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ABSTRACT

Electroweak baryogenesis is addressed within the context of the standard model

of particle physics. Although the minimal standard model has the means of ful-

filling the three Sakharov’s conditions, it falls short to explaining the making of

the baryon asymmetry of the universe. In particular, it is demonstrated that the

phase of the CKM mixing matrix is an insufficient source of CP violation. The

shortcomings of the standard model could be bypassed by enlarging the symmetry

breaking sector and adding a new source of CP violation.
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Introduction

The origin of the baryon asymmetry of our universe (BAU) is a fundamental

question of modern physics. A. Sakharov
[1]

established on general ground that

particle interactions might account for the production of the BAU at an early

epoch of the universe provided that some of these interactions are B violating

processes which operated in a C and CP violating environment during a period the

universe was in non-thermal equilibrium.

The state of the art in particle physics is the standard model of the theory of

the interactions between quarks and leptons. CP violation has been observed and

might originate from the mass matrix of the quarks. B violation is believed to have

taken place through non-perturbative processes of the theory of weak interactions

in a high temperature plasma. Non-equilibrium in particle distributions in the

plasma was generated at the electroweak phase transition. Although the three

Sakharov’s requirements are potentially fulfilled by the standard model the latter

comes short to explaining the making of the BAU.

In what follows, I describe how each of the three Sakharov’s conditions is ad-

dressed by the minimal standard model. I briefly discuss the obstacles to proving

or disproving the making of the baryon asymmetry at the electroweak phase tran-

sition using known ingredients of particle physics.

I. Departure from Thermal equilibrium

The electroweak phase transition

SU(2) gauge symmetry was unbroken in the early universe.
[2]

To argue so, one

notes that the Higgs field was in contact with a thermal bath containingM±W , Z and

t-quarks whose masses are important parameters of their equilibrium distributions.

On one hand, the Higgs self-interaction energy, V (φ), was minimized for an Higgs

expectation value φm of order v ' 250 GeV. On the other hand, the free energy

of the plasma was minimized for φm = 0, i.e., in the limit of massless particles.

General arguments of thermodynamics imply that the Higgs expectation value was
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then lying at an intermediate value, at the minimum of the sum of the effective

potential and the free energy of the plasma, V (φ, T ) = V (φ) + F (MW ,Mt;φ, T ).

Calculation of the free energy is a central problem. It is usually attempted

perturbatively, that is, a guess is made as to what a good approximation of the

plasma might be and small corrections are subsequently added. A popular starting

point is a gas of free particles; its free energy is

F free(MW ,Mt;φ, T ) =
∑
species

M2∫
0

dM ′M ′
∫

d3k

(2π)3

1

E

1

eE/T − 1
(1)

' −103π2

90
T 4 +

T 2φ2

24

(
9M2

W + 6M2
t

v2

)
− Tφ3

12π

(
9M3

W

v3

)
+ . . . . (2)

At high temperature, the first two terms in eq. (2) dominate any other term in

V (φ, T ), hence, V (φ, T ) is minimal for zero Higgs expectation value, φm = 0, and

electroweak symmetry is restored at high temperature. At low temperature, F free

is negligible in respect to V (φ, T ), in which case electroweak symmetry is broken.

Inevitably, as the universe cooled down to an intermediate temperature of order

Tc ∼ (MH/MW )v (∼ 100 GeV), a phase transition occurred during which the

Higgs field developed a non-zero expectation value which interpolates between 0

and v. The actual mechanism of transition is of crucial importance for establishing

the time scale of non-equilibrium; its determination requires a complete knowledge

of F (φ, T ) beyond the free gas approximation. There are two ideal possibilities.
?

A second order phase transition

If the Higgs expectation value evolves continuously from 0 to 250 GeV as the

universe cools down from Tc to below, the transition is said to be second order.

The time dependence of the Higgs expectation value induces a departure from

equilibrium whose typical time scale τnonequi is of the order of the inverse of the

? For attempts to interpolate between these two possibilities, see Ref. 3.
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rate of expansion of the universe, τnonequi ∼ H−1 ∼ MPlanck

T2 ∼ 1017/T . This

is about 17 order of magnitude slower than a typical microscopic process in the

plasma. The “baryon per photon” ratio produced cannot possibly be larger than

nB/s ∼ τequi/τnonequi ∼ ( 1
T )/(1017

T ) ∼ 10−17, an amount which is too small to make

a significant contribution to the asymmetry observed today, (nB/s)Obs. ∼ 10−10.

A first order phase transition

A first order phase transition is one in which the expectation value of the Higgs

develops an instability. A thermal fluctuation triggers a local transition of φ from

0 to a non-zero value ∼ φm; this is the phenomenon of bubble nucleation. Some of

these bubbles expand, their interface sweeps the plasma requiring a given species to

becomes massive and to rapidly relax to a new thermal distribution. This produces

a temporary non-equilibrium situation with a time scale τnonequi of the order of

τnonequi ≥ thickness/velocity ∼ 10(1−3)/T . As this time scale is comparable to the

microscopic plasma scale, the production of a “baryon per photon” ratio is allowed

in the neighborhood of the moving bubble wall, up to an amount nB/s ∼ 10−(1−3),

far sufficient for the purpose of baryogenesis.

A first order phase transition allows electroweak baryogenesis to meet the first

of Sakharov’s criteria. The uncovering of this possibility resulted in an extensive

study of the dynamics of expansion of an electroweak bubble.
[5,7]

The main prop-

erties of this dynamics reflect heavily the non-equilibrium structure of the plasma

at the bubble interface, and are now fairly well understood. Bubbles grow to a

macroscopic size of order 1012/T until they fill up the universe. This size is far

larger than the microscopic scale of baryogenesis, ∼ 1/αWT , and complications

due to the curvature of the wall can be ignored. The thickness of the interface is

of the order (vM2
H/M

3
W )1/T ∼ (10−100)/T , while the terminal velocity of expan-

sion vW has been evaluated to be in a non-relativistic range and no smaller than

∼ 0.02.
†

This lower value is the result of a saturation of the wall damping which is

† More exactly, in this limit vW is proportional to the amount supercooling in the plasma
and is sensitive to the Higgs mass (∼ 1/M3/2

H )and the top quark mass. The value quoted is
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attained when the wall thickness is smaller than the plasma mean free paths of the

relevant gauge bosons and t-quarks. Calculations in this limit are very reliable.
[5,7]

Furthermore, in this range of velocities, the growth has been shown to be stable
[9]

.

The above considerations lead to a fairly simple and “user-friendly” picture of the

electroweak phase transition.

Discussion

The current status of our understanding of the electroweak phase transition

leads to the wide-spread belief that it was a first order transition provided that the

Higgs mass not be too large.
[7,14]

However, unresolved calculational difficulties due

to the non-abelian structure of the gauge sector prevents to establish reliably the

order of the transition. The essence of these difficulties can be formulated in the

following way.
[10]

Computation of the free energy of a nearly massless plasma beyond the ap-

proximation of a gas of free particles (1) is needed. Difficulties arise because of

large energy corrections from mutual particle interactions. More specifically, gauge

bosons W ’s and Z’s follow the Bose-Einstein distribution (expE/T − 1)−1. The

plasma contains a large fraction of small momenta (|~k| < M) gauge bosons, which

diverges as
∫
d3~k T/M in the massless limit. Multiple gauge interactions between

these quanta contribute to the free energy an amount (T/M)g2
W (T/M)g2

W . . .. The

sum of these contributions, denoted ∆F , can be expressed as a series expansion in

powers of g2
WT/M

∆F =
∑
n

(
g2
WT

M

)n
fn(M/T ) . (3)

These corrections are expected to affect the quality of the order of the transition

as it has been understood that a first order transition occurs only as the result of

the presence of this large number of low momenta gauge bosons in the plasma :
‡

a reduction in their number implies a phase transition more weakly first order.

for MH ∼ 60 GeV and Mt ∼ 180 GeV. [7]

‡ More specifically, the term responsible for the first order structure is the cubic term in (2).
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A leading approximation to the free energy which better accounts for the con-

tribution of the longitudinal components of the gauge bosons is the free energy of

a gas of quasiparticles. These quasiparticles, or “plasmons”,
[6]

are collective excita-

tions in the plasma and arise from the “dressing” of the low momenta (|~k| < M)

longitudinal modes with large momenta (|~k| ∼ T ) modes. The quasiparticle ap-

proximation is obtained by simply substituting the thermal distribution of a free

boson with the one of a free quasiparticle

1

e
√
~k2+M2 − 1

−→ 1

e

√
~k2+M2+M2

D − 1

, (4)

MD is the Debye mass MD ' gWT . According to (4), the fraction of the population

of longitudinal (quasi-)gauge bosons with momentum |~k| < M << T is reduced

in respect to the corresponding free gauge boson population, as T/M → T/(M2 +

M2
D)1/2 ∼ 1/gW . It is finite ( no infrared divergence!) and sufficiently small to

convert the infrared expansion (3) of the corresponding interaction energy ∆F ,

into a computable series expansion in powers of gW . Making the substitution (4)

in expression (1) to obtain the leading contribution F freequasi from F free,
[10]

leads to

a corresponding suppression of the contribution of the longitudinal modes to the

strength of the first order transition.
§

Resummation methods have been successful

to account for these effects.
[8,7]

Interactions among the transverse components of the gauge fields and between

them and other gauge fluctuations in the plasma are believed
[15]

to generate an

effective “magnetic mass”, MM = #g2
WT , which cuts off the distribution of low

momenta modes in a way similar to substitution (4). There is no known method of

computing this mass reliably. Furthermore, contributions to ∆F involving trans-

verse gauge bosons cannot be accounted for with the “quasiparticle” method: mak-

ing the analog substitution (4) in (3) leads to a finite but non-perturbative series

unless # is shown to be sufficiently large, in which case, expression (2) yields a

§ The cubic term in (2) becomes 9T
12π

((φMW

v
)2 +M2

D)3/2 ∼ 9TM3
D

12π
+O(φ2/T 2), for φ ≤ φm.

6



second order or a very weakly first order transition. This sort of analyses have been

performed using resummation techniques and are fairly inconclusive. Expansion

about a gas of free quasi-particles is not adequate. Other methods ought to be

developed. Currently, no technique has turned to be successful to strictly establish

the order of the electroweak phase transition.

II. Baryon number violating processes

An ideal setting for the baryon number violating processes is as follows. (a)B-

violation occurs at an infinite rate (ΓuB = ∞) in the unbroken phase in order

to produce an asymmetry in the region of the plasma disturbed by the moving

interface of a bubble of broken phase. (b)B-violation is turned off in the broken

phase (ΓuB = 0) in order to preserve inside the bubble, the BAU produced. In

practice, this optimal situation is not realized.

Anomalous baryon number violation

The B violating processes of the standard model result from the conjunction

of the non-trivial topological structure of an SU(2) gauge theory and of the chiral

SU(2) anomaly. The former can be formulated in expressing the existence of an

infinite number of distinct sectors in the configuration space which are mapped to

each other by large gauge transformations. These distinct sectors are characterized

by an integer NCS , the Chern-Simons number. A physical process interpolates

between two such sectors provided it has a space-time integrated value of F F̃ (x)

proportional to the difference between the Chern-Simons numbers of the initial

and final sectors
∫
dx4F F̃(x) = 1/32π2 ∆NCS . These processes conspire with the

anomalous baryon and lepton currents ( ∂jB,Lµ (x) = (3/32π2)F F̃ (x) ), to produce

a net change of the baryon and lepton numbers ∆B = ∆L = 3∆NCS . The above

formal arguments do not guarantee the existence of these anomalous processes.

However, such processes are believed to have taken place in the high temperature

plasma of the early universe.
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Finite temperature baryon number violation

In the broken phase,
[11]

adjacent topological sectors are separated by an energy

barrier at the top of which sits the sphaleron configuration whose energy is pro-

portional to the expectation value of the Higgs condensate, Esph ∼ gWφm/αW and

whose typical size is of order 1/gWφm. At zero temperature, the barrier is too

high Esph ' 10 GeV and only instantons can achieve a transition at a negligible

rate. At high temperature, relevant gauge-Higgs modes are thermally populated

and sphalerons have a non-zero probability of being produced. Baryon number

violation occurs but is Boltzmann suppressed,
[4]

ΓbB ∝ T 4e−Esph/T .

In the unbroken phase, computation of the rate is a difficult task because of

the difficulty of taking into account interactions between the very large low mo-

menta modes of the massless gauge bosons, as briefly discussed in the previous

section. However, general principles provide a fair understanding.
[15]

There is a nat-

ural length scale ξ in the plasma, expected to be of order 1/g2
WT . On dimensional

ground, a non-trivial configuration of spatial size ρ, has energy E ∼ 1/αW ρ. The

lowest energy configuration has the smallest spatial extension which cannot be

smaller than ξ. Hence, the least energy configuration is expected to have energy

1/αW ξ ∼ T . We conclude that transitions between the different sectors might oc-

cur at an unsuppressed rate, that is ΓuB = κ(αWT )4. No reliable analytic method of

computation currently exists. Numerical simulations have been performed.
[16]

Such

studies are difficult and currently suggest the range κ = 0.1− 1.

Discussion

Let us compare the actual situation with the ideal one we promoted earlier:

ΓuB =∞, ΓbB = 0.

In the unbroken phase, B + L violating processes
?

occur at an unsuppressed

rate ΓuB ∼ (αWT )4. During a long period prior the phase transition, as the temper-

ature decreased from about 1013 GeV to 100 GeV, these processes were in thermal

? These processes are B − L conserving.
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equilibrium, ΓbB � HT 3, and capable to wipe-out any pre-existing B + L asym-

metry.
[4]

This is a major constraint on models of early baryogenesis and has been

the main motivation for contemplating electroweak baryogenesis.

In the broken phase, ΓbB ∝ T 4e−Esph/T . Not to loose the BAU produced, re-

quires to tune this rate to no more than one baryon violating process per unit

volume in a lifetime of the universe, ΓbB � HT 3. The structure of ΓbB and of

Esph ∼ gWφm/αW transform this condition into a restriction on the magnitude

of the Higgs expectation value: φm ≥ T . In the minimal standard model, φm is

inversely proportional to the square of the Higgs mass so that the above condition

translates into an upper bound on the Higgs mass.
[12]

The latest estimates of this

bound
[13,7]

yield MH < 45 GeV, a value ruled out experimentally. This bound is

a direct challenge to implementing electroweak baryogenesis in the minimal stan-

dard model. However, in almost any extension of the standard model, the relation

between the Higgs expectation value and the Higgs mass involves additional param-

eters, which, in some cases,
[14]

may result in a less constraining bound compatible

with current experimental data.

III. CP violation

In this last section, I confront the third of Sakharov’s conditions to the standard

model. More specifically, I establish the impossibility of implementing the complex

phase of the CKM matrix as the source of CP violation for baryogenesis. This

discussion follows closely a recent work done in collaboration with E. Sather.
[21]

A possible mechanism

The standard model possesses a natural source of CP violation contained in

the phase of the CKM matrix. Whether the latter participated to the making of

the BAU is a fundamental question which was addressed for the first time in a

proper physical context by Farrar and Shaposhnikov.
[19]

These authors proposed a

simple mechanism of baryogenesis based on the observation that as the wall sweeps

through the plasma, it encounters equal numbers of quarks and antiquarks which

reflect asymmetrically as a result of the presence of CP -violation. This mechanism
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leads to an excess of baryons inside the bubble and an equal excess of antibaryons

outside the bubble. Ideally, the excess of baryons outside is eliminated by baryon

violating processes while the excess inside is left intact, leading to a net BAU.

Assuming ideal conditions, an upper bound for the “baryon-per-photon” ratio can

be derived:
[19,21]

nB/s ≤ 10−2 × αW × vW × 〈∆(ω)〉T . The whole calculation

of the baryon asymmetry now reduces to the determination of a suitable thermal

average of the left-right reflection asymmetry ∆(ω) = Tr
(
|RLR|2 − |R̄RL|2

)
, that

is, the probability of a L-handed quark reflecting as a R-handed quark minus the

probability for the CP conjugate process, summed over all quarks.

The non-trivial structure of the phase space is contained in the velocity factor

vW which reflects the departure from thermal equilibrium and the factor of αW

which reflects the vanishing of any asymmetry unless interactions with the W and

Z bosons in the plasma are taken into account in the propagation of the quarks.

In addition, the CP -odd quantity ∆(ω) vanishes unless flavor mixing interactions

occur in the process of scattering. This requires to taking into account interactions

with the charged W and Higgs bosons. Furthermore, gluon interactions ought to be

included for they strongly affect the kinematics of the quarks. At first, this might

appear an insurmountable task. However, Farrar and Shaposhnikov suggested that

all the relevant plasma effects can consistently be taken into account by describing

the process as a scattering of suitably-defined
?

quasiparticles.
[6,17]

CP violating observable

∆(ω) is a CP violating observable. It is known that aCP -violating observable is

obtained by interfering various amplitudes with different CP properties. Farrar and

Shaposhnikov proposed to describe the scattering of quasiparticles as completely

quantum mechanical, that is, by solving the Dirac equation in the presence of a

space-dependent mass term. In particular, they identified the source of the phase

separation of baryon number as resulting from the interference between a path

? These quasiparticles are the fermionic equivalent of the quasiparticles considered in section
1.
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where, say, an s-quark (quasiparticle) is totally reflected by the bubble with a path

where the s-quark first passes through a sequence of flavor mixings before leaving

the bubble as an s-quark. The CP -odd phase from the CKM mixing matrix

encountered along the second path interferes with the CP -even phase from the

total reflection along the first path. Total reflection occurs only in a small range of

energy of width ms corresponding to the mass gap for strange quarks in the broken

phase. This leads to a phase space suppression of order ms/T , in which case, the

“baryon-per-photon” ratio becomes nB/s ' 10−3αW (ms/T )∆̄ ' 10−7 × ∆̄. This

estimate requires ∆̄, the energy-averaged value of the reflection asymmetry, to be

at least of order 10−4 in order to account for the baryon asymmetry of the universe,

a value claimed to be attained in Ref. 19.

In Ref. 20, it was pointed out that the above analysis ignores the quasiparti-

cle width, or damping rate, embodied by the imaginary part of the thermal self-

energy γ. The width has been computed at zero momentum as γ ' 0.15g2
sT ' 20

GeV.
[18]

These authors made the important observation that this spread in energy

is much larger than the mass gap ∼ ms in the broken phase, and as a result largely

suppresses the reflection process. A detail of their calculations is to appear soon.

What follows contains a summary of a recent and alternative analysis
[21]

which

fully takes into account all relevant properties of a (quasi-)quark, as it propagates

through the bubble wall.

Quantum coherence

A Dirac equation describes the relativistic evolution of the fundamental quarks

and leptons. Its applicability to a quasiparticle is reliable for extracting on-shell

kinematic information, but one should be cautious in using it to extract informa-

tion on its off-shell properties. A quasiparticle is a convenient bookkeeping device

for keeping track of the dominant properties of the interactions between a funda-

mental particle and the plasma. For a quark, these interactions are dominated by

tree-level exchange of gluons with the plasma. It is clear that these processes affect

the coherence of the wave function of a propagating quark. To illustrate this point,
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let us consider two extreme situations.

• The gluon interactions are infinitely fast. In this case, the phase of the propa-

gating state is lost from point to point. A correct description of the time evolution

can be made in terms of a totally incoherent density matrix. In particular, no

interference between different paths is possible because each of them is physically

identified by the plasma. As a result, no CP -violating observable can be generated

and ∆(ω) = 0.

• The gluon interactions are extremely slow. The quasiparticle is just the quark

itself and is adequately described by a wavefunction solution of the Dirac equation,

which corresponds to a pure density matrix. In particular, distinct paths cannot

be identified by the plasma, as the latter is decoupled from the fermion. This

situation was implicitly assumed in the FS mechanism. This assumption, however,

is in conflict with the role the plasma plays in the mechanism, which is to pro-

vide a left-right asymmetry as well as the necessary mixing processes. In addition,

this assumption is in conflict with the use of gluon interactions to describe the

kinematical properties of the incoming (quasi-)quark.

The actual situation is of course in between the two limits above. The quasi-

particle retains a certain coherence while acquiring some of its properties from the

plasma. Whether this coherence is sufficient for quantum mechanics to play its

part in the making of a CP -violating observable at the interface of the bubble is

the subject of the remaining discussion.

The damping rate γ characterizes the degree of coherence of the quasiparticle.

It is a measure of the spread in energy, ∆E ∼ 2γ, which results from the “distur-

bance” induced by the gluon exchanged between the quark and the plasma. From

the energy-time uncertainty relation, 1/(2γ) is the maximum duration of a quan-

tum mechanical process before the quasiparticle is scattered by the plasma. During

this time, the quasiparticle propagates over a distance ` = vg/2γ ' 1/6γ ' (100

GeV)−1, where vg is the group velocity of the quasiparticle ( ∼ 1/3). The distance

` was introduced in Ref. 21 as the coherence length. The concept of coherence

length leads to a straightforward description of the decoherence that occurs during
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the scattering off a bubble.

Limited coherence and bubble reflection

To understand the impact of the limited coherence of the quasiparticle on the

physics of scattering off the bubble, it is useful to remember the mechanism of the

scattering of light by a refracting medium. According to the microscopic theory

of reflection of light, the refracting medium can be decomposed into successive

layers of scatterers which diffract the incoming plane wave, the thickness of a layer

reflects the mean interspacing between scatterers d. The first layer scatters the

incoming wave as a diffracting grid. Each successive layer reinforces the intensity

of the diffracted wave and sharpens its momentum distribution. As more layers

contribute to the interference, the diffracted waves resemble more and more the full

transmitted and reflected waves. This occurs only because the wave penetrates the

wall coherently over a distance large compared to the interspacing of the scattering

sites `� d.

Inspired from the above, we slice the bubble into successive layers which scatter

the incoming wave. The wavefunction for a quasiparticle reflected from the bubble

is the superposition of the waves reflected from each of the layers. The bulk of

the broken phase can be viewed as a distribution of scatterers whose mean spacing

d is the inverse quark mass. However, in contrast with the scattering of light by

a refractive medium, the coherence length ` ∼ 1/100GeV−1 of the quasiparticle

is much shorter than the interdistance between scatterers d ∼ 1/mq. That is,

the quasiparticle does not penetrate the bubble coherently over a distance large

enough to be fully reflected and its reflection amplitude is suppressed by the ratio

`/d ∼ mq/(100 GeV) � 1. In addition, flavor changing processes have to occur

along some reflection paths. Their amplitudes are suppressed by quark masses

and mixing angles; the resulting mean interspacing dF between scatterings is then

much larger than the coherence length: ` � dF . These processes are rare events

inside the outer layer of the bubble where coherent reflection takes place and their

contribution to the reflection amplitude is suppressed by `/dF � 1.
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The generation of a CP violating observable results from interference of re-

flected waves and necessarily involves several flavor-changing scatterings inside the

bubble in order to pick up the complex phase of the CKM matrix and several

chirality flips. Altogether, the CP asymmetry ∆(ω), produced by the scattering

when decoherence is properly taken into account, will be smaller than the amount

found by Farrar and Shaposhnikov by several factors of `/d and `/dF.

From these physical considerations, it is easy to elaborate quantitative methods

for computing the reflection of quasiparticles with a finite coherence length.

A simple model is obtained by expressing that when a quasiparticle wave

reaches a layer a distance z into the bubble, its amplitude will have effectively

decreased by a factor exp(−z/2`). We can take this into account by replacing the

step-function bubble profile with a truncated profile such as mq(z) = mqe−z/`,

z > 0 and mq(z) = 0, z < 0. The analog in the theory of light scattering is the

scattering of a light ray by a soap bubble. It is clear that truncating the bubble in

this way renders the bubble interface transparent to the quasiparticle.

Another method of computing ∆(ω) is to solve an effective Dirac equation

in the presence of the bubble, including the decoherence that results from the

imaginary part of the quasiparticle self-energy. Green’s functions are extracted

which allow to construct all possible paths of the quasiparticles propagating in the

bulk of the bubble, each path being damped by a factor exp(−L/2`) where L is

the length of the path. Paths occurring within a layer of thickness ` dominate the

reflection amplitudes, in agreement with the previous considerations.

In Ref. 21, ∆(ω) was computed using both methods. They give results qualita-

tively and quantitatively in close agreement. They yield the “baryon per photon”

ratio ∣∣∣∣∣nBs
∣∣∣∣∣ < 10−26 .

It is 16 orders of magnitude too small to account for a significant fraction of the

asymmetry observed today, (nB/s)Obs. ∼ 10−10.
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Discussion

The arguments developed above are powerful enough to establish more gen-

erally that the complex phase allowed in the CKM mixing matrix cannot be the

source of CP violation needed by any mechanism of electroweak baryogenesis in

the minimal standard model or any of its extensions. Indeed, the generation of a

CP -odd observable requires the quantum interference of amplitudes with different

CP -odd and CP -even properties and whose coherence persists over a time of at

least 1/mq. On the other hand, QCD interactions restrict the coherence time to be

at most ` ∼ 1/(g2
sT ), typically three orders of magnitude too small. Because any

CP -violating observable proceed through interference between amplitudes with

multiple flavor mixings and chirality flips, the asymmetry between quarks and an-

tiquarks appears to be strongly suppressed by many powers of `mq and mixing

angles. This line of argument does not rely on the details of the mechanism con-

sidered and can be applied to rule out any scenario of electroweak baryogenesis

which relies on the phase of the CKM matrix as the only source of CP violation.

-Acknowledgements- The account on CP violation follows from a collabo-

ration with E. Sather and enlightening discussions with M.E. Peskin.
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