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Abstract

We present a new measurement of the left-right cross section asymmetry

(ALR) for Z boson production by e+e− collisions. The measurement was

performed at a center-of-mass energy of 91.28 GeV with the SLD detector

at the SLAC Linear Collider (SLC). The luminosity-weighted average polar-

ization of the SLC electron beam was (77.23±0.52)%. Using a sample of

93,644 Z decays, we measure the pole-value of the asymmetry, A0
LR, to be

0.1512±0.0042(stat.)±0.0011(syst.) which is equivalent to an effective weak

mixing angle of sin2 θeff
W = 0.23100± 0.00054(stat.)± 0.00014(syst.).

Submitted to Physical Review Letters

†This work was supported in part by Department of Energy contract DE-AC03-76SF00515

1



∗ K. Abe,(19) K. Abe,(30) I. Abt,(13) T. Akagi,(28) N.J. Allen,(4) W.W. Ash,(28)† D. Aston,(28)

K.G. Baird,(16) C. Baltay,(34) H.R. Band,(33) M.B. Barakat,(34) G. Baranko,(9)

O. Bardon,(15) T. L. Barklow,(28) G.L. Bashindzhagyan,(18) A.O. Bazarko,(10)

R. Ben-David,(34) A.C. Benvenuti,(2) G.M. Bilei,(22) D. Bisello,(21) G. Blaylock,(16)

J.R. Bogart,(28) B. Bolen,(17) T. Bolton,(10) G.R. Bower,(28) J.E. Brau,(20)

M. Breidenbach,(28) W.M. Bugg,(29) D. Burke,(28) T.H. Burnett,(32) P.N. Burrows,(15)

W. Busza,(15) A. Calcaterra,(12) D.O. Caldwell,(5) D. Calloway,(28) B. Camanzi,(11)

M. Carpinelli,(23) R. Cassell,(28) R. Castaldi,(23)(a) A. Castro,(21) M. Cavalli-Sforza,(6)

A. Chou,(28) E. Church,(32) H.O. Cohn,(29) J.A. Coller,(3) V. Cook,(32) R. Cotton,(4)

R.F. Cowan,(15) D.G. Coyne,(6) G. Crawford,(28) A. D’Oliveira,(7) C.J.S. Damerell,(25)

M. Daoudi,(28) R. De Sangro,(12) R. Dell’Orso,(23) P.J. Dervan,(4) M. Dima,(8)

D.N. Dong,(15) P.Y.C. Du,(29) R. Dubois,(28) B.I. Eisenstein,(13) R. Elia,(28) E. Etzion,(33)

S. Fahey,(9) D. Falciai,(22) C. Fan,(9) M.J. Fero,(15) R. Frey,(20) K. Furuno,(20)

T. Gillman,(25) G. Gladding,(13) S. Gonzalez,(15) G.D. Hallewell,(28) E.L. Hart,(29)

J.L. Harton,(8) A. Hasan,(4) Y. Hasegawa,(30) K. Hasuko,(30) S. J. Hedges,(3)

S.S. Hertzbach,(16) M.D. Hildreth,(28) J. Huber,(20) M.E. Huffer,(28) E.W. Hughes,(28)

H. Hwang,(20) Y. Iwasaki,(30) D.J. Jackson,(25) P. Jacques,(24) J. A. Jaros,(28)

A.S. Johnson,(3) J.R. Johnson,(33) R.A. Johnson,(7) T. Junk,(28) R. Kajikawa,(19)

M. Kalelkar,(24) H. J. Kang,(26) I. Karliner,(13) H. Kawahara,(28) H.W. Kendall,(15)

Y. D. Kim,(26) M.E. King,(28) R. King,(28) R.R. Kofler,(16) N.M. Krishna,(9)

R.S. Kroeger,(17) J.F. Labs,(28) M. Langston,(20) A. Lath,(15) J.A. Lauber,(9)

D.W.G.S. Leith,(28) V. Lia,(15) M.X. Liu,(34) X. Liu,(6) M. Loreti,(21) A. Lu,(5)

H.L. Lynch,(28) J. Ma,(32) G. Mancinelli,(22) S. Manly,(34) G. Mantovani,(22)

T.W. Markiewicz,(28) T. Maruyama,(28) H. Masuda,(28) E. Mazzucato,(11)

A.K. McKemey,(4) B.T. Meadows,(7) R. Messner,(28) P.M. Mockett,(32) K.C. Moffeit,(28)

T.B. Moore,(34) D. Muller,(28) T. Nagamine,(28) S. Narita,(30) U. Nauenberg,(9) H. Neal,(28)

M. Nussbaum,(7) Y. Ohnishi,(19) L.S. Osborne,(15) R.S. Panvini,(31) C.H. Park,(27)

2



H. Park,(20) T.J. Pavel,(28) I. Peruzzi,(12)(b) M. Piccolo,(12) L. Piemontese,(11) E. Pieroni,(23)

K.T. Pitts,(20) R.J. Plano,(24) R. Prepost,(33) C.Y. Prescott,(28) G.D. Punkar,(28)

J. Quigley,(15) B.N. Ratcliff,(28) K. Reeves,(28) T.W. Reeves,(31) J. Reidy,(17)

P.L. Reinertsen,(6) P.E. Rensing,(28) L.S. Rochester,(28) P.C. Rowson,(10) J.J. Russell,(28)

O.H. Saxton,(28) T. Schalk,(6) R.H. Schindler,(28) B.A. Schumm,(6) J. Schwiening,(28)

S. Sen,(34) V.V. Serbo,(33) M.H. Shaevitz,(10) J.T. Shank,(3) G. Shapiro,(14)

D.J. Sherden,(28) K.D. Shmakov,(29) C. Simopoulos,(28) N.B. Sinev,(20) S.R. Smith,(28)

M.B. Smy,(8) J.A. Snyder,(34) P. Stamer,(24) H. Steiner,(14) R. Steiner,(1) M.G. Strauss,(16)

D. Su,(28) F. Suekane,(30) A. Sugiyama,(19) S. Suzuki,(19) M. Swartz,(28) A. Szumilo,(32)

T. Takahashi,(28) F.E. Taylor,(15) E. Torrence,(15) A.I. Trandafir,(16) J.D. Turk,(34)

T. Usher,(28) J. Va’vra,(28) C. Vannini,(23) E. Vella,(28) J.P. Venuti,(31) R. Verdier,(15)

P.G. Verdini,(23) D.L. Wagner,(9) S.R. Wagner,(28) A.P. Waite,(28) S.J. Watts,(4)

A.W. Weidemann,(29) E.R. Weiss,(32) J.S. Whitaker,(3) S.L. White,(29) F.J. Wickens,(25)

D.A. Williams,(6) D.C. Williams,(15) S.H. Williams,(28) S. Willocq,(28) R.J. Wilson,(8)

W.J. Wisniewski,(28) M. Woods,(28) G.B. Word,(24) J. Wyss,(21) R.K. Yamamoto,(15)

J.M. Yamartino,(15) X. Yang,(20) S.J. Yellin,(5) C.C. Young,(28) H. Yuta,(30) G. Zapalac,(33)

R.W. Zdarko,(28) and J. Zhou,(20)

(1)Adelphi University, Garden City, New York 11530

(2)INFN Sezione di Bologna, I-40126 Bologna, Italy

(3)Boston University, Boston, Massachusetts 02215

(4)Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

(5)University of California at Santa Barbara, Santa Barbara, California 93106

(6)University of California at Santa Cruz, Santa Cruz, California 95064

(7)University of Cincinnati, Cincinnati, Ohio 45221

(8)Colorado State University, Fort Collins, Colorado 80523

3



(9)University of Colorado, Boulder, Colorado 80309

(10)Columbia University, New York, New York 10027

(11)INFN Sezione di Ferrara and Università di Ferrara, I-44100 Ferrara, Italy
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In 1993, the SLD Collaboration performed a precise measurement of the left-right cross

section asymmetry in the production of Z bosons by e+e− collisions [1]. In this letter, we

present a substantially improved measurement based upon new data recorded during the

1994/95 run of the SLAC Linear Collider (SLC) with larger beam polarization and better

control of systematic uncertainties.

The left-right asymmetry is defined as A0
LR ≡ (σL − σR) / (σL + σR), where σL and σR

are the e+e− production cross sections for Z bosons at the Z-pole energy with left-handed

and right-handed electrons, respectively. The Standard Model predicts that this quantity

depends upon the effective vector (ve) and axial-vector (ae) couplings of the Z boson to the

electron current,

A0
LR =

2veae
v2
e + a2

e

≡
2
[
1− 4 sin2 θeff

W

]
1 +

[
1− 4 sin2 θeff

W

]2 , (1)

where the effective electroweak mixing parameter is defined [2] as sin2 θeff
W ≡ (1 − ve/ae)/4.

Note that A0
LR is a sensitive function of sin2 θeff

W and depends upon virtual electroweak

radiative corrections including those which involve the top quark and Higgs boson and those

arising from new phenomena. The recent measurement of the top quark mass [3] has, as a

determination of a previously unknown parameter of the Standard Model, greatly enhanced

the power of this measurement as a test of the prevailing theory.

We measure the left-right asymmetry by counting hadronic and (with low efficiency)

τ+τ− final states produced in e+e− collisions near the Z-pole energy for each of the two

longitudinal polarization states of the electron beam. The asymmetry formed from these

rates, ALR, must then be corrected for residual effects arising from pure photon exchange

and Z-photon interference to extract A0
LR. The measurement requires knowledge of the

absolute beam polarization, but does not require knowledge of the absolute luminosity,

detector acceptance, or efficiency [4].
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The operation of the SLC with a polarized electron beam has been described previously

[5]. In 1994, the beam polarization at the SLC source [6] was increased from 63% to ∼ 80%

by the use of a thinner (0.1 µm) strained-lattice GaAs photocathode [7] which was illumi-

nated by a pulsed Ti:Sapphire laser operating at 845 nm. The circular polarization state of

each laser pulse (and hence, the helicity of each electron pulse) was chosen randomly. The

electron spin orientation was manipulated in the SLC North Arc by a pair of large amplitude

betatron oscillations to achieve longitudinal polarization at the SLC interaction point (IP)

[8]. The maximum luminosity of the collider was approximately 6×1029 cm−2sec−1. The

luminosity-weighted mean e+e− center-of-mass energy (Ecm) is measured with precision en-

ergy spectrometers [9] to be 91.280±0.025 GeV.

The longitudinal electron beam polarization (Pe) is measured by a Compton scattering

polarimeter [10] located 33 m downstream of the IP. After it passes through the IP and before

it is deflected by dipole magnets, the electron beam collides with a circularly polarized photon

beam produced by a pulsed frequency-doubled Nd:YAG laser of wavelength 532 nm operating

at ∼17 Hz. Since the accelerator produces electron pulses at 120 Hz, the polarimeter samples

each seventh machine pulse. The scattered and unscattered components of the electron

beam remain unseparated until they pass through a dipole-quadrupole spectrometer. The

scattered electrons are dispersed horizontally and exit the vacuum system through a thin

window. A multichannel Cherenkov detector observes the scattered electrons in the interval

from 17 to 30 GeV/c.

The counting rates in each detector channel are measured for three combinations of

electron and photon beam parameters: parallel electron and photon helicities, antiparallel

helicities, and photon beam absent. The latter combination is used to measure detector

background. The asymmetry formed from the background-subtracted counting rates is

equal to the product PePγAi where Pγ is the circular polarization of the laser beam at

the electron-photon crossing point and Ai is the analyzing power of the ith detector chan-

nel. The laser polarization was maintained at (99.6±0.2)% by continuously monitoring and

correcting phase shifts in the laser transport system. The analyzing powers of the detector
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channels incorporate resolution and spectrometer effects and differ slightly from the theoret-

ical Compton asymmetry function at the mean accepted energy for each channel [11]. The

minimum energy of a Compton-scattered electron for the initial electron and photon ener-

gies is 17.36 GeV. The location of this kinematic endpoint at the detector was monitored

by frequent scans of the detector horizontal position during polarimeter operation. This

technique determines and monitors the analyzing powers of each detector channel.

Polarimeter data are acquired continually during the operation of the SLC. The absolute

statistical precision attained in a 3 minute measurement is typically δPe = 0.8%. The

systematic uncertainties that affect the polarization measurement are summarized in Table I.

The total relative systematic uncertainty is estimated to be δPe/Pe = 0.64%.

Due to energy-spread-induced spin diffusion in the SLC arc and imperfect spin orienta-

tion, the longitudinal polarization of the electron beam at the IP was typically 98% of the

polarization in the linac. This estimate follows from a measurement of the arc spin rota-

tion matrix performed with a beam of very small energy spread (<∼ 0.05%) using a pair of

spin rotation solenoids and the Compton polarimeter. The electron polarization in the linac

was determined to be (78.6±0.9)% and was consistent with a direct measurement using a

diagnostic Møller polarimeter [12] of (81±3)%.

In our previous Letter [1], we examined an effect that causes the beam polarization

measured by the Compton Polarimeter, Pe, to differ from the luminosity-weighted beam

polarization, Pe(1 + ξ), at the SLC IP. While the Compton polarimeter measures the po-

larization of the entire electron bunch, chromatic aberrations in the SLC final focus optics

reduce the contribution of off-energy electrons to the luminosity. The on-energy electrons

with larger average longitudinal polarization therefore contribute more to the total luminos-

ity and ξ can be non-negligible. To first order, the magnitude of ξ depends quadratically

on the width of the beam energy distribution N(E), the energy dependence of the arc

spin rotation dΘs/dE, and the dependence of the luminosity per electron on beam energy

dL(E)/dE.

During the 1994/95 run, a number of measures in the operation of the SLC and in
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monitoring procedures significantly reduced the size of this chromaticity correction and its

associated error. The fractional RMS beam energy spread was reduced to approximately

0.12% (0.20% in 1993) and non-Gaussian tails in the beam energy distribution were reduced

to a negligible level [13]. Optimization of the SLC arc spin transport system reduced the

measured energy dependence of the spin rotation in the arc to dΘs/dE = 1.4 rad/GeV

(2.5 rad/GeV in 1993). Finally, dL(E)/dE was reduced by improvements in the SLC final

focus optics [14]. Constraints on dL(E)/dE were made directly from our data via a de-

termination of the Z production rate as a function of beam energy, with consistent results

obtained from the observed energy dependence of the beam size and from simulations of the

final focus optics [14]. We then determine a contribution to ξ of +0.0020±0.0014 due to the

chromaticity effect, which is smaller by a factor of eight than it was in 1993. An effect of

similar magnitude arises due to the small precession of the electron spin in the final focusing

elements between the SLC IP and the polarimeter. This effect contributes −0.0011±0.0001

to ξ. The depolarization of the electron beam by the e+e− collision process is expected to be

negligible [15]. The contribution of depolarization to ξ is determined to be 0.000±0.001 by

comparing polarimeter data taken with and without beams in collision. Combining the three

effects described above, the overall correction factor is determined to be ξ = 0.0009±0.0017.

The e+e− collisions are measured by the SLD detector which has been described elsewhere

[16]. The trigger relies on a combination of calorimeter and tracking information; the event

selection is based on the liquid argon calorimeter (LAC) [18] and the central drift chamber

tracker (CDC) [19]. For each event candidate, energy clusters are reconstructed in the

LAC. Selected events are required to contain at least 22 GeV of energy observed in the

clusters and to manifest a normalized energy imbalance of less than 0.6 [20]. The left-right

asymmetry associated with final state e+e− events is expected to be diluted by the t-channel

photon exchange subprocess. Therefore, we exclude e+e− final states by requiring that each

event candidate contain at least 4 selected CDC tracks, with at least 2 tracks in each

hemisphere defined with respect to the beam axis, or at least 4 tracks in either hemisphere

(this track topology requirement excludes Bhabha events which contain a reconstructed
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gamma conversion). The selected CDC tracks are required to extrapolate to within 5 cm

radially and 10 cm along the beam direction of the IP, to have a minimum momentum

transverse to the beam direction of 100 MeV/c, and to form a minimum angle of 30 degrees

with the beam direction.

We estimate that the combined efficiency of the trigger and selection criteria is (89±1)%

for hadronic Z decays. Tau pairs constitute (0.3±0.1)% of the sample. Because muon pair

events deposit little energy in the calorimeter, they are not included in the sample. The

residual background in the sample is due primarily to e+e− final state events. We use our

data and a Monte Carlo simulation to estimate this background fraction to be (0.08±0.08)%.

The background fraction due to cosmic rays, two-photon events and beam related processes

is estimated to be (0.03±0.03)%.

A total of 93,644 Z events satisfy the selection criteria. We find that 52,179 (NL)

of the events were produced with the left-handed electron beam and 41,465 (NR) were

produced with the right-handed beam. The measured left-right cross section asymmetry for

Z production is [21]

Am ≡ (NL −NR)/(NL +NR) = 0.11441 ± 0.00325.

We have verified that the measured asymmetry Am does not vary significantly as more

restrictive criteria (calorimetric and tracking-based) are applied to the sample and that Am

is uniform when binned by the azimuth and polar angle of the thrust axis.

The measured asymmetry Am is related to ALR by the following expression which incor-

porates a number of small correction terms in lowest-order approximation,

ALR =
Am

〈Pe〉
+

1

〈Pe〉

[
fb(Am − Ab)−AL +A2

mAP

−Ecm
σ′(Ecm)

σ(Ecm)
AE − Aε + 〈Pe〉Pp

]
, (2)

where 〈Pe〉 is the mean luminosity-weighted polarization for the 1994-5 run; fb is the back-

ground fraction; σ(E) is the unpolarized Z cross section at energy E; σ′(E) is the derivative
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of the cross section with respect to E; Ab, AL, AP , AE, and Aε are the left-right asymme-

tries [22] of the residual background, the integrated luminosity, the beam polarization, the

center-of-mass energy, and the product of detector acceptance and efficiency, respectively;

and Pp is any longitudinal positron polarization which is assumed to have constant helicity

[23].

The luminosity-weighted average polarization 〈Pe〉 is estimated from measurements of

Pe made when Z events were recorded,

〈Pe〉 = (1 + ξ) · 1

NZ

NZ∑
i=1

Pi = (77.23± 0.52)%, (3)

where NZ is the total number of Z events, and Pi is the polarization measurement associated

in time with the ith event. The error on 〈Pe〉 is dominated by the systematic uncertainties

on the polarization measurement.

The corrections defined in equation (2) are found to be small. The correction for resid-

ual background contamination is moderated by a non-zero left-right background asymmetry

(Ab = 0.055 ± 0.021) arising from e+e− final states which remain in the sample. Resid-

ual electron current asymmetry (<∼ 10−3) from the SLC polarized source was reduced by

twice reversing a spin rotation solenoid at the entrance to the SLC damping ring. The net

luminosity asymmetry is estimated from the measured asymmetry of the rate of radiative

Bhabha scattering events observed with a monitor located in the North Final Focus region

of the SLC to be AL = (−1.9 ± 0.3) × 10−4. A less precise cross check is performed by

examining the left-right asymmetry of the sample of 246,845 small-angle Bhabha scatter-

ing events detected by the luminosity monitoring system (LUM) [24]. Since the theoretical

left-right asymmetry for small-angle Bhabha scattering is very small [O(10−4)Pe within the

LUM acceptance], the measured asymmetry of (−18±20)×10−4 is a direct determination of

AL and is consistent with the more precisely determined one. The polarization asymmetry

is directly measured to be AP = (+2.4±1.0)×10−3. The left-right beam energy asymmetry

arises from the small residual left-right beam current asymmetry due to beam-loading of the

accelerator and is measured to be (+9.2±0.2)×10−7. The coefficient of the energy asymme-
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try in equation (2) is a very sensitive function of the center-of-mass energy and is found to

be 0.0± 2.5 for Ecm = 91.280 ± 0.025 GeV. The SLD has a symmetric acceptance in polar

angle [4] which implies that the efficiency asymmetry Aε is negligible. As was discussed in

our previous publication [1], the positron polarization at the SLC IP is less than 1.5×10−5.

The corrections listed in equation (2) change ALR by (+0.2 ± 0.06)% of the uncorrected

value.

Using equation (2), we find the left-right asymmetry to be

ALR(91.28 GeV) = 0.1485 ± 0.0042(stat.)± 0.0010(syst.).

The various contributions to the systematic error are summarized in Table I. Correcting

this result to account for photon exchange and for electroweak interference which arises from

the deviation of the effective e+e− center-of-mass energy from the Z-pole energy (including

the effect of initial-state radiation), we find the pole asymmetry A0
LR and the effective weak

mixing angle to be [25]

A0
LR = 0.1512 ± 0.0042(stat.)± 0.0011(syst.)

sin2 θeff
W = 0.23100 ± 0.00054(stat.)± 0.00014(syst.)

where the systematic uncertainty includes the uncertainty on the electroweak interference

correction (see Table I) which arises from the ±25 MeV uncertainty on center-of-mass energy

scale. Combining this value of sin2 θeff
W with our previous measurements [17,1] we obtain the

value,

A0
LR = 0.1543± 0.0039

sin2 θeff
W = 0.23060± 0.00050.

This sin2 θeff
W determination is smaller by 2.5 standard deviations than the recent average of

23 measurements performed by the LEP Collaborations [26].
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TABLES

TABLE I. Systematic uncertainties that affect the ALR measurement. The uncertainty on the

electroweak interference correction is caused by the ±25 MeV on the SLC energy scale.

Systematic Uncertainty δPe/Pe (%) δALR/ALR (%) δA0
LR/A

0
LR (%)

Laser Polarization 0.20

Detector Linearity 0.50

Analyzing Power Calibration 0.29

Electronic Noise 0.20

Total Polarimeter Uncertainty 0.64 0.64

Chromaticity and I.P. Corrections (ξ) 0.17

Corrections in Equation (2) 0.06

ALR Systematic Uncertainty 0.67 0.67

Electroweak Interference Correction 0.33

A0
LR Systematic Uncertainty 0.75
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