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ABSTRACT

As a precursor to work on QCD, we study the dressed electron in QED non-
perturbatively. The calculational scheme uses an invariant mass cutoff, discretized
light-cone quantization, a Tamm–Dancoff truncation of the Fock space, and a small
photon mass. Nonperturbative renormalization of the coupling and electron mass is
developed.
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1 Introduction

We are in the process of studying dressed fermion states in a gauge theory. To give
the work specific focus, we concentrate on the nonperturbative calculation of the
anomalous moment of the electron. [1] This is not intended to be competitive with
perturbative calculations. [2] Instead it is an exploration of nonperturbative methods
that might be applied to QCD and that might provide a response to the challenge by
Feynman [3] to find a better understanding of the anomalous moment.

The methods used are based on light-cone quantization [4] and on a number of
approximations. Light-cone coordinates provide for a well-defined Fock state expan-
sion. We then approximate the expansion with a Tamm–Dancoff [5] truncation to
no more than two photons and one electron. The Fock-state expansion can be writ-
ten schematically as Ψ = ψ0|e〉 + ψ1|eγ〉 + ψ2|eγγ〉. The eigenvalue problem for the
wave functions ψi and the bound-state mass M becomes a coupled set of three in-
tegral equations. To construct these equations we use the Hamiltonian HLC of Tang
et al. [6] The anomalous moment is then calculated from the spin-flip matrix ele-
ment of the plus component of the current. [7] The regulator is an invariant-mass
cutoff

∑
i(P

+/p+
i ) (m2

i + p2
⊥i) ≤ Λ2. Additional approximations and assumptions are

a nonzero photon mass of me/10, a large coupling of α = 1/10, and use of numerical
methods based on discretized light-cone quantization (DLCQ). [4]

2 Renormalization

We renormalize the electron mass and couplings differently in each Fock sector, as a
consequence of the Tamm–Dancoff truncation. [8] The bare electron mass in the one-
photon sector is computed from the one-loop correction allowed by the two-photon
states. We then require that the bare mass in the no-photon sector be such that
M2 = m2

e is an eigenvalue.
The three-point bare coupling e0 is related to the physical coupling eR by e0(ki, kf ) =

Z1(kf )eR/
√
Z2i(ki)Z2f (kf ), where ki = (k+

i ,k⊥i) is the initial electron momentum and

kf the final momentum. The renormalization functions Z1(k) and Z2(k) = |ψ0|2 are
generalizations of the usual constants. The amplitude ψ0 must be computed in a basis
where only allowed particles appear.

The function Z1 can be fixed by considering the proper part of the transition
amplitude Tfi for photon absorption by an electron at zero photon momentum (q =
kf − ki → 0): T proper

fi = Vfi/Z1(kf ), where Vfi is the elementary three-point vertex.
The transition amplitude can be computed from Tfi = ψ0〈Ψ|V |i〉, in which |Ψ〉 is the

dressed electron state and ψ0 =
√
Z2f(kf ). The proper amplitude is then obtained

from T proper
fi = Tfi/(Z2iZ2f ), where the Z2’s remove the disconnected dressing of the

electron lines.
Thus the solution of the eigenvalue problem for only one state can be used to

compute Z1. Full diagonalization of HLC is not needed. Because Z1 is needed in the
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construction of HLC, the eigenvalue problem and the renormalization conditions must
be solved simultaneously.

Most four-point graphs that arise in the bound-state problem are log divergent. To
any order the divergences cancel if all graphs are included, but the Tamm–Dancoff
truncation spoils this. For a nonperturbative calculation we need a counterterm
∼ λ(p+

i , p
+
f ) log Λ that includes infinite chains of interconnected loops. The function

λ might be fit to Compton amplitudes. [9] Thus we need to be able to handle scattering
processes.

3 Preliminary Results and Future Work

Some preliminary results are given in Fig. 1. In the two-photon case there remain
divergences associated with four-point graphs.

The next step to be taken in this calculation is renormalization of the four-point
couplings, followed by numerical verification that all logs have been removed. Con-
struction of finite counterterms that restore symmetries will then be considered. We
can also consider photon zero modes, Z graphs, and pair states.
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Figure 1: Electron anomalous moment as a function of the cutoff Λ2, extrapolated
from DLCQ calculations. The photon mass is me/10, and the coupling is 1/10.
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