Thus, the rms energy di�erence (��)rms between

sextupoles and �nal quadrupoles at which the total spot size increases by 2% is

about 3 � 10�5, 8 � 10�6, and 6 � 10�6, for SLC, FFTB and NLC, respectively.
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These are very small numbers|orders of magnitude smaller than the incoming

beam energy spread. They reect the sensitivity of the spot size to intra-bunch

energy variations which occur in the �nal focus itself. A harmful energy variation

(��)rms can be caused by forces so small that they would usually be ignored, in

view of the high beam energy.

In this paper, we consider one such potentially harmful force, the lon-

gitudinal space-charge. Usually, when considering ultra-relativistic beams, the

space-charge �elds are neglected. This is done because, for particles in straight

line motion, the normally considered longitudinal force scales inversely with the

square of the relativistic Lorentz factor , which for high-energy linear colliders

varies between 105 and 106, making the force negligible. In this paper, we calculate

another source of longitudinal space-charge force which arises when the particles in

the beam converge or diverge, as illustrated in Fig. 1. This force does not depend

upon  and thus can be important in the �nal-focus beam line since it causes the

beam energy and energy spread to vary with location. The force can be simply

understood from energy conservation arguments: when the beam size is decreased,

the potential energy due to the mutual repulsion of the electrons or positrons in

the beam is increased; this energy must come from the kinetic energy of the beam.

We note that the energy of the particles in a bunch will also be modi�ed

by the longitudinal wake�elds which arise from the electromagnetic interaction

between the beam and its surroundings, i.e., the vacuum chamber. This additional

energy variation may either counteract or enhance the space-charge e�ect and is

not included in our analysis. An estimate of the wake�eld e�ects in the NLC

�nal-focus system can be found in Ref. [4], although, since the vacuum system has

not yet been designed, this estimate is only a rough approximation. Reference [4]

showed that, for a proper vacuum-chamber design, the wake�eld e�ects in the �nal

focus should not be a problem.

In the next sections, we will calculate the longitudinal space-charge force
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and derive simple formulae to estimate its importance. The results are then ap-

plied to the SLC, FFTB, and NLC �nal-focus systems. Finally, we compare these

estimates with simulation results from a particle tracking code which includes the

longitudinal space-charge force.

2 LONGITUDINAL SPACE-CHARGE FORCE

The longitudinal space-charge force causes both an energy shift and an energy vari-

ation along the bunch, which depend on beam size, beam-pipe radius, and bunch

population. As discussed, the space-charge induced energy variation changes with

location and thus may a�ect the chromatic correction. Because it is intensity-

dependent, a limit on the bunch intensity exists beyond which the resulting spot-

size increase will degrade the �nal-focus performance. An estimate of the critical

intensity is obtained by comparing typical values for the space-charge induced rel-

ative energy spread (��)rms with the maximum tolerable value given in Section

1.

To this end, let us consider an ultra-relativistic electron (or positron) bunch

traversing at the center of a perfectly conducting circular beam pipe which is as-

sumed to be at zero potential. It is convenient to introduce a `beam rest system', by

which we mean the inertial reference frame moving along the (su�ciently straight)

beam line at a velocity equal to the time-averaged velocity of the bunch centroid.

In the such-de�ned rest frame, and for typical parameters, the instantaneous ve-

locity of the bunch centroid is non-relativistic, and thus, in this system, magnetic

�elds generated by the beam can be neglected. Henceforth, the primed quantities

will refer to the beam rest frame and the unprimed quantities to the laboratory

system.

Suppose now that the bunch passes the location s = 0 at time t = 0,

and also suppose that the transverse beam distribution is Gaussian. Consider a

particle, i.e., an electron or a positron, on the beam axis (x,y=0) at a longitudinal
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distance

z � s� vt (2)

from the bunch center. Here, v � c denotes the velocity of the bunch centroid.

In the beam rest frame, the electrostatic potential energy e�0(x0; y0; z0; s0) of this

particle is given by

e�0(0; 0; z0; s0) =
e�0(z0)

4��0

�
C + ln 2� 2 ln

�
�x(s

0) + �y(s
0)

R(s0)

��
; (3)

where C � 0:577 : : : denotes Euler's constant, e the electron charge, R(s) is the

beam-pipe radius, �x(s
0) and �y(s

0) are the horizontal and vertical rms beam sizes,

respectively, and �0 is the charge line density at longitudinal position z0 within the

bunch.

The line density in the laboratory frame is simply �(z) = �0(z0). Since

the electric potential transforms as � = �0, Eq. (3) is also valid in the laboratory

frame when one replaces the rest-frame line density �0 by the corresponding line

density � for the laboratory frame and the potential �0 by �. Thus, in the labo-

ratory system the electric potential at location s and position z within the bunch

is

e�(0; 0; z; s) =
e�(z)

4��0

�
C + ln 2� 2 ln

�
�x(s) + �y(s)

R(s)

��
: (4)

Next, the longitudinal component of the magnetic vector potential in the labora-

tory frame reads

As(x; y; z; s) = ��0(x; y; z0; s0) = ��(x; y; z; s) (5)

where � is the particle velocity. Considering the position s and time t as the

independent variables, the corresponding potentials are ~�(x; y; s; t) � �(x; y; s�

vt; s), ~As(x; y; s; t) � As(x; y; s�vt; s) (remember that z � s�vt). Now, it is easy

to see that the longitudinal electric �eld in the laboratory frame can be expressed

in terms of the derivatives of the electric potential �(x; y; z; s) alone:

Es = �@ ~�

@s
� 1

c

@ ~As

@t
= �@�

@s
� @�

@z

1

2
: (6)
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The last term describes the normally considered component of the space-

charge force which arises from the non-uniformity of the longitudinal distribution

and is very important at lower energies. From now on, we will neglect this term

since it is suppressed by 1=2. For an ultra-relativistic beam the prevailing part of

the longitudinal space-charge force is due to the dependence of the potential � on

the location s, i.e., due to changes in the transverse beam size or the beam-pipe

radius which are encountered as the beam travels along the beam line. In this case,

to a very good precision, the longitudinal space-charge force can be approximated

by

Es � �@�

@s
; (7)

where, as before, � denotes the electric potential in the laboratory frame as given

in Eq. (4). Equation (7) states that, for an ultra-relativistic particle, the change of

the longitudinal kinetic energy due to the space-charge force approximately equals

the change in its potential energy e�.

According to Eqs. (4) and (7), the kinetic (or potential) energy of an on-

axis particle at a distance z from the bunch center changes between two locations

by the amount

E2(z)� E1(z) =
e�(z)

2��0
ln

 
(�x + �y)2R1

(�x + �y)1R2

!
; (8)

where the subindices 1 and 2 refer to the two di�erent locations. Since a change

of the average bunch energy is easily corrected by adjusting the magnet strengths,

it is the spread of energy change, i.e., the rms change across the bunch, which is

harmful.

For simplicity, we will henceforth assume that not only the transverse, but

also the longitudinal distribution is Gaussian, i.e., that the line density is given by

�(z) =
Nep
2��z

e
�

z
2

2�2
z ; (9)

where N denotes the number of particles per bunch. In this case, both the average

5



and the rms energy change can be estimated from the z-dependence of �(0; 0; z; s)

in Eq. (4),

(��)rms � 0:28� 2Nrep
2��z

ln

 
�sum;2R1

�sum; 1R2

!
; (10)

where �sum � (�x + �y) denotes the sum of the two transverse rms sizes, re

the classical electron radius, and the coe�cients are calculated by performing the

appropriate integrals over the beam distribution and the force. The average energy

change (��)ave is about a factor 2.5 larger than the rms change (��)rms.

Note that, in Eq. (10), we have ignored the dependence of the potential on

the transverse position. This yields an estimate of the e�ect but is insu�cient for

more detailed calculations. To include the transverse variation of the longitudinal

force, we can express the electric potential of a Gaussian charge distribution, with

transverse rms sizes �x and �y, as [6]

�(x; y; z) =
�(z)

4��0

Z
1

0

e
�

x
2

2�2
x
+q

+
y
2

2�2
y
+qp

2�2x + q
q
2�2y + q

dq; (11)

provided that the longitudinal charge density �(z) is a su�ciently smooth function,

i.e.,

1

�

d�(z)

dz
� 

�x;y
; (12)

which is generally the case. Assuming �x and �y are slowly varying with location

s, the potential �(x; y; z; s) also depends on s and satis�es the di�erential equation

@�

@s
� d�2x

ds

@�

@�2x
+

d�2y

ds

@�

@�2y
: (13)

This can be re-expressed as

@�

@s
� 1

2

d�2x
ds

@2�

@x2
+
1

2

d�2y

ds

@2�

@y2
(14)

by noting that @�=@�2x;y =
1

2
@�2=@(x; y)2. Of course, in order for Eq. (14) to be

valid, the variation of �x;y with position s needs to be small so that

d�x

ds
;
d�y

ds
� ; (15)
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which is easily ful�lled in all the examples considered.

According to Eq. (7), the derivative of the electric potential, �@�=@s, ap-

proximately equals the longitudinal space-charge �eld Es. Equation (14) shows

that the force eEs experienced by a particle of charge e can be expressed in terms

of the derivative of the transverse forces Fx;y as follows:

eEs �
1

2

d�2x
ds

@Fx

@x
+
1

2

d�2y

ds

@Fy

@y
=
h
��x�x + �x�

0

x�
2

�

i @Fx

@x
� �y�y

@Fy

@y
: (16)

Here, �x;y are the horizontal and vertical beam emittances and the parameters �x;y

describe the convergence of the beam: the hxx0i and hyy0i second moments of the

beam distribution are equal to ��x�x and ��y�y. Finally, �� is the rms relative

energy spread and �x is the horizontal dispersion, i.e., the momentum dependence

of the horizontal position, and �0x = d�x=ds; note that we have assumed that the

vertical dispersion is zero which is usually the case in linear collider �nal-focus

systems.

For illustration, a typical longitudinal space-charge �eld for a beam in the

NLC �nal focus is plotted as a function of the horizontal (a) and vertical (b)

position, in Fig. 2. Notice that the variation in the vertical plane is somewhat

smaller than that in the horizontal plane, and that the �eld reverses sign at large

horizontal amplitudes. The di�erence between the two planes arises because the

beam is at with an aspect ratio �x=�y � 1.

3 ESTIMATES

Given the optics of a �nal focus, we can use Eqs. (1) and (10) to estimate the

e�ect of the space-charge force in this system. Speci�cally, we want to compare

the di�erence in energy between the chromatic correction sextupoles and the �nal

lenses. Furthermore, because the colliders operate with at beams, the vertical

plane is much more sensitive to energy variation than the horizontal.

In the SLC �nal focus, we have �sum � 850 �m at the Y-sextupoles and
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�sum � 1:71 mm inside Q2, the center magnet of the �nal triplet. Next, in the

FFTB, the beam size at the Y-sextupoles �sum � 650 �m almost equals that

at the center of the �nal quadrupole �sum � 570 �m. Finally, for the 500-GeV

center-of-mass energy NLC design, the beam sizes are �sum � 337 �m at the

Y-sextupoles and �sum � 250 �m inside the �rst quadrupole Q1. In all three

examples, the beam-pipe radii in the sextupoles and in the �nal quadrupoles are

about the same.

Assuming typical operating or design currents (4�1010, 1�1010 and 0:65�

1010 particles per bunch) and bunch lengths of 700 �m, 600 �m, and 100 �m, the

rms energy di�erence (��)rms induced between sextupoles and �nal quadrupoles

is 2:5� 10�7, 1:4� 10�8, and 2:5� 10�8, for SLC, FFTB and NLC, respectively,

and, using Eq. (1), the critical current for a 2% spot size increase is estimated to

be more than an order of magnitude larger than the present design or operating

current. This is a crude estimate, since the beam sizes inside the �nal quadrupoles

change rapidly, the chromaticity of other �nal-focus magnets has been neglected,

and, in Eq. (10), we have ignored the dependence of the potential on the transverse

coordinates.

We can also estimate the change of the beam energy at the IP. In the SLC,

the IP beam size is 2 �m � 500 nm. The NLC is designed for a spot size of 300

nm � 4.5 nm. These numbers imply a change of the average beam energy at the

IP, relative to that inside the last quadrupoles, by �280 keV in the SLC and �350

keV for the NLC, which is more than hundred times smaller than the rms energy

spread of the beam and, thus, most likely insigni�cant.

4 SIMULATION STUDIES

To study the space-charge induced spot-size increase and the IP energy change in

more detail, e.g., to include the dependence of the space-charge force on transverse

position, and to compare the results with the above estimates, we have modi�ed
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the multi-particle tracking code MAD [5] by adding the energy variation due to the

space charge. In the simulation, the space-charge force is calculated solely from

the change of the transverse beam dimensions, since, for the systems considered,

the beam-pipe aperture variation is small in comparison.

Since compact expressions for the transverse �eld of a Gaussian charge

distribution are readily available|for example see Ref. [7]|it is straightforward,

under the above assumptions, to include the longitudinal space-charge force in a

six-dimensional tracking program such as MAD. In our simulation, a multi-particle

distribution (typically 10,000 particles) is propagated step by step through the

magnets and drift spaces of the �nal-focus system. After each step, of length �s,

the relative energy deviation � of a particle with coordinates x, y and z is changed

by an amount �� according to Eq. (16), which, for a at beam (�x � �y), reads

��(x; y; z) = ��s � �(z)re


 
2�

�2x � �2y

! 1

2
�
�y�y

@

@y
Re F(x; y)+

+(�x�x � �x�
0

x�
2

�)
@

@x
Im F(x; y)

�
(17)

where �x and �y denote the rms beam sizes at location s, and F(x; y) is de�ned

in terms of the complex error function W as

F(x; y) =W

0
@ x+ iy

(2(�2x � �2y))
1

2

1
A� e

�
x
2

2�2
x

�
y
2

2�2
y W

0
@ �y

�x
x+ i�x

�y
y

(2(�2x � �2y))
1

2

1
A : (18)

The function F is familiar from the Bassetti-Erskine representation for the trans-

verse �elds of a Gaussian charge distribution [7], and the derivatives @F=@y and

@F=@x are easily obtained. For a tall beam (�y � �x) the coordinates x and y

need to be interchanged. The step size �s in Eq. (17) has to be chosen small

enough that the rms sizes �x;y do not change appreciably over this distance:

�s� �x

d�x=ds
;

�y

d�y=ds
: (19)

If the beam is round (�x = �y), Eq. (17) becomes singular. Therefore, for a

nearly round beam (�x � �y) we approximate the relative energy deviation by the
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round-beam formula

��(x; y; z) � ��s � 2�(z)re


�
�y�y

@

@y

fr;y(x; y)

@y
+(�x�x � �x�

0

x�
2

�)
@fr;x

@x

�
; (20)

where we have used the abbreviations r2 � x2 + y2, � � p
�x�y � �x � �y,

fr;x �
x

r2

�
1� e

�
r
2

2�2

�
(21)

and

fr;y � y

r2

�
1� e

�
r
2

2�2

�
: (22)

It is notable that at small amplitudes (x=�x � 1, y=�y � 1) the energy change

for both at and round beams, Eqs. (17) and (20), simpli�es to

��(z) � ��s 2�(z)re

(�x + �y)

"
�y�y

�y
+

�x�x � �x�
0

x�
2
�

�x

#
; (23)

which is independent of the transverse position.

In our simulation, the space-charge force is calculated according to the

aforementioned equations, including the dependence of the �eld on the transverse

position and assuming that at each location the beam is of Gaussian shape with the

design transverse rms size. If the space-charge force (or any other e�ect diluting

the emittance) is so large that the beam distribution either deviates strongly from

a Gaussian or spreads out in the transverse phase space, a more self-consistent

treatment would be warranted. For the applications considered in this paper,

however, the space-charge force is weak enough that the simple treatment described

above appears adequate.

Typical tracking results including space charge are presented in Figs. 3{

5. Figures 3 and 4 display the variation of the average bunch energy along the

NLC and SLC �nal foci, respectively. The magnitude of the energy variation is

consistent with our earlier estimates. It seems fortuitous that, in both systems,

the energy di�erence between sextupoles and the last quadrupoles is much smaller

than the `typical' energy variation. This arises, in part, because the beams are
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large in the sextupoles where �x is large to ease the sextupole strengths and the

beams are large in the �nal lenses before focusing them to tiny spots at the IP.

As a further example, Fig. 5 depicts the energy variation in an odd-disper-

sion �nal focus, designed by Oide [8], for roughly the same IP beam parameters

as in Fig. 3. In this system only the second Y-sextupole is used for chromatic

correction. This particular odd-dispersion design is slightly more sensitive to space-

charge than the design of Fig. 3, although the e�ect is still small.

Table 1 lists the spot-size increases obtained by multi-particle tracking.

The spot sizes change sensibly for bunch populations larger than a few times 1011

particles. As expected from Eqs. (1) and (10), the relative spot-size increase (to

be added in quadrature) is proportional to the beam intensity. In the simulation,

no attempt was made to correct for the change of average beam energy. Thus,

assuming that the magnet strengths will be adapted to the actual local beam

energy, the real intensity limit will be about two times higher than that predicted

by Table 1.

5 CONCLUSION

In this paper, we have discussed a component of the longitudinal space-charge force

that is not usually considered. In the �nal focus system of a linear collider, this

force could place a limit on the achievable luminosity. For the NLC, FFTB and

SLC �nal foci, the longitudinal space-charge force was found to be signi�cant only

for bunch populations an order of magnitude larger than their design or operating

value. For a di�erent �nal-focus optics the critical intensity could be considerably

lower and, therefore, the space-charge e�ect deserves attention during the design

phase. In addition to the spot-size increase, the longitudinal space-charge force

also causes a change of the average beam energy at the IP, which, although rather

small, might prove important in the analysis of high-precision experiments.

As a �nal point, it should be noted that we have only considered e�ects of
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the longitudinal space-charge force that occur in the �nal focus of linear colliders.

Similar e�ects will arise in other beam lines which are sensitive to the cancelation

of chromatic e�ects such as bunch compressors. In addition, we should note that

we have only evaluated the longitudinal force caused by variations in the beam size.

The longitudinal space-charge force can also be signi�cant in bending magnets [9],

although, for the parameters we considered here, this e�ect is not important. We

also have not considered the e�ect of the longitudinal wake�elds in the beam line

nor have we considered the wake�eld-like e�ect of coherent synchrotron radiation

[10, 11] in the bending magnets. The former e�ect is straightforward to calculate

and imposes some simple limitations on the vacuum chamber design [4], while the

latter e�ect is still a subject of active research and needs further investigation.
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Figure 1: Longitudinal �eld in converging beam.

N ��y=�y0
SLC FFTB NLC odd-� NLC

1� 1011 5.1% 0.3% 8.4 % 15.7%

2� 1011 9.8% 0.6% 24.6 % 30.9%

4� 1011 17.4% 1.3% 55.5 % 61.2%

Table 1: Simulated relative increase of the vertical spot size due to longitudinal space-

charge, for di�erent numbers of particles per bunch N . The design spot sizes �y0 are 370
nm, 44 nm and 4.5 nm, for SLC, FFTB and NLC, respectively, to which the contribution

��y has to be added in quadrature.
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Figure 2: Longitudinal �eld versus horizontal (a) and vertical (b) position in a converging

positron beam at a typical location in the NLC �nal focus. The beam energy is 250 GeV

and normalized emittances are �x = 5 mm-mrad and �y = 0:09 mm-mrad while �x = 0:3
and �y = 0:5. The beam sizes are �x = 30�m, �y = 0:65�m, and �z = 100�m, and the

number of particles per bunch is 0:65� 1010.
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Figure 3: Variation of average bunch energy due to the longitudinal space-charge force

in a 500 GeV center-of-mass energy NLC �nal focus system, for a bunch length of 100 �m

and 6:5 � 109 particles per bunch; the locations of the vertical sextupoles and the �nal
quadrupole are noted.
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Figure 4: Variation of average bunch energy due to longitudinal space-charge force in the
SLC �nal focus system, for a bunch length of 700 �m and 4�1010 particles per bunch; the

locations of the vertical sextupoles and the �nal vertically focusing quadrupole are noted.
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Figure 5: Variation of average bunch energy due to longitudinal space-charge force in a
500-GeV center-of-mass energy odd-dispersion �nal focus system; beam parameters are

the same as for Fig. 3; the locations of the vertical sextupoles and the �nal quadrupole

are noted.
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