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Abstract

By using relations derived from renormalization group equations (RGEs), we
find that strong indirect constraints can be placed on the top squark mixing
phase in At from the electric dipole moment of the neutron (dn). Since mt is
large, any GUT-scale phase in At feeds into other weak scale phases through
RGEs, which in turn contribute to dn. Thus CP -violating effects due to
a weak-scale At are strongly constrained. We find that |ImAEWt | must be
smaller than or of order |ImBEW |, making the electric dipole moment of the
top quark unobservably small in most models. Quantitative estimates of the
contributions to dn from Au, Ad and B show that substantial fine-tuning is
still required to satisfy the experimental bound on dn. While the low energy
phases of the A’s are not as strongly constrained as the phase of BEW , we
note that the phase of a universal AGUT induces large contributions in the
phase of BEW through RGEs, and is thus still strongly constrained in most
models with squark masses below a TeV.
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I. INTRODUCTION

Supersymmetry (SUSY) [1] is one of the most compelling extensions of the Standard

Model. It is the only known perturbative solution to the naturalness problem [2], it unifies

the gauge coupling constants for the observed value of sin2 θW , it allows radiative EW

symmetry breaking, and the lightest SUSY partner provides a good dark matter candidate.

SUSY models with such features are generally in excellent agreement with experiment, and

there is even the possibility that a recent CDF event [3] is of supersymmetric origin [4].

One of the few phenomenological problems associated with SUSY models is their generi-

cally large predictions for the electric dipole moment (EDM) of the neutron, dn. Supersym-

metric models with universal soft breaking parameters have two physical phases, beyond

the CKM and strong phases of the SM, which can be taken to be the triscalar and bis-

calar soft breaking parameters A and B. These phases give a large contribution to dn, of

order 10−22(100 GeV/Msusy)2e cm, where Msusy is a characteristic superpartner mass. The

experimental upper bound on dn is of order 10−25e cm [5], so that if superpartner masses

are near the weak scale, the phases of these complex soft parameters must be fine-tuned to

be less than or of order 10−2–10−3 since there is no a priori reason for them to be small

[6]. If one wants to avoid such a fine-tuning, there are two approaches: suppress dn with

very large squark masses (greater than a TeV) [7], or construct models in which the new

SUSY phases naturally vanish [8]. Models with very heavy squarks are unappealing because

in such models LSP annihilation is usually suppressed enough so that the relic density is

unacceptably large [9]. They also lead to a fine-tuning problem of their own in getting the

Z boson mass to come out right in EW symmetry breaking.

It is natural to consider solutions of the second type, and demand that the soft phases

are zero by some symmetry. While that would leave only a small CKM contribution to

dn [10–13], and thus avoid any fine-tuning in meeting the experimental bound on dn, it

would also mean that there is no non-SM CP violation, which is needed by most schemes

for electroweak baryogenesis [14]. Also, such models do not generate signals of non-SM

CP violation, such as those involving top squark mixing. There are ways of naturally

obtaining small nonzero soft phases which leave sufficient CP violation for baryogenesis

[15–18], but these phases would still have to meet the bounds from dn and would probably

be unobservably small in most EW processes—unless the soft terms are not universal.

Recently it has been pointed out that large non-SM CP -violating top quark couplings

could be probed at high energy colliders [19]. A measurement of a large top quark EDM, for

example, would indicate physics beyond the SM, and it is interesting to ask whether SUSY

models can yield an observable effect. Several references have attempted to use CP violation

from top squark mixing due to the complex parameter At to yield large CP -violating effects
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in collider processes involving top quarks [20]. Such papers either explicitly or implicitly

assume nonuniversal soft couplings Aq at the GUT scale; otherwise, the phase of At would

be trivially constrained by dn. We consider whether it is possible to obtain large effects due

to the phase of At at the EW scale by relaxing the universality of A. We will show that

due to renormalization group induced effects on other low energy phases, the phase of At

is strongly constrained by dn, and it is not possible, for most areas of parameter space, to

have large CP -violating effects due to the imaginary part of At.

We will assume that no parameters are fine-tuned and thus we will require the phases at

the GUT scale to be either identically zero (presumably through some symmetry) or no less

than 1/10. If one permits an arbitrary degree of fine-tuning, the whole SUSY CP violation

issue becomes moot, and one can derive no constraints on the phase of At. While one can

construct models which give small universal phases, as we said above, the fine-tuning needed

to evade the constraints we derive is unlikely to be explained naturally. Our approach in

this paper is to assume the reasonable fine-tuning criterion we have just outlined, and ask

what it implies about low energy SUSY CP -violating phenomenology.

In Sec. II, we review the basics of SUSY CP violation. We present our results derived

from RGEs in Sec. III, and impose the neutron EDM constraints on ImAt using those results

in Sec. IV. In Sec. V we discuss top squark mixing induced CP violating observables in

more detail in light of our constraints on the phase of At, and we give some concluding

remarks in Sec. VI. The details from Sec. III are written up in Appendix A, and the full

one-loop calculation for the SUSY contribution to the neutron EDM is given in Appendix

B.

II. SUSY CP -VIOLATING PHASES

The soft breaking potential in the MSSM is

− Lsoft =
1

2
|mi|2 |ϕi|2 +

1

2

∑
λ

Mλλλ +

εij[AUŨ
∗
RYU Q̃

i
L]Hj

u + εij[ADD̃
∗
RY
†
DQ̃

j
L]Hi

d + εij[AEẼ
∗
RY
†
EL̃

j
L]Hi

d + (1)

εijBµH
i
uH

j
d + h.c.

(2)

where we take AU = diag{Au, Ac, At}, AD = diag{Ad, As, Ab}, AE = diag{Ae, Aµ, Aτ}; YU ,

YD, and YE are the Yukawa coupling matrices; Q̃, L̃, ŨR, D̃R and ẼR are the squark and

slepton fields; λ are the gauginos and ϕi are the scalars in the theory.

A common simplifying assumption is that this soft Lagrangian arises as the result of a

GUT-scale supergravity (SUGRA) model with universal soft triscalar coupling A, gaugino
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mass Mλ = M1/2, and scalar mass mi = m0. This provides an explanation for the absence

of flavor changing neutral currents which arise from loops with squarks of nondegenerate

mass [21]. Such supersymmetric models have only two independent physical CP -violating

phases beyond the CKM and strong phases of the SM [10] although these phases appear in

several different linear combinations in low energy phenomenology [17,22]. We will take the

two physical phases to be ArgA and ArgB.

It turns out that all CP violating vertices in this model arise through the diagonalization

of complex mass matrices [15]. The complex quantities which appear in these matrices are

Aq + µ∗Rq and µ, where Rq is tan β (the ratio of Higgs vacuum expectation values) for

q = d, s, b and cotβ for q = u, c, t, and where the phase of µ is simply equal to the

phase of B∗ by a redefinition of fields. Thus for dn, which involves only u and d quarks,

there are only contributions from three low energy combinations of the two SUSY GUT

phases: Arg(Ad − µ tan β), Arg(Au − µ cot β), and Argµ. (In the Appendix B, a complete

expression of dn is given which includes suppressed contributions from phases of the other

squark mixings.)

Even with universal boundary conditions, the elements of the matrices AU , AD and

AE have distinct phases at the EW scale because of renormalization group evolution. We

will also relax, in some places, the assumption that their phases started the same at the

GUT scale. We assume (for simplicity) that these matrices are diagonal. One possible

consequence of this approach is that one could have dn ' 0 because ImAd and ImAu ' 0, but

other Aq, notably At, could have large phases which lead to observable effects. These include

angular correlations and polarizations [20], including effects attributable to the electric dipole

moment of the top quark, dt. As discussed in the Introduction, this scenario is strongly

constrained by RGE running.

III. RENORMALIZATION GROUP FLOW OF COMPLEX SOFT TERMS

The goal of this section is to demonstrate how a large phase in At can feed into other

parameters in the theory through renormalization group running. The imaginary part of At

at the weak scale, ĀEW
t , is determined by running ĀGUT

t (and for large tanβ, ĀGUT
b ) down

to the weak scale via the renormalization group equations (RGEs). (For compactness of

notation, we will define x̄ = Imx in the following sections.) We will show that large ĀEW
t

induces potentially large values of B̄EW and ĀEW
u,d , which give an unacceptably large neutron

electric dipole moment.

Rather than write RGEs for the whole effective theory, we need only consider a complete

subset of them which includes Aq and B. The running of these soft terms depends upon
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the gaugino masses, the top and bottom Yukawas (we ignore tiny effects from the other

Yukawa couplings) and the gauge coupling constants αa = λ2
a/4π (a = 1, 2, 3). We define

t = 1/4π ln(Q/MGUT ) and write

dMa

dt
= 2baαaMa (3)

dAt

dt
= 2caαaMa + 12αtAt + 2αbAb (4)

dAu,c

dt
= 2caαaMa + 6αtAt (5)

dAb

dt
= 2c′aαaMa + 2αtAt + 12αbAb (6)

dAd,s

dt
= 2c′aαaMa + 6αbAb (7)

dB

dt
= 2c′′′a αaMa + 6αtAt + 6αbAb (8)

dαt
dt

= 2αt (−caαa + 6αt + αb) (9)

dαb
dt

= 2αb (−c′aαa + αt + 6αb) (10)

dαa
dt

= 2baα
2
a (11)

where a is summed from 1 to 3, and

ba =
(

33

5
, 1,−3

)
, (12)

ca =
(

13

15
, 3,

16

3

)
, (13)

c′a =
(

7

15
, 3,

16

3

)
, (14)

c′′′a =
(

3

5
, 3, 0

)
, (15)

and the Yukawa coupling constants αt,b = λ2
t,b/4π are related to the masses by

λt =
g2√

2

mt

mW

1

sinβ
, λb =

g2√
2

mb

mW

1

cos β
. (16)

We note that some references [23] list the αtAt coefficient in (5) as 2, but we have confi-

dence that the coefficient is actually 6 [13,24]. Nevertheless our conclusions do not depend

qualitatively on this coefficient.

We are mainly interested in the evolution of Āq and B̄. We can set the phase of the

common gaugino mass to zero at the GUT scale by a phase rotation and then M̄i = 0 at all

scales. Therefore the RGE for the imaginary parts of the Aq and B can be written without

the Ma terms:
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dĀt

dt
= 12αtĀt + 2αbĀb, (17)

dĀb

dt
= 2αtĀt + 12αbĀb, (18)

dĀu

dt
= 6αtĀt, (19)

dĀd

dt
= 6αbĀb, (20)

dB̄

dt
= 6αtĀt + 6αbĀb. (21)

Using the above RGEs, we can derive the following useful relations:

∆B̄ = ∆Āu,c + ∆Ād,s =
6

14

(
∆Āt + ∆Āb

)
, (22)

∆Āu,c =
3

35

(
6∆Āt −∆Āb

)
, (23)

∆Ād,s =
3

35

(
6∆Āb −∆Āt

)
, (24)

where ∆B̄ = B̄GUT − B̄EW , etc. For small tan β, we can neglect mb so that these relations

simplify to

∆B̄ = ∆Āu,c = 3∆Āb =
1

2
∆Āt,

∆Ād,s = 0. (25)

Thus, given the GUT values, to obtain the low energy values for the imaginary parts of all

the soft terms, one only needs to find ĀEW
t and ĀEW

b , and for small tan β, we only need the

former.

In the small tan β limit (αb ' 0), we can use Eq. (17) to obtain the ratio of EW to GUT

scale values of the imaginary part of At:

rt ≡ ĀEW
t /ĀGUT

t = exp
[
−
∫ tGUT

tEW

12αt(t)dt
]
. (26)

If the top quark were light, the integral in Eq. (26) would be small and rt would be close

to one, but since the top quark is heavy, we find that rt is well below one. We can use the

relations in Eq. (25) and the definition for rt in (26) to relate the low energy values for the

imaginary parts of At to B and Au (for small tan β):

ĀEW
t =

−2rt
1− rt

(
B̄EW − B̄GUT

)
=
−2rt
1− rt

(
ĀEW
u − ĀGUT

u

)
. (27)

We will make the simplifying assumption that ĀGUT
u and B̄GUT are zero. As we will see in

the next section, this is reasonably well justified by our fine-tuning criterion, at least for the

phase of B.
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Next, we must find rt. We obtain a pseudo-analytic solution to Eq. (26) in terms of

EW and GUT scale quantities in Eq. (39) of Appendix A, but this is useful only if one has

already obtained the GUT values for the α’s by numerical integration of the RGEs. While

we cannot find a truly analytic solution to Eq. (26), we can place an analytic upper bound

on rt which is sufficient to make our point. We note that the integral in Eq. (26) is simply

the area under the curve of the top Yukawa αt as it runs from the EW scale to the GUT

scale. Thus we can place an upper bound on rt simply by finding a lower bound to that

area. In Appendix A, we do this by placing a lower bound on αt(t) at each t, and we obtain

rt <∼ 1− 12αEWt /fEW , (28)

which is valid for small tan β so long as 12αEWt < fEW . Here fEW ≡ 2caαEWa ' 1.5 +

32/3(αEWs − .12), so, for example, Eq. (28) is valid for mt = 175 if 1.3 < tanβ � mt/mb

(for smaller tan β, rt gets closer to zero, but does not actually reach it). Thus we have

placed an analytic bound on the running of At completely in terms of EW quantities. For

αs(MZ) = .12, sinβ → 1 (moderate tan β) and mt = 175 (mt = 160), we find that rt < .43

(rt < .52), which, from Eq. (27), corresponds to |ĀEW
t | < 1.5|B̄EW | (|ĀEW

t | < 2.2|B̄EW |).
For small tan β, the bound is even stronger, so that for tan β small enough to neglect mb

effects, we obtain

|ĀEW
t | < 2.2 min

{
|B̄EW |, |ĀEW

u |
}

(29)

and in practice the coefficient is less than 2.

In Fig. 1, we plot rt (= ĀEW
t /ĀGUT

t ) as a function of the top Yukawa coupling for

different values of αs(MZ) in the limit where effects proportional to mb can be ignored. For

mt > 160 GeV, λt is always greater than about 0.87 for all values of tanβ, which means

that rt is always less than .45, in agreement with our analytic bounds. Also plotted are

−B̄EW/ĀGUT
t = (1− rt)/2, and −B̄EW/ĀEW

t = (1 − rt)/2rt, which is greater than 1 (0.6)

for mt = 175 (160). Thus |ĀEW
t | <∼ |B̄EW |, in agreement with our analytic results.

Next we consider moderate tanβ, where one must take into account the mixing of Āt

and Āb but where tan β is not of order mt/mb. For ĀGUT
b /ĀGUT

t > 0, these effects lower rt,

and one can simply use the mb = 0 upper bound on rt derived above.∗

For ĀGUT
b /ĀGUT

t < 0 (recall that with universal A this ratio would simply be +1), one

simply maximizes the positive contribution to rt from Āb to obtain (see Appendix A)

∗There is a subtlety for the case of small positive ĀGUTb /ĀGUTt for which there can be a net

positive contribution to rt if Āb runs down below zero. However, the maximum effect on the bound

is very small.
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rt < 1− 12αEWt /fEW −
1

6

(
ĀGUT
b /ĀGUT

t

) αEWb
αEWt − αEWb

. (30)

Note that the last term raises the upper bound on rt, but the effect is small until tan β gets

quite close to mt/mb. For mt = 175 GeV, ĀGUT
b = −ĀGUT

t , and tanβ = .7mt/mb ' 35

(recall that we are evaluating all quantities at the EW scale, so mb is somewhat lower than

the value at q2 = m2
b), we find the bound rt < 0.6.

Effects due to mb are evident in Figs. 2-4, which show ĀEW
t , B̄EW , ĀEW

u and ĀEW
d ,

normalized to ĀGUT
t , as a function of tan β for various GUT-scale boundary conditions. In

Fig. 2, only the phase of AGUT
t is non-zero, while in Figs. 3 and 4, ĀGUT

b has values of +ĀGUT
t

and −ĀGUT
t respectively. In all cases, rt (the solid curve) remains below 0.35 and has its

largest value just below tan β = mt/mb for ĀGUT
b /ĀGUT

t < 0 (Fig. 4), in agreement with our

analytic results. This means that the EW value for the phase of At is constrained to be less

than about a third, independent of constraints from low energy CP violating observables.

The magnitude of the imaginary part induced into B̄EW/ĀGUT
t by Āt is greater than 0.35

except for large tan β and ĀGUT
b /ĀGUT

t < 0. For tanβ = mt/mb and ĀGUT
b /ĀGUT

t < 0, B̄EW

actually goes through zero, because ∆B̄ gets equal and opposite contributions from ∆Āt

and ∆Āb there. At that point the “t” and “b” RGE coefficients are almost exactly the same

at each t (because the Yukawa coupling runnings differ only in a small U(1) coefficient), and

the boundary conditions have opposite signs, so that Āt(t) ' −Āb(t) for all t. Of course

ĀEW
u and ĀEW

d are non-zero because they involve different linear combinations of ∆Āt and

∆Āb, so there is still a strong constraint on Āt from dn there.

Finally we note that for large tan β, one can place constraints on ĀGUT
b as well, since

it can then affect other low energy phases through renormalization group running. For

tan β ∼ mt/mb, the constraints are of the same order as on ĀGUT
t , while for small tan β,

ĀGUT
b is unconstrained (though the Āt contribution to ĀEW

b for small tanβ is constrained

to be small and ĀEW
b can be large only if |ĀGUT

b | � |ĀGUT
t |).

IV. BOUNDS FROM THE NEUTRON EDM

Now that we have placed an upper bound on the magnitude of Āt in terms of Āu, Ād,

and B̄, we need to explore the constraints on the latter three imaginary parts (in low energy

observables, we will drop the label EW). As we mentioned in the Introduction, one of the

strongest constraints on CP violating phases is the electric dipole moment (EDM) of the

neutron, dn. In Appendix B, we write expressions for the full supersymmetric contribution

to dn. One sees that all the pieces are proportional to Āu, Ād, or µ̄ (except for the negligibly

small pieces proportional to Āq). We can redefine the Higgs fields so that the phase of µ is
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just the opposite of the phase of B, and thus

µ̄ = −
∣∣∣∣ µB
∣∣∣∣ B̄ =

∣∣∣∣ µB
∣∣∣∣ (1− rt

2rt
Āt − B̄GUT

)
, (31)

where the RHS follows for small tan β.

In order to estimate the size of µ̄ we will need an estimate of |µ/B| in Eq. (31). We

can find this ratio by considering the two equations which µ and B need to satisfy to ensure

that EW symmetry breaking occurs and that the Z boson gets the right mass:

2Bµ = −(m2
Hu

+m2
Hd

+ 2µ2) sin 2β, (32)

µ2 = −m
2
Z

2
+
m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
. (33)

In the limit that tanβ → ∞, we see that the right hand side of Eq. (32) goes to zero, so

B → 0, whereas µ2 is not forced to zero. For tan β → 1, the right hand side of Eq. (33) blows

up forcing µ to take on very large values. When µ2 dominates Eq. (32) and tanβ = 1 then

we are led to a value of |B| = |µ|. So in both the tan β →∞ limit and the tanβ → 1 limit

we find that |µ| ≥ |B|. We have run thousands of models numerically [25] which include

the one-loop corrections to Eqs. (32) and (33) and found that |µ| >∼ |B| is indeed a good

relationship for most of the parameter space. As expected, it is violated most strongly for

intermediate values of tan β. For example, for tan β = 10 we have found a small region of

parameter space where |µ|/|B| is as low as 0.4, although most solutions prefer |µ|/|B| > 1.

We will assume that |µ|/|B| >∼ 1, and thus the fine-tuning constraint on the phase of B is

even stronger than on what we obtain below for the phase of µ.

From Appendix B, we see that dn can be written in terms of the three imaginary parts,

dn
10−25e cm

= kAun
Āu

m0
+ kAdn

Ād

m0
+ kµn

µ̄

m0
= kAun

Āu

m0
+ kAdn

Ād

m0
− kµn

∣∣∣∣ µB
∣∣∣∣ B̄m0

, (34)

where we have normalized the RHS by the SUSY mass scale m0, and the LHS by the region

of the experimental bound so that the coefficients k are dimensionless. We can rewrite the

EW imaginary parts in Eq. (34) using Eq. (25) as

dn
10−25e cm

=
dGUTn

10−25e cm
+

1− rt
2rt

(
−kAun + kµn

∣∣∣∣ µB
∣∣∣∣) Āt

m0
, (35)

where dGUTn /10−25e cm is just Eq. (34) with EW values of Āu,d and B̄ replaced by GUT

quantities. It vanishes if ĀGUT
u,d and B̄GUT are zero. In supergravity models, |AGUT | and

|BGUT | are of order m0, so that barring fine-tuned cancellations, the GUT scale phases must

be less than order 1/kn. If the k’s are greater than order 10, then our fine-tuning criterion

dictates that we set the GUT phases to zero (presumably protected by some symmetry).

Thus we need an estimate of the k′ns.
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In Figs. 5a, 5b, and 5c, we plot the values for kAun , kAdn , and kµn respectively in many

different models as a function of squark mass, and as a function of tan β in Figs. 5d, 5e, and

5f. We see that kAun and kAdn are fairly flat functions of tan β, whereas −kµn increases with

tan β due to the µ tan β terms in the expression for dn. We also see that most models give

kAun > 2 (0.8), kAun > 7 (3), and |kµn| > 100(40), for squark masses below 500 GeV (1 TeV), so

that order one phases in all the SUSY complex quantities usually give a neutron EDM which

is of order 100 (40) times the experimental bound. We note that these are substantially larger

contributions (and thus stronger constraints) than claimed by the recent work of Falk and

Olive [26], though this is probably due to the fact that they use very heavy squark masses in

an effort to find the smallest fine-tuning of phases consistent with cosmology. While one can

argue whether or not the bounds on the phases of Au,d represent a fine-tuning, the bound on

the phase of µ (and thus B̄EW , which comes from B̄GUT and ĀGUT
t ) certainly does. Thus,

by our fine-tuning criterion, the phases of BGUT and AGUT
t should be zero. We note that in

the case of universal A it is irrelevant whether or not the low energy phases of Au and Ad

are strongly constrained, since the phase of the universal AGUT makes a large contribution

to the low energy value of µ̄ (since ĀGUT
t = ĀGUT ).

To give an idea of what level of neutron EDM one expects with different initial as-

sumptions, we plot in Fig. 6 dn/10−25e cm with universal |AGUT | for three cases: (a,d)

ArgAGUT
t = ArgAGUT

b = 0.1 and all other phases zero, (b,e) ArgAGUT
t = −ArgAGUT

b = 0.1

and all other phases zero, and (c,f) universal phases ArgAGUT = ArgBGUT = 0.1. As one

can see, even with phases of order 0.1, most models have an absolute value for dn/10−25e cm

greater than one, inconsistent with the experimental bounds.

As can be gathered by the spread of points in the scatter plots and the number of

parameters involved, the results depend on one’s model assumptions. For example, if one

requires tan β to be small (say because of b-τ unification), and the squarks are allowed to be

very heavy, then there is very little fine-tuning needed for the current experimental bound

on dn. On the other hand, if SUSY is detected at LEP 2 or TeV 33, then even the smallest

tan β models would require fine-tuning.

In minimal supergravity models the natural scale for the A terms is m0. In Fig. 7 we

have plotted dn/10−25e·cm versus ImAEW
t /m0 to succinctly demonstrate how quickly the

EDM rises when ImAEW
t 6= 0. To construct this plot we chose a random phase for At at

the GUT scale, forced all other phases equal to zero at that scale, and then ran all the

parameters down to the weak scale. A sharp drop in dn occurs at ImAEW
t /m0 ' 0 because

ImAGUT
t can be small there and thus induces only small phases into the other low energy

soft parameters. Models with dn around 10−25e·cm at ImAEW
t /m0 ' 0 occur for low tanβ

where ImAGUT
t � ImAEW

t but where dn otherwise tends to be smaller. This means that
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most models with dn below the experimental bound in Fig. 6 also have a small EW value for

ImAt, and thus from Fig. 7 we can place a stronger constraint on ImAEW
t than we obtained

on ImAGUT
t : ImAEW

t /m0
<∼ 1/20.

Thus we conclude that models with universal GUT-scale phases of the soft parameters,

and models in which only AGUT
t has a non-zero phase, have difficulty meeting the bounds

from dn and our fine-tuning criterion. Models with non-zero ĀGUT
c , ĀGUT

s , or ĀGUT
l can

meet the constraint from dn without fine-tuning, as can those with non-zero ĀGUT
b for small

tan β. For the remainder of the paper, we will for simplicity set all the GUT-scale phases to

zero except for that of At. Even though our fine-tuning criterion implies that ĀGUT
t should

be zero, we find it useful to ask what effects one would have if one allows that fine-tuning.

V. THE TOP QUARK EDM

Now that the top quark has finally been discovered, one can envision some nice experi-

ments which measure properties of this known particle. Future colliders, such as the NLC,

can provide many precision measurements of the production cross-section and decay prop-

erties of the top quark. It is possible that signatures of new physics could arise out of such

a study. One property of the top quark which has received much attention [19] is the pos-

sibility of measuring its EDM by looking at the decay distributions of the tt̄ pairs. (Other

CP-violating observables are possible, such as those arising from t → bW decays, but we

will make our point only with the top EDM.) It is generally estimated that the top quark

EDM (dt) can be measured to values as low as O(10−18) e cm [19]. Given the constraints

which we derived above, we ask if the minimal supersymmetric standard model can yield a

value for dt this large.

In the context of supersymmetry, it has been proposed [20] that a large dt is possible if

the phase of AEW
t is of order one. But in Sec. III, we showed that ĀEW

t is constrained to

be smaller than or of order the phases which contribute to dn. The EDM of the top is thus

constrained to be less than a constant times the neutron EDM:

dt
dn

<∼ ξ
mt

md

detM2
q̃

detM2
t̃

, (36)

where detM2
q̃ = m2

q̃1
m2
q̃2

is the determinant of the (down) squark mass-squared matrix, and

the value of ξ depends upon many different SUSY parameters, but is generically of order 1.

Normalizing dn to the experimental bound, we see that

dt <∼ ξ
detM2

q̃

detM2
t̃

dexptn

10−25 e cm
2× 10−21 e cm. (37)
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In addition to this constraint, we recall that the phase of At at the EW scale must be less

than about 1/3, just from the RGE suppression factor rt. Thus, as long as detMd̃ ' detMt̃,

we expect dt to fall about three orders of magnitude below detectability at proposed future

high energy colliders.

We can turn this analysis around. If a large top quark EDM is discovered, can it be

explained in the MSSM? One possibility is that a conspiracy occurs between several large

phases in the theory to render dn below experimental limits, yet produce a dt detectable at

high energy colliders. This is equivalent to saying that all the O(1) coefficients which we

absorbed into the parameter ξ in Eq. (37) actually conspire to give ξ >∼ 103. As we argued

in the Introduction, we would not view this as a likely explanation.

Another possibility to consider is that the top squarks are much lighter than the other

squarks. For dt to be observable, we would need the determinants in Eq. (36) to have a

ratio >∼ 103. This is possible, but it too would require some fine-tuning. The large top-

quark-induced running of the t̃R goes in the right direction—the lightest top squark mass

eigenvalue tends to be smaller than the other quarks. However, t̃2 generally tracks fairly

well with the other squarks, q̃L, and thus, we estimate that

detM2
d̃

detM2
t̃

<∼
m2
d̃

m2
t̃1

, (38)

which means that we would need mt̃1
<∼ md̃/

√
1000 to yield an observable dt. If experiment

determines that mt̃1 > 80 GeV then this condition would imply that the superpartners of the

light quarks are above 2.5 TeV. This is essentially the heavy squark “solution” to the CP

violation problem we mentioned in the Introduction, with an additional fine-tuning implied

by the small ratio mt̃1/md̃.

Finally, one could appeal to differences between dt and dd due to effects proportional to

m2
t/v

2, which are negligible in dd. To achieve ξ of order 103, one again needs a fine-tuned

conspiracy of couplings.

Thus we conclude that if a large dt were found, one would probably have to look beyond

the MSSM for an explanation.

VI. CONCLUDING REMARKS

It has long been noted that the phases of soft supersymmetric parameters generically

lead to an unacceptably large neutron EDM. This fine-tuning problem has slowly become

less vexing as the theoretical expectations for the squark masses have risen faster than

the experimental bound on the neutron EDM has fallen. Nevertheless, for squark masses

below about a TeV, we showed in Sec. V that the phase of B and universal phase of A do

11



not meet the fine-tuning criterion set forth in the Introduction (see Fig 6c). Certainly, if

supersymmetry is discovered at LEP 2 or TeV 33, a fundamental explanation for the absence

of a neutron EDM would be needed, and any scheme for baryogenesis at the EW scale would

require that mechanism to leave small effective low energy phases in the soft terms [15–18].

From the phenomenological point of view, it is tempting to postulate that the soft phases

are not universal—that the EW phase of At is large, while the other phases which directly

contribute to the neutron EDM are small. This would allow interesting signatures of super-

symmetric CP violation to be visible in top quark physics at future colliders. But we have

demonstrated by using the renormalization group equations that the imaginary part of At

must be less than twice the imaginary part of B, and At-induced CP-violating observables

such as the top EDM are thus expected to be unobservably small in almost all minimal

SUSY models.

These constraints are particularly important for models of EW baryogenesis which rely

upon the phase of the stop LR mixing parameter, At − µ tan β, to generate enough CP

violation for baryogenesis. Such models must also have sufficiently small |At − µ tan β| to

ensure that the phase transition is first order [27]. There has also been a recent attempt to

explain the observed CP violation in the neutral kaon system with zero CKM phase and non-

zero off-diagonal phases in the general A matrices [28]. If the universal diagonal A parameter

has a large phase at the GUT scale, it will, as we noted above, give a large contribution to dn

through a renormalization group induced phase in µ, as well as from a direct contribution.

One could evade such bounds by insisting that the off-diagonal components of the A matrices

have a large phase, while the phases of the diagonal A’s and of B vanish. Although this

hypothesis can probably be technically consistent with our fine-tuning criterion (phases

either zero or large), this scenario strikes us as unnatural.
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A. Riotto, and A. Soni for helpful discussions. RG greatly appreciates the hospitality of the

Brookhaven National Lab HEP Theory Group.

VII. APPENDIX A

In this appendix, we provide the details related to our analytic results of Sec. III. It

is interesting to note that we can use the RGEs for the top Yukawa and gauge coupling

constants in Eqs. (9) and (11) to write a pseudo-analytic solution to rt = ImAEW
t /ImAGUT

t .

The integral in Eq. (26) can be rewritten as ln(αEWt /αGUTt ) − ∑a(ca/ba) ln(αGUTa /αEWa ),

which allows us to write a pseudo-analytic rt in terms of EW and GUT scale quantities (the

latter of which cannot be found analytically):

12



rt =
αEWt
αGUTt

Π3
a=1

(
αEWa
αGUTa

)ca/ba
. (39)

To place an analytic upper bound on rt, we must place a lower bound on the area∫ tGUT
tEW

12αt(t)dt. We will need the αb = 0 limit of the running of the top Yukawa coupling in

(9),

dαt
dt

= −f(t)αt + 12α2
t , (40)

where f(t) = 2caαa. While this cannot be solved analytically, we note that α3(t) runs down

with energy and one can show that f(t) will be at its maximum value at the EW scale.

Thus if we take f(t) to the constant fEW , we will minimize the running of αt, and Eq (40)

can be solved analytically to yield the bound

αt(t) >

(
12

fEW
+

(
1

αEWt
− 12

fEW

)
efEW (t−tEW )

)−1

, (41)

which is valid for 12αEWt < fEW (larger αEWt allows the bound on αt(t) to reach infinity for

t < tGUT and thus makes the bound useless), which corresponds to tan β > 1.3 for mt = 175.

If we replace αt(t) in the integral above by the RHS of Eq. (41), we can find an analytic

solution for the lower bound on the area which, for the relevant range of fEW and tEW , can

be approximated by

− fEW tEW − ln

[
12αEWt
fEW

+

(
1− 12αEWt

fEW

)
e−fEW tEW

]
' − ln

[
1− 12αEWt

fEW

]
, (42)

which yields Eq. (28) directly.

For moderate tan β, we need to include mb effects which mix Āt with Āb, and αt with

αb. The coupled differential equations (17) and (18) can be solved analytically only if the

coefficients, which here are proportional to αt and αb, are constants. To obtain bounds on

the running of Āt and Āb, we can break up the range of energy from tEW to tGUT into small

regions where the coefficients are effectively constant, and iteratively evolve from the GUT

scale down to the weak scale. At each energy tj, the value for Āt is given by

Āt (tj+1)' Āt(tj) exp (−12αt(tj)δt)

−1

6
Āb(tj)

{
αb(tj)

αt(tj) − αb(tj)
[exp (−12αb(tj)δt)− exp (−12αt(tj)δt)]

}
, (43)

provided that T ≡ αb/(αt−αb) is not large. Here δt = tj − tj+1, which is positive. Iterating

Eq. (43) gives a complicated expression with terms proportional to each of the T (tj)’s.

However, each of these terms is positive, so that taking T (tj) to its maximum value max-

imizes the size of the quantity in { }’s in Eq. (43), which is what we need for the case

13



ĀGUT
b /ĀGUT

t < 0. Once we take T (tj) → Tmax, many terms cancel, and we are left with

(taking δt→ 0) the upper limit

ĀEW
t < ĀGUT

t exp

(
−
∫ tGUT

tEW

12αt(t)dt

)

−1

6
ĀGUT
b

(
αb

αt − αb

)
max

[
exp

(
−
∫ tGUT

tEW

12αb(t)dt

)
− exp

(
−
∫ tGUT

tEW

12αt(t)dt

)]
. (44)

One can show analytically that T (t) reaches its maximum value at the lowest energy of the

range, and thus we can replace Tmax by αEWb /(αEWt − αEWb ). To obtain a simpler bound,

one can reduce the [ ]’s in Eq. (44) to 1 by taking a lower bound on αb(t) to be zero and an

upper bound on αt(t) to be infinity. Finally one uses the mb ' 0 bound on rt obtained in

Eq. (28) for the first term in Eq. (44) to obtain the upper bound on rt in Eq. (30).

VIII. APPENDIX B

In this Appendix we present analytic expressions for the full one-loop SUSY contribution

to the neutron electric dipole moment, dn. The gluino [11] and chargino [7] contributions

appear in the literature. While an expression for the neutralino contribution is given by

Kizukuri and Oshimo [7], it is written in terms of 4 × 4 complex unitary matrices which

must be determined numerically. Below we give an expression for this neutralino contri-

bution solely in terms of the mass matrices (and other MSSM parameters), and a useful

approximation to that expression, which do not require calculating complex unitary matri-

ces.

To find the neutron EDM, we first calculate the EDM of the up and down quarks (dq)

from one loop diagrams with photons attached to either (a) an internal boson or (b) an

internal fermion line. Then the neutron EDM is related to the quark EDM’s in the Naive

Quark Model by dn = (4dd − du)/3, though recent work has argued that this expression

overestimates dn if the strange quark carries a large fraction of the neutron and proton spin

[29]. The Feynman integrals associated with (a) and (b) are [30]:

Ia(x) =
1

(1− x)2

[
−3

2
+
x

2
− lnx

1− x

]
, Ib(x) =

1

(1− x)2

[
1

2
+
x

2
+
x lnx

1− x

]
. (45)

As we mentioned earlier, all SUSY CP violating effects arise from diagonalizing complex

mass matrices [15]. Gluino loops contribute to the quark EDM dq through the complex

phase in the left-right mixing elements for up and down squarks:

dq(g̃) =
−2

3π
Qqeαs

mqmg̃Im(Aq − µRq)

m4
q̃0

Ib
(m2

g̃

m2
q̃0

)
. (46)
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We have averaged over the nearly degenerate squark mass eigenstates for simplicity: m2
q̃0

=

mq̃1mq̃2 and I(x0) = (I(x1)+I(x2))/2. Here Qqe is the charge of quark q, Rq = tan β (cotβ)

for q = d (u), and mg̃ is the gluino mass. (Note that we use Imz for the imaginary part of

z in this appendix because it is clearer than z̄ in more complicated expressions.)

The chargino contribution is proportional to the imaginary part of products of elements

of the matrices U and V which diagonalize the chargino mass matrix. It turns out that one

can write those products directly in terms of the elements of the chargino mass matrix, so

that the chargino contribution to dq can be written

dq(χ̃
+) =

e

(4π)2

{
g2Rq

mqmW̃ Imµ

m4
q̃′0

[ωIa(y1) +Qq′Ib(y1)]− [ωIa(y2) +Qq′Ib(y2)]

y1 − y2
+

mqReµ

sinβ cos β
[ωIa(y0) +Qq′I

b(y0)]
dsb or uct∑
r=q′i

Im(Ar − µRq′)

m4
r̃0

m2
r|Vqr|2
v2

}
, (47)

where mW̃ is the wino mass, ω = +1 (−1) for q = d (u), y1 = m2
χ̃1
/m2

q̃′0
, and I(y0) =

(I(y1) + I(y2))/2. The primed quantities refer to the SU(2) partner, so if q = d, then q′ = u

and r is summed over the set {u, c, t}. Previous expressions for dq(χ̃+) have neglected the

squark mixing piece, which is the second term in Eq. (47). This piece is suppressed relative

to the other contributions by m2
r|Vqr|2/v2, which is less than 10−4 for q = u or d (but it

can affect the EDM’s of other quarks), though it is interesting that there is a (tiny) direct

contribution to dn from ImAt.

The neutralino contribution,

dq(χ̃
0)=
−Qqe

(4π)2

1

m2
q̃0

mq

vq

{
1,2∑
h=1

(aqLh − a
q
Rh)ImΦhq̂ +

Re(Aq + µRq)vq
m2
q̃0

1,2∑
h,l

aqLha
q
RlImΦhl −

Im(Aq − µRq)vq
m2
q̃0

1,2∑
h,l

aqLha
q
RlReΦhl

}
, (48)

arises from the 4x4 complex neutralino mass matrix. The index q̂ = 3 (4) for q = d (u).

Recall [31] that the “1” and “2” weak eigenstates are gauginos, and the “3” and “4” weak

eigenstates are higgsinos which couple to down and up quarks respectively. Thus “34” and

“43” terms are absent, which will allow us to simplify expressions involving the neutralino

mass matrix, since that is the position of the complex coefficient µ. We have dropped terms

of order m2
f/v

2 relative to the others. The gauge coefficients aLi are:

aqL1 =
√

2g tan θw (Qq − T q3L) =
√

2g tan θw/6, (49)

aqL2 =
√

2gT q3L, (50)

and the aRi are the same as the aLi with T3L → T3R = 0. The neutralino phases appear

through a 4x4 matrix
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Φhl =
4∑
i=1

UT
hiM̂iiI

b
iiUil, (51)

where U diagonalizes the neutralino mass matrix M , and M̂ is the diagonal result. Here

Ibij = Ib(xi)δij, i.e. Ibij is the diagonal matrix of Feynman integrals for the corresponding

mass eigenvalues in M̂ . In the limit that the Ib(xi) are equal, the real part of Φhl can simply

be written

ReΦhl ' Ib(x0)ReMhl, (52)

where Ib(x0) =
∑4
i I

b(xi)/4. The imaginary part of Φhl is more difficult because it vanishes

in the limit of degenerate neutralino masses (except for the irrelevant “34” and “43” terms).

We know that Imµ is the only complex coefficient in the neutralino mass matrix M , so we

can write

ImΦhl ' ΩhlImµ, (53)

where Ωhl is a real matrix to be determined. This allows us to see that dq(χ̃0) is proportional

to Imµ and Im(Aq − µRq), just as the other contributions are. It turns out that ImΦhl is

proportional to Im(MM∗M)hl, Im(MM∗MM∗M)hl, and Im(MM∗MM∗MM∗M)hl (except

for the “34” and “43” pieces). To extract the Imµ dependence, we ignore all terms of higher

order in Imµ/|µ|, which is a valid approximation for the phases allowed by the experimental

bound on dn. Then these products (for (h, l) 6= (3, 4), (4, 3)) simplify as follows:

Im(MM∗M)hl ' Imµ
2∑
p=0

(−1)p(Mp
RPM

2−p
R )hl, (54)

Im(MM∗MM∗M)hl ' Imµ
4∑
p=0

(−1)p(Mp
RPM

4−p
R )hl, (55)

Im(MM∗MM∗MM∗M)hl' Imµ
6∑
p=0

(−1)p(Mp
RPM

6−p
R )hl, (56)

where MR = ReM and P is a matrix with −1 in the 34 and 43 positions and 0 everywhere

else (so that Im(µP ) = ImM). After some calculation, we obtain an expression for the

imaginary part of the complex matrix Φ:

ImΦhl ' ΩhlImµ '
3

2
Imµ

4∑
s=1

(
I(xs)−

6=s∑
j

I(xj)
)
×

[ 6=s∑
i,j,k

εijkM̂
4
i M̂

6
j

2∑
p=0

(−1)p(Mp
RPM

2−p
R )hl −

6=s∑
i,j,k

εijkM̂
2
i M̂

6
j

4∑
p=0

(−1)p(Mp
RPM

4−p
R )hl +

6=s∑
i,j,k

εijkM̂
2
i M̂

4
j

6∑
p=0

(−1)p(Mp
RPM

6−p
R )hl

]
× (57)
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[ 6=s∑
i,j,k

εijkM̂
4
i M̂

6
j

(
3M̂2

s −
6=s∑
n

M̂2
n

)
−
6=s∑
i,j,k

εijkM̂
2
i M̂

6
j

(
3M̂4

s −
6=s∑
n

M̂4
n

)
+

6=s∑
i,j,k

εijkM̂
2
i M̂

4
j

(
3M̂6

s −
6=s∑
n

M̂6
n

)]−1

,

where
∑ 6=s
j means sum over the three members of the set {1, 2, 3, 4} −{s}. Here M̂j are the

mass eigenvalues of M̂ (i.e. the four physical neutralino masses).

The expression above is completely analytic and exact except for the approximation we

made in dropping higher order terms in Imµ/|µ|, but it has so many terms that it is not

that useful. Let us find an approximation to this expression using the information about

the neutralino mass eigenstates, namely that they are fairly close together and the heaviest

neutralino is lighter than the squarks (x4 � 1) in most SUSY models. This means that we

can take a simple linear fit to the Feynman integral by evaluating Ib(x) at the lowest and

highest values of x:

Ib(x) ' K0 +K1x ' Ib(x1) + S41(x− x1), (58)

where S41 is the slope

S41 =
Ib(x4)− Ib(x1)

x4 − x1
, (59)

and xj = mχ̃0
j
/mq̃0. Thus K1 = S41 and K0 = Ib(x1)− S41x1. Note that this approximation

gives exact values for x1 and x4, and is only off for x2 and x3—a rough estimate is that the

approximation is correct to about 5%.

If we plug Eq. (58) into ImΦhl in Eq. (51), we see that the K0 piece vanishes (except

for the “34” and “43” pieces), and we obtain

ImΦhl ' S41
Im(MM∗M)hl

m2
q̃0

' S41

m2
q̃0

Imµ
2∑
p=0

(−1)p(Mp
RPM

2−p
R )hl. (60)

The neutralino contribution to dq is found by plugging Eq. (52) for ReΦhl and Eq. (57) or

Eq. (60) for ImΦhl into (48).

Finally, we want to relate the expressions for the three SUSY contributions to the quark

EDM in Eqs. (46), (47), and (48) in terms of the coefficients kn from Section IV. Using the

Naive Quark Model, dn = 4/3dd − 1/3du, we can write kxn = 4/3kxd − 1/3kxu and

kxq =
dxq

10−25e cm

m0

Imx
, (61)

where x = Au, Ad, or µ, and dxq is the contribution to dq from complex quantity x. We

can see that if we neglect the tiny second term of dq(χ̃+) in Eq. (47), then kAun (kAdn ) gets

contributions only from the gluino and neutralino contributions to du (dd), whereas kµn gets

contributions from all three of the SUSY contributions to du and dd.
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FIGURES

FIG. 1. Plot of the ratios (a) rt = ĀEWt /ĀGUTt , (b) (1 − rt)/2 = −B̄EW /ĀGUTt , and (c)

(1− rt)/2rt = −B̄EW /ĀEWt versus the top quark Yukawa coupling for αs(MZ) = 0.118± 0.006.

FIG. 2. The ratios of imaginary parts to ImAGUTt versus tanβ with ImAGUTt 6= 0 and

ImAGUTb = 0. The solid line is ImAEWt /ImAGUTt ; the dashed line is ImBEW /ImAGUTt ; and the

upper (lower) dotted line is ImAEWd /ImAGUTt (ImAEWu /ImAGUTt ).
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FIG. 3. Same as Fig. 2 with ImAGUTb = ImAGUTt .

FIG. 4. Same as Fig. 2 with ImAGUTb = −ImAGUTt .
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FIG. 5. Scatter plot of (a and d) kAun , (b and e) kAdn , and (c and f) kµn versus squark mass

and versus tanβ. Each point represents a solution of the supersymmetric parameter space with

universal scalar and gaugino mass terms which is within other experimental limits.
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FIG. 6. Scatter plot of dn/10−25e·cm versus squark mass and versus tanβ for (a and d)

ArgAGUTt = ArgAGUTb = 0.1 with all other phases zero, (b and e) ArgAGUTt = −ArgAGUTb = 0.1

with all other phases zero, and for (c and f) universal phases ArgAGUT = ArgBGUT = 0.1. Each

point represents a solution of the supersymmetric parameter space with universal scalar and gaug-

ino mass terms which is within other experimental limits.

FIG. 7. Scatter plot of dn/10−25e·cm versus ImAEWt /m0. Each point represents a solution of

the supersymmetric parameter space with universal scalar and gaugino mass terms which is within

other experimental limits.
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