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The cosine of the laboratory scattering angle is derived for a neutron

elastically scattering from a nucleus moving with a specified velocity. Assuming

scattering is isotropic in the center of mass system, the mean cosine of the

laboratory scattering angle is calculated and shown to agree with the first Legendre

moment of a scattering probability function derived by Blackshaw and Murray.

Further assuming isotropic neutron-nucleus encounters, a second average is taken

to calculate a mean cosine as a function of the neutron-nuclear speed ratio. This

mean cosine approaches 2/(3m), where m is the nucleus mass relative b the neutron

mass, as the neutron speed becomes large compared to the speed of the nucleus; but

for m > 1, the scattering becomes more anisotropic as this speed ratio decreases

before approaching isotropy at small neutrotinucleus speed ratios.

~TRODUCTION

The mean cosine of the scattering angle, or synonymously, the first Legendre

moment of the differential scattering cross section, is a useful measure of the

anisotropy of the scattering process. Qualitatively, the angular distribution of

elastically scattered neutrons is isotropic in the center of mass (CM) system for

- neutron energies below 100 keV and markedly anisotropic for energies above 1

MeV.1 Even w-hen scattering is isotropic in the CM system, it is anisotropic in the

laborato~- (L) system, and the dynamics of elastic scattering are a feature of most

2’3 These analyses oftentransport theory texts as well as classical mechanics books.

detimine the mean cosine of the L scattering angle, but they invariably assume the

scattering nucleus is at rest. Thus, at thermal neutron energies, where the motion

of scattering nuclei is important, there is no simple measure of the relative

importance of anisotropic scattering. Last year, while preparing an exam for

sophomore physics majors taking classical mechanics, I thought to provide this

measure by asking them to calctiate the mean cosine of the L scattering angle when-..

the scattering nucleui was moving with a known speed and direction, given
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isotropic CM scattering. Attempting this analysis myself, I concluded that for an in-

class exam the problem was too time consuming but probably not too dificult for

Stanford students. Below I outline the debrmination of the elastic scattering mean

cosine when the scattering nucleus is moving.

Blackshaw and Murray4 derived very general scattering probability finctions -

for thermal-energy classical elastic scattering, and I will show subsequently how the

mean cosine derived below can be obtained from their scattering probability

functions. However, I first take a more direct approach by expressing the L

scattering angle cosine in terms of CM variables and then averaging this cosine over

CM angles, using the assumed isotropy of CM scattering.

DETEW~ATION OF THE LABORATORY SCATTER~G ANGLE COSm

Figure 1 shows the L system geometry of the velocity vectors for a neutron of

initial speed fi scattering from a nucleus of initial speed ~ with the angle between

ti and ~ being e = cos–l~. Afier the collision, the neutron has velocity ; and the

nucleus has velocity ~. The L scattering angle, that is, the angle between ti and V,

is 80 = cos–lpO. The same labeling of velocity vectors, with a subscript c, is used in

the CM system. The vectors ti and E define a vertical plane which has an

azimuthal angle $, and after scattering the azimuthal angle of ? is @O.

If the mass of a nucleus relative to the mass of the neutron is m, then from

conservation of momentum the CM velocity, w c, is given by

and its magnitude is

-..

@=
c

-. Wc =
2 +m2p2 + 2ump~

.
m+l

(1)

(2)
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- .Fig. 1. L system orientation of neutron velocity vector fi and nucleus velocity
--

vector ~ before a scattering event.
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Transforming to the system

from the L system velocities.

where the CM is at rest amounts to subtracting tic

The velocity of the neutron in the CM system is thus .

ti = G–W = ~(ti-p) = ~vr , (3)c c m+l m+l

where ? r is the neutron-nucleus relative velocity, with magnitude

v = du2+p 2 – 2up~ ,r

Similarly, the nucleus speed in CM is

so that by design

m~c+fic = O ,

(4)

(5)

and by conservation of momentum

m~c+tic = O . (7)

Using these two momentum equations (6) and (7) to eliminate pc and qc from the

conservation of energy equation

--- mp~ + u2 2= mq~ +Vc
c (8)
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shows &rectly the well-known result

u = vc c’ (9)

Because tic is in the same plane as = and ~, the relations between velocity vectirs

in the L and CM systems before the collision can be shown simply as illustrated in

Figure 2. From this diagram, the angle a between tic and d is seen to be

determined from

(m+l)wccosu = u+mpy . (lo)

The assumption of isotropic CM scattering means that after the collision t is
c

oriented. with equal probability in any direction. To be definite, the orientation of

Gc is measured in an orthogonal rectangular coordinate system (x’,y’,z’) with the z’

axis” in the direction of tic and the x‘ axis in the @– fi plane. This defines a CM

coordinate system. The angle Tc makes with tic (the z’ axis) is ec = cos ‘1 pc and

the azimuthal angle about tic measured from the z’– x’ plane is $C. The neutron

velocity afier the collision in L is obtained by adding tic to Vc,-.

(11)

These relations are shown in Figure 3 for an arbitrary but specific choice of Wcand

4C.

There are now several different ways to relate the cosine of the L scattering

angle, UO,to CM angtiar variables. I find the approach of Blackshaw and Murray

to be most appealing. Note that the CM system (x’,y’,z’) is related to the L systim

(x, YAJ by two rotitions. The first is a rotation about z by an angle $with rotation
--

matrix
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Fig. 2. GeornettiC relations between L and CM velotity vectors.
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- ,Fig. 3. Relation of thevelocity vectors in the L system aftera scattering

event. fi, ~ and %~ ar~ coplanar.
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‘o =
cos @ sin$ O

-sin$ cos~ O

(001

and the second is a rotation about the intermediate y

cos u O - sins

010

sins O cosa1

(12)

mis by an angle a

9 (13)

so that the combined rotation R R connnects the two systims. The components
a$

of the vector ~ in each system are

(~)L = (vSineoCOS$O, Vsineo Sinoo, Coseo),

(14)

(l)CM ( )= Vc sinec Cos$c, vsinec sin$c, Wc +Vc cOsec ,

where the z‘ component includes the addition of w~. Thus we have

or (15)

(7)L = (RaR@)-l(?)CM.

Remembering that the inverse of the rotation matrices is their transpose, the

second of these gives

-..

.

vsin OOcos@O

[

cosacos~ - sin~ sinacos$

1[ 1

VC sinec cos~c

vsin OOsin@O = cosasin$ cos$ sinasin$ Vc sin Oc sin~c . (16)--
vcOseO -sins 0 cosa WC +VC COSeC
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The last of these three relations gives directly, using Eq. (11),

( )
~ 1/2

()
cosa Wc+vcpc –sins Vc l–WC Cosqc

~ ~ ’17)

men p=O, i.e., when the nucleus is at rest, this reduces to the familiar5 expression

l+m~c

‘o=- ●

(18)

Eq. (17) makes clear through the presence of the @c term the fact, first made

explicit by Blackshaw and Murray, that when there is nuclear motion the nonplanar

nature of isotropic CM scattering must be accounted for.

mile Vc [equal to UCand thus given by Eq. (3)], Wc and cosu are functions

of u, p, and ~, they do not depend on LC or @c, so the average of W.,

2X
-.

~J
d~ d@cPoc

()Po =
–1 o (19)

4n ‘

can be determined directly with the result

[1

1
= Cosa l–—

3a2
a>l.

(20)

~en’p = O, cosa = 1 ~d a = 1/m with the usual result that (pO)= 2 / 3m.
.
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LEGE~RE MOMENTS OF THE SCATTER~G PROB=ILIn

The result of Eq. (20) can also be obtained by taking the first Legendre

moment of the elastic scattering probability function given by Blackshaw and

Murray. They derive the probability of an initial neutron velocity G resulting in a

final velocity 3 after isotropic CM elastic scattering h be

6($O -@ol)P(fi+i) = v 9
2XVCWC –L; +2scosa p. +sin2 a–s2

where $01 is the particular azimuthal angle corresponding to Uc = Vc and

V2 2–V:+wc
s=

2VWC .

(21)

(22)

Because of the delta function, the average probability that the initial and final

speeds are u and v with an angle of scatter 00 = COS–lMOis simply

P(u+v, Vo)-= JP(ti+tp$o =
v

. (23)

2nvcwc –L: + 2scos~po + sin2 a– S2

The zeroth Legendre moment is the probability of initial speed u becoming v or

PO(U+V) = ~dpOP(U+v, LO) , (24)

where the limits are those required to keep the radical real

-..

. ()
1/2

-Lo+ = Scosai 1–s2 sin a . (25)
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Performing the integration of Eq. (24) gives the result obtained6 by many authors in

thermalization studies.

Po(u+v) = v =
2V

v ~in<v<v (26) -
2VCWC V2 –V2

max ‘
max min

where

v m= = Vc+wc (LC = +1)

(27)

v (= Ivc–wcl UC=min -1) .

Finally, integrating Eq. (26) over all possible final speeds shows the total probability

is unity, as it should be.

Following the same sequence of operations for the P ~ moment of the elastic

scattering probability function of Eq. (21), that is for

(28)

gives the less frequently seen PI (u+ v) as

(Cos a v
222–Vc+wc

Pl(u+v) = )

(
2

)

v minsv<v
2 max ‘ (29)

WC Vm~ ‘Vmin

-..

w’fich, when integrated over the allowable range of v, gives Eq. (20) for (PO).
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AtiRAG~G OWR NEUTRON-NUCLEUS ENCO~ER ANGLES

Through cosa and a, Eq. (20) is still a function of four parameters, namely

m, u, p, and ~, and as such is not yet a usefd measure of anisotropic scattering. It

is frequently assumed in thermalization studies that the orientation of neutron-

nucleus encounters is isotropic in L. Using this, I define a second average

(30)((vO))= Jd~Jd@(Po)4X .

()
Because MO is independent of ~, that integration is trivial; the integration over w

requires more care because the form of (~ ~) depends on the ratio a which in turn

depends on ~. Considering this

((,.)) = ~~cosa:

–1

constraint gives

(m - l)u
pc

2m ‘

(31)

u(m-1)

[1

2m ~cos U2a ~ 1 ~cosu ~_ 1
1 J

(m - l)u
= p>

-1 2 3 3a2 2m .u(m–1) 2

2m

Executing these somewhat tedious integrations (a perfect job for automatic symbolic

integrators) gives, when the result is expressed in terms of the neutron-nuclear

speed ratio, ~ - b,
-.. P

-.
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(( ))
2b(m + 3)

Wo = + (m+l)
9m

2[~+~{~]

(32a)

[~ )2(2m–1) ~+b2 _l b< 2m
+ (m+l)

9b2 m m-1 ‘

(( )) 2
~o=:+—

9b2

b, 2m
. (32b)

m-1

This result could further be averaged over a Maxwellian nucleus speed distribution

as is oftin done in themdization studies, but while I have done this numerically, it

does not add further insight. As it stands, the equation describes the situation

when all nuclei are assumed to be moving with the same speed. One can think of

the scattering medium properties as being characterized by the average nuclear

speed, say.

When the neutron speed is large compared to the nuclear speed (b>> 1) and

m # 1, the mean cosine is given by Eq. (32b) and approaches 2 / (3m), the usual

- result for no nuclear motion. When m = 1, e.g. for neutron-proton scattering, and

the same cond;tion (b>> 1) pertains, Eq. (32a) approaches 2 /3, also the expected

result. men the neutron speed is small compared b the nuclear speed (b<< 1), the

mean cosine approaches zero linearly with b. One might therefore expect that the

mean cosine is monotone between isotropic scattering at b = O and 2 / 3m at large

b. However, evaluation of either Eq. (32a) or Eq. (32b) at their common point gives

(33)

-..

which is greater than 2 / 3m except for m = 1. Indeed, Figure 4 shows ((LO)) as a
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Fig. 4. Mean neutron scattering cosine as a function of the speed of the-..

neutron relative to th~ speed of the scattering nucleus.
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function of b forseveral values of m,andalthough themean cosine decreases as

m increases, the scattering is more anisotropic at lower b values than might be

expected when m >1.

This interesting result is also somewhat surprising. When there is no

nuclear motion and m increases, the CM velocity decreases so that the CM systim -

is very nearly the same as the L system. Thus, if scattering is isotropic in CM it is

isotropic in L. However, if there is nuclear motion, as m increases the CM system

does not become the L system; rather it becomes the system in which the nucleus is

at rest and the CM velocity approaches F. In this system the neutron approaches
.

with velocity ir, which depends strongly on the encounter angle e = Cos-lp.

Hence isotropy in CM is not isotropy in L. As m increases this anisotropy peaks

near u =
(( ))

P and approaches a value of yO = 15/144 = 0.104.

The results shown in Figure 4 are plotted for the variation of the cosine

depending on the speed of the neutron relative to the (single) nuclear speed. In an

ensemble of materials at the same temperature, the speed characterizing different

mass nuclei would not be the same, and this effect must be accounted for in

comparing anisotropy of scattering.

-..
-.
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