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The calculation of the O(αs) virtual corrections to the matrix element of the in-
clusive decay b→ sγ is reported. These contributions drastically reduce the large
renormalization scale dependence of the leading logarithmic calculation. Com-
bining these results with the preliminary result for the Wilson coefficient C7(mb)
calculated recently by Chetyrkin, Misiak, and Münz, we estimate the branching
ratio to be BR(B→ Xsγ) = (3.25± 0.50)× 10−4.

1 Introduction

Rare B meson decays are particularly sensitive to physics beyond the standard
model (SM). In order to extract the effects of possible new physics, precise
experimental and theoretical work on these decays is required.

The inclusive mode B → Xsγ can be systematically analyzed with help
of the expansion in inverse powers of the (heavy) b-quark mass, mb. At the
leading order in such an expansion, the inclusive decay rate is given by the
perturbatively calculable free quark decay rate. As the power corrections start
at the 1/m2

b level only, we neglect these contributions in this talk and model the
decay rate Γ(B → Xsγ) by the quark level decay width Γ(b → sγ), including
perturbative QCD corrections.

The earlier SM computations of the branching ratio forB → Xsγ presented
e.g. in refs. 1,2,3,4 are in full agreement with the CLEO measurement5 BR(B →
Xsγ) = (2.32± 0.67)× 10−4. There are large uncertainties, however, in both
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the experimental and the theoretical results. In view of the expected increase
in the experimental precision, the calculations must be refined correspondingly
in order to allow quantitative statements about new physics. So far, only the
leading logarithmic QCD corrections of the form αns logn(m2

b/m
2
w) have been

resummed completely. A systematic improvement is obviously obtained by
calculating all the next-to-leading terms of the form αs α

n
s logn(m2

b/m
2
w).

Before discussing the various steps leading to a next-to-leading result, we
briefly review the theoretical framework in which the process b → sγ(+g) is
evaluated. Usually one starts form the effective Hamiltonian which is obtained
by integrating out the t-quark and the W -boson. Neglecting power (mb/mw)
suppressed operators of dimension > 6, the effective Hamiltonian reads

Heff(b→ sγ) = −4GF√
2
VtbV

∗
ts

8∑
i=1

Ci(µ)Oi(µ) , (1)

where the quantities Ci(µ) are the Wilson coefficients evaluated at the renor-
malization scale µ and the Oi are following operators:

O1 = (c̄LβγµbLα) (s̄LαγµcLβ) ,
O2 = (c̄LαγµbLα) (s̄LβγµcLβ) ,
O7 = (e/16π2) s̄α σµν (mb(µ)R+ms(µ)L) bα Fµν ,
O8 = (gs/16π2) s̄α σµν (mb(µ)R +ms(µ)L) (λAαβ/2) bβ GAµν .

As the Wilson coefficients of the penguin induced four-Fermion operators
O3,...,O6 are very small, we do not explicitly list them here.

From the µ-independence of the effective Hamiltonian, one can derive a
renormalization group equation (RGE) for the Wilson coefficients Ci(µ):

µ
d

dµ
Ci(µ) = γji Cj(µ) , (2)

where the (8×8) matrix γ is the anomalous dimension matrix of the operators
Oi. Working to leading-logarithmic precision only, it turns out that it is suf-
ficient to do the matching (at µ = mw) neglecting QCD corrections; to solve
the renormalization group equation using the order αs anomalous dimension
matrix γ(0); and to calculate (perturbatively) the matrix elements of the op-
erators Oi at the scale µ ≈ mb, again neglecting QCD corrections. Athough
it is clear that the renormalization scale µ should be of the order of mb, its
precise value is not fixed, of course. Following common practice, we vary µ
in the range mb/2 ≤ µ ≤ 2mb. This variation leads to a large (±25%) scale
dependence of the leading logarithmic result. Analytically, the source of the
large scale dependence is due to a term of the form ∼ αslog(µ2/m2

b).
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2 Steps to a next-to-leading result

In order to get the next-to-leading logarithmic result for the branching ratio,
one has to improve the Wilson coeffients at the scale µ ≈ mb and in addition
one has to work out the O(αs) corrections to the matrix elements for b→ sγ.
The improved Wilson coefficients are obtained in two steps: First, the match-
ing at the scale µ = mW has to be calculated including order αs corrections 6.
Second, the RGE step down to the scale µ ≈ mb has to be done using the or-
der α2

s anomalous dimension matrix γ(1). This second step is the hardest one,
because some entries of the anomalous dimension matrix (like γ27) have to be
extracted from 3-loop diagrams 7! The calculation of the order αs corrections
to the matrix element b → sγ involves the bremsstrahlung process b → sγg
and virtual corrections to b → sγ. While the bremsstrahlung corrections (to-
gether with those virtual corrections which cancel the infrared and collinear
singularities) have been worked out earlier1,2,8, Greub, Hurth, and Wyler have
worked out the virtual corrections completely 9. Technically, the most difficult
part was the calculation of the order αs corrections to the contribution from
the operator O2; the corresponding 2-loop diagrams are shown in ref. 9. Using
the Mellin-Barnes representation of certain progagator type denominators, we
could write the result M2 of the 2-loop diagrams in the form

M2 = c0 +
∑
n,m

cnm

(
m2
c

m2
b

)n
logm

(
m2
c

m2
b

)
, (3)

with n = 1, 2, 3, 4, ... and m = 0, 1, 2, 3. The coefficients c0 and cnm are pure
numbers, i.e., independent of any parameters like mb, mc, ... . Note, in partic-
ular, that there is no naked log(m2

c/m
2
b) term present in eq. (3). So the limit

mc → 0 of M2 exists.

3 Preliminary results for the branching ratio BR(B → Xsγ)

Summing up, in order to get the next-to-leading logarithmic result forBR(B →
Xsγ), one has to know both, theO(αs) matrix elements and the next-to-leading
order Wilson coefficients b at µ ≈ mb. Only the combination of these two in-
gredients is independent of the renormalization scheme. It turns out that in
the naive dimensional scheme (NDR) with MS subtraction, the correction to
C7(mb) is small 7. Therefore, a good approximation for BR(B → Xsγ) is ob-
tained by using the leading value for C7(mb) in the numerical evaluation of the
matrix elements, as presented in 9. While the µ dependence was about ±25%
in the leading logarithmic calculation (varying µ between mb/2 and 2mb), it
bIn fact, it is sufficient to know only C7(µ) to next-to-leading precision.
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Figure 1: Branching ratio for B → Xsγ as a function of mt. The upper (lower) solid curve
is for µ = mb/2 (µ = 2mb). The dotted curves show the CLEO 1 − σ bounds5. The other
input parameters are taken at their central values.

gets drastically reduced to ±6% when taking systematically into account the
virtual corrections to the matrix elements. The term ∼ αslog(m2

b/µ
2), which

caused the large scale dependence of the leading logarithmic result, is cancelled
by the O(αs) virtual corrections to the matrix element. In Fig. 1 we show the
remaining µ-dependence as a function of the top quark mass mt; all the other
input parameters are taken at their central values. Combining the uncertain-
ties in mt and µ (mt = (170 ± 15) GeV; mb/2 ≤ µ ≤ 2mb) leads to an error
of about 9% in the branching ratio. Besides that, there are other errors to be
taken into account, stemming from the uncertainties in αs(mZ), the semilep-
tonic branching ratio, and the ratio mc/mb. Taking αs(mZ) = (0.117±0.006),
BRsl = (10.4 ± 0.4)%, and mc/mb = (0.29 ± 0.02), one obtains an extra
error of about ±12% 2. To conclude, we end up with a preliminary predic-
tion for the branching ratio BR(B → Xsγ) = (3.25 ± 0.30 ± 0.40) × 10−4,
where the first error is due to the (µ,mt) variation and the second error
due to the other input parameters. Adding the errors in quadrature, we get
BR(B → Xsγ) = (3.25± 0.50)× 10−4.
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