NONPERTURBATIVE RENORMALIZATION OF QED IN LIGHT-CONE QUANTIZATION*

J. R. Hiller

Department of Physics, University of Minnesota Duluth, Minnesota 55812

and

Stanley J. Brodsky

Stanford Linear Accelerator Center Stanford University, Stanford, California 94309

ABSTRACT

As a precursor to work on QCD, we study the dressed electron in QED nonperturbatively. The calculational scheme uses an invariant mass cutoff, discretized light-cone quantization, a Tamm–Dancoff truncation of the Fock space, and a small photon mass. Nonperturbative renormalization of the coupling and electron mass is developed.

> Paper submitted to the 1996 Annual Divisional Meeting (DPF96) of the Division of Particle and Fields of the American Physical Society University of Minnesota, Minneapolis, Minnesota 10–15 August 1996

 $^{^{*}}$ Work supported in part by the Minnesota Supercomputer Institute through grants of computing time and by the Department of Energy, contract DE–AC03–76SF00515.

1 Introduction

We are in the process of studying dressed fermion states in a gauge theory. To give the work specific focus, we concentrate on the nonperturbative calculation of the anomalous moment of the electron. [1] This is not intended to be competitive with perturbative calculations. [2] Instead it is an exploration of nonperturbative methods that might be applied to QCD and that might provide a response to the challenge by Feynman [3] to find a better understanding of the anomalous moment.

The methods used are based on light-cone quantization [4] and on a number of approximations. Light-cone coordinates provide for a well-defined Fock state expansion. We then approximate the expansion with a Tamm–Dancoff [5] truncation to no more than two photons and one electron. The Fock-state expansion can be written schematically as $\Psi = \psi_0 |e\rangle + \psi_1 |e\gamma\rangle + \psi_2 |e\gamma\gamma\rangle$. The eigenvalue problem for the wave functions ψ_i and the bound-state mass M becomes a coupled set of three integral equations. To construct these equations we use the Hamiltonian $H_{\rm LC}$ of Tang $et \ al.$ [6] The anomalous moment is then calculated from the spin-flip matrix element of the plus component of the current. [7] The regulator is an invariant-mass cutoff $\sum_i (P^+/p_i^+) (m_i^2 + p_{\perp i}^2) \leq \Lambda^2$. Additional approximations and assumptions are a nonzero photon mass of $m_e/10$, a large coupling of $\alpha = 1/10$, and use of numerical methods based on discretized light-cone quantization (DLCQ). [4]

2 Renormalization

We renormalize the electron mass and couplings differently in each Fock sector, as a consequence of the Tamm–Dancoff truncation. [8] The bare electron mass in the one-photon sector is computed from the one-loop correction allowed by the two-photon states. We then require that the bare mass in the no-photon sector be such that $M^2 = m_e^2$ is an eigenvalue.

The three-point bare coupling e_0 is related to the physical coupling e_R by $e_0(\underline{k}_i, \underline{k}_f) = Z_1(\underline{k}_f)e_R/\sqrt{Z_{2i}(\underline{k}_i)Z_{2f}(\underline{k}_f)}$, where $\underline{k}_i = (k_i^+, \mathbf{k}_{\perp i})$ is the initial electron momentum and \underline{k}_f the final momentum. The renormalization functions $Z_1(\underline{k})$ and $Z_2(\underline{k}) = |\psi_0|^2$ are generalizations of the usual constants. The amplitude ψ_0 must be computed in a basis where only allowed particles appear.

The function Z_1 can be fixed by considering the proper part of the transition amplitude T_{fi} for photon absorption by an electron at zero photon momentum ($\underline{q} = \underline{k}_f - \underline{k}_i \to 0$): $T_{fi}^{\text{proper}} = V_{fi}/Z_1(\underline{k}_f)$, where V_{fi} is the elementary three-point vertex. The transition amplitude can be computed from $T_{fi} = \psi_0 \langle \Psi | V | i \rangle$, in which $|\Psi\rangle$ is the dressed electron state and $\psi_0 = \sqrt{Z_{2f}(\underline{k}_f)}$. The proper amplitude is then obtained from $T_{fi}^{\text{proper}} = T_{fi}/(Z_{2i}Z_{2f})$, where the Z_2 's remove the disconnected dressing of the electron lines.

Thus the solution of the eigenvalue problem for only one state can be used to compute Z_1 . Full diagonalization of H_{LC} is not needed. Because Z_1 is needed in the

construction of $H_{\rm LC}$, the eigenvalue problem and the renormalization conditions must be solved simultaneously.

Most four-point graphs that arise in the bound-state problem are log divergent. To any order the divergences cancel if all graphs are included, but the Tamm–Dancoff truncation spoils this. For a nonperturbative calculation we need a counterterm $\sim \lambda(p_i^+, p_f^+) \log \Lambda$ that includes infinite chains of interconnected loops. The function λ might be fit to Compton amplitudes. [9] Thus we need to be able to handle scattering processes.

3 Preliminary Results and Future Work

Some preliminary results are given in Fig. 1. In the two-photon case there remain divergences associated with four-point graphs.

The next step to be taken in this calculation is renormalization of the four-point couplings, followed by numerical verification that all logs have been removed. Construction of finite counterterms that restore symmetries will then be considered. We can also consider photon zero modes, Z graphs, and pair states.

Figure 1: Electron anomalous moment as a function of the cutoff Λ^2 , extrapolated from DLCQ calculations. The photon mass is $m_e/10$, and the coupling is 1/10.

Acknowledgments

This work has benefited from discussions with R. J. Perry, St. D. Głazek, and G. McCartor.

References

- J. R. Hiller, in *Theory of Hadrons and Light-Front QCD*, ed. St. D. Głazek, (World Scientific, Singapore, 1995), p. 277; J. R. Hiller, S. J. Brodsky, and Y. Okamoto, in preparation.
- [2] T. Kinoshita, Phys. Rev. Lett. 75, 4728 (1995); S. Laporta and E. Remiddi, Phys. Lett. B 379, 283 (1996).
- [3] R.P. Feynman, in *The Quantum Theory of Fields*, (Interscience, New York, 1961); S. D. Drell and H. R. Pagels, *Phys. Rev.* 140, B397 (1965).
- [4] S. J. Brodsky, G. McCartor, H.-C. Pauli, and S. S. Pinsky, *Part. World* 3, 109 (1993); M. Burkardt, *Adv. Nucl. Phys.* 23, 1 (1996).
- [5] I. Tamm, J. Phys. (Moscow) 9, 449 (1945); S. M. Dancoff, Phys. Rev. 78, 382 (1950).
- [6] A. C. Tang, S. J. Brodsky, and H.-C. Pauli, *Phys. Rev.* D 44, 1842 (1991).
- [7] S. J. Brodsky and S. D. Drell, *Phys. Rev.* D **22**, 2236 (1980).
- [8] R. J. Perry, A. Harindranath, and K. G. Wilson, *Phys. Rev. Lett.* 65, 2959 (1990).
- [9] D. Mustaki and S. Pinsky, *Phys. Rev.* D 45, 3775 (1992).