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Abstract

We analyze the mechanism of electroweak baryogenesis proposed by Farrar and
Shaposhnikov in which the phase of the CKM mixing matrix is the only source
of CP violation. This mechanism is based on a phase separation of baryons via
the scattering of quasiparticles by the wall of an expanding bubble produced at
the electroweak phase transition. In agreement with the recent work of Gavela,
Hernández, Orloff and Pène, we conclude that QCD damping effects reduce the
asymmetry produced to a negligible amount. We interpret the damping as quantum
decoherence. We compute the asymmetry analytically. Our analysis reflects the
observation that only a thin, outer layer of the bubble contributes to the coherent
scattering of the quasiparticles. The generality of our arguments rules out any
mechanism of electroweak baryogenesis that does not make use of a new source of
CP violation.
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1 Introduction

The present work addresses the possibility of implementing the phase of the CKM mixing
matrix of the quarks as the source of CP violation for electroweak baryogenesis.

The origin of the baryon asymmetry of the universe (BAU) is recognized as a fun-
damental question of modern physics. Although the BAU is a macroscopic property of
the entire observable universe, the ingredients for its explanation are contained in the
microscopic laws of particle physics, as pointed out by Sakharov [1].

Sakharov established on general grounds that a theory of particle interactions could
account for the production of the BAU at an early epoch of the universe, provided that
this theory contains B-violating processes which operated in a C- and CP -violating en-
vironment during a period when the universe was out of thermal equilibrium.

The state of the art in particle physics is the Standard Model of gauge interactions
among quarks and leptons. CP violation has been observed and is thought to originate
from the quark mixing matrix. B violation is believed to have taken place through non-
perturbative weak-interaction processes in the hot plasma of the early universe.

Kuzmin, Rubakov and Shaposhnikov [2] pointed out that implementing the program
of Sakharov in the Standard Model would require the electroweak phase transition to
be first order, with the baryon asymmetry being produced at the interface of bubbles of
nonzero Higgs expectation value, which expand into the unbroken phase. Furthermore,
Shaposhnikov [3] established a stringent upper bound on the Higgs mass by requiring
that the resulting baryon asymmetry not be washed out by the B-violating processes
from which it originated. The latest studies [4, 5] of the electroweak phase transition
have refined this bound to a value which is now ruled out by experiment. Although a
better understanding of the nonperturbative sector of the electroweak theory is required,
this bound directly challenges the possibility of electroweak baryogenesis.

The above obstacle, however, is not the principal reason which has motivated various
groups to enlarge the framework of the Standard Model in the search for a viable scenario
of baryogenesis [6]. In the Standard Model, all CP violation results from a single complex
phase in the quark mixing matrix. This phase can be transformed away in the limit
that any two quarks of equal charge have the same mass, and it can appear in physical
observables only through processes which mix all three generations of quarks. These
limitations suppress CP -violating effects in the Standard Model for most processes by
a factor of the order of 10−20. Given that CP violation is a necessary ingredient for
baryogenesis, it is difficult to reconcile this suppression factor with the observed ratio of
the baryons per photon in the Universe, (4–6) × 10−11.
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Recently, Farrar and Shaposhnikov (FS) [7] performed a detailed analysis of this im-
portant question. Despite all expectations, they concluded that Standard-Model CP
violation does not lead to the above suppression; instead, they found that under optimal
conditions it is sufficient for generating a ratio of baryons per photon of as much as the
observed 10−11. A crucial ingredient of their analysis is the interaction of the quarks with
thermal gauge and Higgs bosons in the plasma, which they correctly take into account by
expressing the interaction between the quarks and the bubble interface as the scattering
of quasiparticles.

Subsequently, Gavela, Hernández, Orloff and Pène (GHOP) raised objections to this
analysis [8]. They pointed out that Farrar and Shaposhnikov did not take into account
the quasiparticle width (damping rate). The width results from the fast QCD interactions
of the quasiparticles with the plasma, and is larger than any other scale relevant to the
scattering. They proposed to take the damping into account, and they concluded that it
reduces the magnitude of the BAU produced by the FS mechanism to a negligible amount,
in agreement with earlier expectations. The details of their analysis will appear in future
publications.

We propose a novel interpretation of the damping rate, γ, of a quasiparticle as a
measure of its limited quantum coherence. The quasiparticle wave is rapidly damped
because the components of the wave are rapidly absorbed by the plasma, and reemitted in
a different region of the phase space. This decoherence phenomenon prevents components
of the wave from participating in quantum interference over a distance longer than a
coherence length, `, whose magnitude is proportional to 1/γ. Quantum interference is
necessary for the generation of a CP -violating observable.

The above considerations lead us to reexamine the physical mechanism of scattering
of a particle off a medium. The latter does not take place at the interface but instead
results from the coherent interference of components of the particle wavefunction which
are refracted by the bulk of the scattering medium. This observation can be ignored if
the incoming wave is coherent for an arbitrary amount of time, but not for a quasiparticle
which has a coherence length much shorter than any other relevant scale. This perspective
provides a transparent physical understanding of the scattering properties of a quasipar-
ticle off the bubble. The coherent scattering of a quasiparticle effectively takes place
only in a very thin outer layer of the bubble, which drastically reduces the probability of
reflection.

In order to contribute to a CP -violating observable, a quasiparticle wave must scatter
many times in the bubble before it decoheres. It must encounter mixing of all three gen-
erations of quarks and the CP -odd phase in the CKM matrix. The scattering takes place
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through the quark mass term in the bubble of broken phase, and through interaction with
charged Higgs in the plasma. However, the mean free path for each of these scatterings is
far longer than the coherence length of the quasiparticle wave. The wave has almost com-
pletely died away by the time it has scattered a sufficient number of times. Consequently,
the baryon asymmetry produced is insignificant, orders of magnitude smaller than the
observed asymmetry (and the asymmetry found by Farrar and Shaposhnikov).

We make the above arguments quantitative by deriving a diagrammatic expansion for
the reflection of a quasiparticle wave off a bubble. This expansion expresses a reflection
amplitude as a sum of paths in the bubble with various flavor changes and chirality
flips, with each path being damped by the exponential of its length expressed in units
of the coherence length `. This method provides an analytic expression for the baryon
asymmetry and demonstrates that the leading order contributions are proportional to
the Jarlskog determinant and to an analogous invariant measure of CP violation. Our
analysis corroborates the findings of GHOP that the BAU produced is suppressed to a
negligible amount as result of plasma effects.

Our arguments of decoherence are of great generality and rule out any scenario of
baryogenesis which implements the phase of the CKM matrix as the sole source of CP
violation.

In Section 2, we review the main aspects of the electroweak phase transition which are
needed to carry out our analysis and we describe the FS mechanism of baryogenesis. In
Section 3, we introduce and justify the concept of the coherence length, and we describe
the physics of the scattering which takes into account the limited coherence of the quasi-
particles. Using these insights, we describe in Section 4 our method for computing the
baryon asymmetry in presence of a sharp bubble wall. We discuss various additional sup-
pressions which occur when the wall has a more realistic thickness. Finally, we summarize
our results and discuss their applicability to more general situations. In particular, we
briefly discuss possible implications for other scenarios of electroweak baryogenesis.

2 The Mechanism of Farrar and Shaposhnikov

In this section, we review the relevant features of the electroweak phase transition, and
we describe the FS mechanism of electroweak baryogenesis.
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2.1 The Electroweak Phase Transition

It is well established after the pioneering work of Kirzhnits and Linde [9] that the elec-
troweak SU(2)×U(1) gauge symmetry was unbroken in the early universe. As the universe
cooled down to a temperature of order T ∼ 100 GeV, the thermal expectation value of
the Higgs field developed a nonzero value, breaking the electroweak symmetry.

This phase transition is thought to have been a first-order transition, although cur-
rently unresolved difficulties related to the non-abelian gauge sector of the thermal plasma
have prevented a proof of this statement. Electroweak baryogenesis relies on this assump-
tion in order to meet the criteria of Sakharov. In a second-order phase transition, the
departure from thermal equilibrium results from the time dependence of the temperature,
which is driven by the expansion of the universe. The rate of expansion of the universe,
H = T 2/MPlanck, is typically 17 orders of magnitude slower than a typical process in the
plasma, far too slow to generate a significant departure from equilibrium. On the other
hand, in a first-order phase transition the Higgs VEV jumps suddenly to a nonzero value.
This triggers the nucleation of bubbles of broken phase. As a bubble expands, its sur-
face sweeps through the plasma, requiring a given species to suddenly adjust its thermal
distribution to its nonzero mass inside the bubble. This produces a temporary state of
nonequilibrium with a time scale of the order (thickness)/(velocity)∼ 101-3/T , which is
comparable to the microscopic time scale of the plasma.

The dynamics of bubble expansion are fairly well understood. These bubbles grow to a
macroscopic size of order 1012/T until they fill up the universe. In contrast, baryogenesis
is a microscopic phenomenon ∼ (1–100)/T . This allows one to ignore complications
due to the curvature of the wall by assuming the latter to be planar. The thickness
of the interface is of order (10–100)/T, depending on the Higgs mass, while the terminal
velocity of expansion vW has been calculated to be non-relativistic [5, 10], with the smallest
allowed velocity, of order 0.1, attained in the thin-wall limit. Furthermore, for this range
of parameters, the growth of the bubble has been shown to be stable [11].

The above considerations lead to a picture of the electroweak phase transition favorable
for the making of the baryon asymmetry.

2.2 The Mechanism of Farrar and Shaposhnikov

Farrar and Shaposhnikov proposed a simple mechanism of baryogenesis based on the
observation that as the wall sweeps through the plasma, it encounters equal numbers
of quarks and antiquarks which reflect asymmetrically as a result of the CP -violating
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interactions [7]. This mechanism leads to an excess of baryons inside the bubble and an
equal excess of antibaryons outside the bubble. Ideally, the excess of baryons outside is
eliminated by baryon violating processes while the excess inside is left intact, leading to
a net BAU.

Outside the bubble is the domain of the unbroken phase. There are rapid B-violating
processes which occur at a rate per unit volume of Γout = κ(αWT )4. The coefficient κ is
not reliably known, but Monte Carlo simulations [12] suggest κ ∼ .1–1. These processes
cause the baryon asymmetry to relax to a thermally-averaged value of zero. A fraction of
the antibaryon excess escapes annihilation by diffusing back inside the bubble, an effect
enhanced by the motion of the wall, and which can be accounted for by solving diffusion
equations [7].

Inside the bubble, the known B-violating processes are instanton processes [13], which
can be ignored because they occur at a rate smaller than the expansion rate of the universe,
and sphaleron processes [2], which occur at a rate Γin ∼ exp(−2gW 〈φ〉/αWT ). In order
to prevent the loss of the baryon excess in a subsequent epoch, the latter processes must
occur at a rate smaller than the expansion rate of the universe: Γin � (T 2/MPlanck)T 3.
Since the expectation value 〈φ〉 behaves parametrically as 1/m2

H , this constraint yields
an upper bound on the Higgs mass [3, 5] of order 45 GeV, which lies below the current
experimental limit of 58 GeV [14]. This conflict is a major difficulty for Standard-Model
baryogenesis. It can be resolved either by a drastic reformulation of sphaleron physics or
by extending the parameter space of the symmetry-breaking sector. Both avenues are the
subject of active investigation.

2.3 Optimal Parameters

The goal pursued by Farrar and Shaposhnikov is to use the CP -violating phase of the
quark mixing matrix as the only source of CP violation for the phase separation of
baryons. To discuss this aspect, it is useful to eliminate complications due to other
aspects of baryogenesis such as the physics of the B-violating processes and the structure
of the wall. If it turns out that the mechanism works within this simplified framework,
one can reconsider the analysis within the full setting. In the following, we select ideal
conditions which not only simplify the analysis but also optimize the generation of the
baryon asymmetry and make no reference to transport phenomena.

We choose the following values for the B-violating rates:

Γin = 0 , Γout =∞ . (1)
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The first condition prevents the wash out of the asymmetry inside the bubble. The second
instantaneously eliminates the excess of antibaryons directly outside the wall without
reference to any diffusion process. These conditions clearly maximize the asymmetry and
allow one to express it directly in terms of the velocity of the wall and the reflection
coefficients for the scattering of quasiparticles off the bubble.

For the parameters of the wall, we choose

δW = 0 , vW ∼ 0.1 . (2)

A wall of zero thickness enhances the quantum-mechanical aspects of the scattering of
fermions off the bubble. In fact, we will show how various suppression factors develop
as the wall thickness increases from 2–3/T to the more realistic value 10–100/T quoted
earlier. The limit of small thickness was shown [5, 10] to be the limit of maximal damping
of the motion of the wall in the plasma, a situation for which calculations are reliable and
yield the above value of vW .

Finally, following FS, we assume that the scattering effectively takes place in 1 + 1
dimensions. This choice simplifies the calculation greatly. Its justification relies on the
observation that the kinematics of the scattering only involves the component of the
momentum perpendicular to the wall. In addition, forward scattering produces a maximal
change of helicity of the fermion, which is required to produce an asymmetry. Restoration
of the 3-dimensional phase space can only suppress the asymmetry further.

2.4 A Formula for nB/s

Under the above assumptions, we can derive a simple expression for the “baryon-per-
photon ratio,” nB/s.

In the rest frame of the wall, at any given instant there is an equal amount of quarks
and antiquarks striking the wall from either side. As a result of CP violation, quarks and
antiquarks scatter differently in the presence of the bubble, and become asymmetrically
distributed between the broken and unbroken phases. By assumption, the baryon num-
ber outside the bubble is immediately eliminated, leaving an equal but opposite baryon
number inside the bubble. Therefore the net baryon number produced is minus the ther-
mal average of the baryon number in the unbroken phase. The baryon number in the
unbroken phase is the sum of the excess due to baryons from the unbroken phase (u)
which reflect off the bubble back into the unbroken phase, and the excess due to baryons
transmitted from the broken phase (b) into the unbroken phase. Hence the net baryon
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number produced is given by

nB = −1

3

{ ∫
dω

2π
nuL(ω)Tr

[
R†LRRLR − R̄†LRR̄LR

]
+ (L↔ R)

+
∫ dω

2π
nbL(ω)Tr

[
T †LLTLL − T̄

†
LLT̄LL

]
+ (L↔ R)

}
. (3)

The factor of 1/3 is the baryon number of a quark. The quantities R and T are matrices
in flavor space that contain the reflection and transmission coefficients. For example, Rfi

LR

is the coefficient of reflection for a left-handed quark of initial flavor i which reflects into a
right-handed quark (conserving angular momentum) of final flavor f . R̄LR corresponds to
the CP -conjugate processes, that is, right-handed antiquarks reflecting into left-handed
antiquarks. TLL and T̄LL contain the transmission coefficients of the corresponding parti-
cles approaching the bubble wall from the interior. Expression (3) simplifies greatly after
using unitarity, T †LLTLL +R†LRRLR = 1l, and CPT invariance, RRL = R̄LR:

nB =
1

3

{∫ dω

2π
(nuL(ω)− nuR(ω))−

∫ dω

2π
(nbL(ω)− nbR(ω))

}
×∆(ω) , (4)

where ∆(ω) = Tr[R†RLRRL − R†LRRLR] = Tr[R̄†LRR̄LR − R†LRRLR]. The distributions
nu, bR, L(ω) are Fermi-Dirac distributions boosted to the wall frame:

n(ω) = n0(γ(ω − ~vW · ~p)) =
1

eγ(ω−~vW ·~p)/T + 1
. (5)

For zero wall velocity, all thermal distributions are identical in the wall frame so that
contributions to nB/s in eq. (4) from the broken and unbroken phases cancel each other,
as do contributions from the scattering of left- and right-handed particles. The motion
of the wall introduces the nonequilibrium conditions required for the generation of the
baryon asymmetry. The leading contribution to nB/s thus appears at first order in vW .
Expanding eq. (5) in powers of vW , using the value vw = 0.1, and dividing by the entropy
density, s = 2π2g∗T/45 ' 45T ,1 we find the “baryon-per-photon” ratio produced to be

nB
s
' 10−3

T

∫ dω

2π
n0(ω)(1− n0(ω))

(~pL − ~pR) · v̂W
T

×∆(ω) + O(v2
W ) . (6)

The whole calculation of the baryon asymmetry now reduces to the determination of the
left-right reflection asymmetry ∆(ω).

1g∗ is the number of massless degrees of freedom in the plasma ∼ 103.
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The non-trivial structure of the phase space is contained in the factor (~pL−~pR) · v̂W/T.
This vanishes unless, as discussed in the following subsection, interactions with the W
and Z bosons in the plasma are taken into account in the propagation of the quarks;
there we will see that (~pL − ~pR) · v̂W/T ∼ αW . In addition, the CP -odd quantity ∆(ω)
vanishes unless flavor mixing interactions occur in the process of scattering. This requires
us to take into account the interactions with the charged W and Higgs bosons in the
scattering process. At first, this might appear an insurmountable task. However, Farrar
and Shaposhnikov suggested that all the relevant plasma effects can consistently be taken
into account by describing the process as a scattering of suitably-defined quasiparticles
off the wall.

2.5 Quasiparticles

Quasiparticles are fermionic collective excitations in a plasma. They were studied decades
ago in a relativistic context in an e+-e− plasma [15]. They were considered for the first
time in the QCD plasma by Klimov [16] and Weldon [17]. In the vacuum, a massless spin-
1/2 particle with energy ω and momentum ~p has the inverse propagator S−1

0 = γ0ω−~γ ·~p.
In the plasma, the particle is dressed, acquiring a thermal self-energy of the form

Σ(ω, ~p ) = γ0a(ω, p)− b(ω, p)~γ · ~p . (7)

The dispersion relations for the quasiparticles are obtained by solving for the poles of the
full propagator, including the self-energy. We need to solve

det[S−1
0 −Σ(ω, ~p )] = 0 . (8)

The solution is
ω = a(ω, p) ± p[1− b(ω, p)] . (9)

The quantity a(ω, p) has a nonzero value, Ω, at zero momentum, so that there is a mass
gap in the dispersion relations. A peculiar feature of this solution is the appearance of two
branches as seen in Fig. 1. The upper, “normal” branch (n) corresponds to a “dressed”
quark propagating as if it had an effective mass Ω. The second, “abnormal” branch (a)
is interpreted [18] as the propagation of a “hole,” that is the absence of a antiquark of
same chirality but opposite momentum. A “hole” is expected to be unstable at large
momentum, but is thought to be stable for relatively small momentum [19], which is the
region of momentum of interest in the FS mechanism.
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At small quasiparticle momentum, where the largest phase separation of baryons oc-
curs, the self-energy can be linearized as

Σ(ω, ~p) ' γ0(Ω− ω)− ~γ · ~p/3 . (10)

The solutions for the poles in the quasiparticle propagator are in this approximation
simply

ω ' Ω± p

3
. (11)

Here the factor of 1/3 is the quasiparticle group velocity, dω/dp, at zero momentum.

In the hot plasma of the early universe, left- and right-handed quasiparticles acquire
distinct thermal masses ΩL and ΩR because only left-handed quarks couple to the thermal
W bosons. The thermal masses also develop flavor dependence because different flavors
couple with different strength to the thermal Higgs bosons. The thermal masses of the
left-handed quasiparticles are given explicitly by [17, 7]

Ω2
L =

2παsT 2

3
+
παWT 2

2

(
3

4
+

sin2 θW
36

+
M2

u +KM2
dK
†

4M2
W

)
, (12)

where the contributions from thermal interactions with gluons, electroweak gauge bosons,
and Higgs bosons are all apparent. In this expression, K is the CKM matrix, Mu =
diag(mu,mc,mt), Md = diag(md,ms,mb), and the Yukawa couplings to the Higgs have
been related to the masses of the quarks and the W in the broken phase. For right-handed
up quarks,

Ω2
R =

2παsT 2

3
+
παWT 2

2

(
4 sin2 θW

9
+
M2

u

M2
W

)
, (13)

while for right-handed down quarks,

Ω2
R =

2παsT 2

3
+
παWT 2

2

(
sin2 θW

9
+
M2

d

M2
W

)
. (14)

These results for the thermal masses hold at leading order in the temperature, T, assuming
that T is much larger than any other energy scale. In section 4, we will see that in order
to have flavor mixing of right-handed quarks, we need to consider corrections proportional
to logm/T that arise when nonzero quark masses in the broken broken phase are taken
into account.

The full structure of the dispersion relations (9) for left- and right-handed particles in
the broken and the unbroken phases is depicted in Fig. 2. The graphs which contribute
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to the self-energy are of the form shown in Fig. 3a, where the quark interacts with either
a gluon, a W boson or a Higgs boson in the plasma. The dominant contribution to the
Ω’s is left-right- and flavor-symmetric, and comes from gluon exchange diagrams. This is
contained in the left-right average of the Ω’s which, ignoring the small flavor-dependent
pieces from Higgs and hypercharge-boson interactions, is given by

Ω0 '
gsT√

6

(
1 +

9αW
64αs

)
' 50 GeV . (15)

Splitting between left- and right-handed excitations comes dominantly from the W± in-
teractions,

δΩ = ΩL −ΩR '
g2
WT

2

20Ω0
' 4 GeV . (16)

In the unbroken phase, the energy levels of left- and right-handed quasiparticles in-
tersect at an energy close to Ω0, at a momentum |~p| near (3/2)δΩ. In the broken phase,
level-crossing takes place, leaving a mass gap of thickness equal to the mass of the quark
at the core of the quasiparticle. This is shown in Fig. 2. Quasiparticles with such energies
cannot propagate in the broken phase; they are totally reflected by the bubble if they
approach it from the unbroken phase. This latter property is of crucial importance in the
FS mechanism and restricts the relevant phase space to a region near ω = Ω0.

Finally, there are other contributions to the self-energy resulting from neutral- and
charged-Higgs bosons. Their effects are unimportant for the propagation of a quasiparticle
in either phase. However, the self-energy contributions from interactions with the charged
Higgs are crucial for the generation of the baryon asymmetry. Without them, the thermal
masses would be flavor independent, and in a mass-eigenstate flavor basis, the CKM
matrix — the only source of CP violation — would not be present. With the charged-
Higgs interactions included, it is impossible to diagonalize the evolution equations for the
quasiparticles simultaneously in both phases: the required CP -violating flavor mixing will
be present in one or both phases, allowing the separation of the baryons across the bubble
wall.

2.6 Phase Separation of Baryon Number

It is known that a CP -violating observable is obtained by interfering a CP -odd phase,
B, with a CP -even phase, A, so that, schematically, the asymmetry resulting from the
contribution of particles and antiparticles is proportional to

|A+ B|2 − |A+ B∗|2 = −4ImA ImB . (17)
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This illustrates the role of quantum mechanics in the generation of a CP -odd observ-
able. Farrar and Shaposhnikov proposed to describe the scattering of quasiparticles as
completely quantum mechanical, that is, by solving the Dirac equation in the presence
of a space-dependent mass term. In particular, they identified the source of the phase
separation of baryon number as resulting from the interference between a path where,
say, an s-quark (quasiparticle) is totally reflected by the bubble with a path where the
s-quark first passes through a sequence of flavor mixings before leaving the bubble as an
s-quark. The CP -odd phase from the CKM mixing matrix encountered along the second
path interferes with the CP -even phase from the total reflection along the first path.
Total reflection occurs only in a small range of energy of width ms corresponding to the
mass gap for strange quarks in the broken phase, as depicted in Fig. 2. This leads to
a phase space suppression of order ms/T . Inserting this suppression into (6) yields the
following estimate of the Farrar and Shaposhnikov baryon-per-photon ratio:

nB
s
' 10−3αW

ms

T
∆̄

' 10−7 × ∆̄ . (18)

This estimate requires ∆̄, the energy-averaged value of the reflection asymmetry, to be
at least of order 10−4 in order to account for the baryon asymmetry of the universe; this
value is just barely attained in Ref. [7].

Gavela et al. pointed out that the above analysis ignores the quasiparticle width, or
damping rate, embodied by the imaginary part of the self-energy

Σ = Re Σ− 2iγ. (19)

The width results from the exchange of a gluon with a particle in the plasma, and has
been computed at zero momentum as γ ' 0.15g2

sT ' 20 GeV [20]. GHOP made the
important observation that this spread in energy is much larger than the mass gap ∼ m
in the broken phase, and as a result largely suppresses ∆(ω). Their arguments rely on
the analytic continuation in the ω-plane of the coefficients of reflection for quasiparticle
scattering.

In the next Section, we describe the role of the damping rate γ in the scattering of
a quasiparticle off the bubble from a perspective which provides a clear physical under-
standing along with an unambiguous computational method.

3 Coherence of the Quasiparticle
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3.1 The Coherence Length `

A Dirac equation describes the relativistic evolution of the fundamental quarks and lep-
tons. Its applicability to a quasiparticle is reliable for extracting on-shell kinematic in-
formation, but one should be cautious in using it to extract information on its off-shell
properties. A quasiparticle is a convenient bookkeeping device for keeping track of the
dominant properties of the interactions between a fundamental particle and the plasma.
For a quark, these interactions are dominated by tree-level exchange of gluons with the
plasma. It is clear that these processes affect the coherence of the wave function of a
propagating quark. To illustrate this point, let us consider two extreme situations.

• The gluon interactions are infinitely fast. In this case, the phase of the propagating
state is lost from point to point. A correct description of the time evolution can be
made in terms of a totally incoherent density matrix. In particular, no interference
between different paths is possible because each of them is physically identified
by the plasma.2 As a result, no CP -violating observable can be generated and
∆(ω) = 0.

• The gluon interactions are extremely slow. The quasiparticle is just the quark itself
and is adequately described by a wavefunction solution of the Dirac equation, which
corresponds to a pure density matrix. In particular, distinct paths cannot be iden-
tified by the plasma, as the latter is decoupled from the fermion. This situation was
implicitly assumed in the FS mechanism. This assumption, however, is in conflict
with the role the plasma plays in the mechanism, which is to provide a left-right
asymmetry as well as the necessary mixing processes. In addition, this assumption
is in conflict with the use of gluon interactions to describe the kinematical properties
of the incoming (quasi-)quark.

The actual situation is of course in between the two limits above. The quasiparticle retains
a certain coherence while acquiring some of its properties from the plasma. Whether
this coherence is sufficient for quantum mechanics to play its part in the making of a
CP -violating observable at the interface of the bubble is the subject of the remaining
discussion.

The damping rate γ characterizes the degree of coherence of the quasiparticle. It
results from 2-to-2 processes of the type shown in Fig. 3b. It is a measure of the spread in

2Not only is the quantum mechanics of interference suppressed, but also the scattering process is
entirely classical.

12



energy, ∆E ∼ 2γ, which results from the “disturbance” induced by the gluon exchanged
between the quark and the plasma. From the energy-time uncertainty relation, 1/(2γ)
is the maximum duration of a quantum mechanical process before the quasiparticle is
scattered by the plasma. We define a coherence length ` as the distance the quasiparticle
propagates during this time:

` = vg ×
1

2γ
' 1

6γ
' 1

120 GeV
, (20)

where vg is the group velocity of the quasiparticle. With this definition, we can easily
describe the decoherence that occurs during the scattering off a bubble. Of crucial im-
portance for the remaining discussion, the coherence length of the quasiparticle is much
shorter than any other scale relevant to the scattering process:

` ' 1

T
� 1

p
' 1

δΩ
' 20

T
,

1

ms

' 1000

T
. (21)

3.2 A Model for Decoherence

Having identified the limited coherence of a quasiparticle, we need to describe its impact
on the physics of scattering by a bubble of broken phase. To understand this impact, let
us first consider a familiar example, the scattering of light by a refracting medium.

According to the microscopic theory of reflection of light, the refracting medium can be
decomposed into successive layers of scatterers which diffract the incoming plane wave.
The first layer scatters the incoming wave as a diffracting grid. Each successive layer
reinforces the intensity of the diffracted wave and sharpens its momentum distribution.
As more layers contribute to the interference, the diffracted waves resemble more and
more the full transmitted and reflected waves. This occurs only if the wave penetrates
the wall coherently over a distance large compared to its wavelength k−1.

In analogy with the microscopic theory of reflection of light by a medium, we can
slice the bubble into successive layers which scatter the incoming wave. The wavefunction
for a quasiparticle reflected from the bubble is the superposition of the waves reflected
from each of the layers. However, the decoherence of the quasiparticles arising from
collisions with the plasma implies that quasiparticles reflected from deep inside the bubble
back into the symmetric phase cannot contribute coherently to the reflected, outgoing
wave of quasiparticles. Having traveled several coherence lengths through the plasma, a
component of the wave reflected from deep inside the bubble will have been repeatedly
absorbed and reemitted by the plasma. Each component thereby acquires a distinct
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momentum and energy, preventing quantum interference of their amplitudes. Therefore,
scattering from layers of the bubble deeper than one coherence length does not contribute
significantly to the production of a coherent outgoing wave.

We can make the above arguments more specific in three different but complementary
ways:

• The scattering occurs because of the gain in mass by the quark when it enters the
broken phase; this increment of mass is very small, and the full scattering requires
the coherent contribution of scatterers up to a distance 1/m into the bubble in order
for the latter to probe the energy of the wave with a resolution smaller than m. This
requirement is not satisfied since, from (21), this minimal penetration length is 3
orders of magnitude larger than the coherence length of the incoming wave.

• From a corpuscular point of view, since scattering in the bubble is due to the quark
mass m, the mean free path for scattering is 1/m. This is 1000 times longer than the
coherence length. Therefore the probability for quasiparticle scattering even once
in the bubble before it decoheres is extremely small, of order (m`)2 ∼ 10−6.

• Farrar and Shaposhnikov found a sizable baryon asymmetry generated in an energy
range of width ms where a strange quark is totally reflected from the bubble. This
energy range corresponds to the mass gap in the broken phase described previously
(Fig. 2). However, strange quarks can easily tunnel through a barrier of thickness
` � 1/ms, since they are off-shell by an energy ∆ω ' ms for a time ∆t ' `/vg =
1/(2γ). Because ∆ω∆t = ms/(2γ) � 1, tunneling is completely unsuppressed and
the amplitude of the reflected strange-quark wave is only of order ms/γ ∼ 1/1000.

The probability of scattering several times in the bubble, as is required in order to
generate a CP -violating, baryon asymmetry, is thus vanishingly small. The baryon asym-
metry results from interference of reflected waves and necessarily involves several flavor-
changing scatterings inside the bubble in order to pick up the CP -violating phase of the
CKM matrix. We therefore expect that the baryon asymmetry produced when decoher-
ence is properly taken into account will be smaller than the amount found by Farrar and
Shaposhnikov by several factors of m`.

From these physical considerations, we can easily elaborate quantitative methods of
computing the scattering off a bubble by quasiparticles with a finite coherence length `.

A simple model is obtained by expressing that when a quasiparticle wave reaches a
layer a distance z into the bubble, its amplitude will have effectively decreased by a factor
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exp(−z/2`). A component which reflects from this layer and contributes to the reflected
wave will have decreased in amplitude by another factor of exp(−z/2`) by the time it exits
through the bubble wall. We can take this into account by replacing the step-function
bubble profile with an exponentially decaying profile:

M̂(z) =

{
Me−z/`, z > 0
0, z < 0

. (22)

This automatically attenuates the contribution to the reflected wave from layers of the
bubble deeper than one coherence length. The analog in the theory of light scattering
is the scattering of a light ray by a soap bubble. For this reason, we refer to this model
as the “soap bubble” model. It is clear that truncating the bubble in this way renders
the bubble interface transparent to the quasiparticle, that is, significantly reduces the
amplitude of the reflected wave.

A more rigorous method of computing ∆(ω) which we develop in detail in the next
Section is to solve an effective Dirac equation in the presence of the bubble, including
the decoherence (damping) that results from the imaginary part of the quasiparticle self-
energy. We extract Green’s functions which allows us to construct all possible paths of
the quasiparticles propagating in the bulk of the bubble with chirality flips and flavor
changes, each path being damped by a factor exp(−L/2`) where L is the length of the
path. Paths occurring within a layer of thickness ` dominate the reflection amplitudes,
in agreement with the previous considerations. We refer to this method as the “Green’s
function” method.

We have computed ∆(ω) using both methods. They give results qualitatively and
quantitatively in close agreement. The principal difference is the following: The “soap
bubble” model totally ignores scattering off the region deep inside the bubble, and does
not take into account small effects from decoherence in the foremost layer. In the next
Section we develop the “Green’s function” method in detail. The results are summarized
in the final Section.

4 Calculation of ∆(ω) Including Decoherence

4.1 Dirac Equation for Quasiparticle Scattering

In the unbroken phase where quarks are massless, quasiparticles propagate with a well-
defined chirality, and the wavefunctions L and R of left- and right-handed quasiparticles
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evolve independently according to

(ω + ~σ · ~p− ΣL(ω, ~p ))L = 0 ,

(ω − ~σ · ~p− ΣR(ω, ~p ))R = 0 , (23)

where ω and ~p are the energy and momentum of the quasiparticle, and ΣL,R are the
thermal self-energies discussed in Section 2.5. The largest contribution to quasiparticle
reflection and the phase separation of baryons occurs at small momenta where the mo-
menta of left- and right-handed quasiparticles are not significantly different. At small
momenta, the self-energies can be linearized (10) as ΣL,R ' 2(ΩL,R − iγ) − ω ± ~σ · ~p/3.
Here ΩL,R are the thermal masses of left- and right-handed quasiparticles introduced in
eqs. (12, 13, 14), and we have included the imaginary damping term (19).

In the bubble of broken phase, the nonzero mass couples the two chiralities of quasi-
particles. For an idealized bubble with a wall of zero thickness at z = 0 and extending
to z = +∞, the mass term is just Mθ(z), where M is the matrix of broken-phase quark
masses. The propagation and scattering of the quasiparticles in the presence of the bubble
of broken phase is thus governed by an effective Dirac equation,

0 =

(
2[ω − ΩL + iγ + 1

3
i~σ · ~∂] Mθ(z)

M†θ(z) 2[ω − ΩR + iγ − 1
3
i~σ · ~∂]

)
Ψ(z) , (24)

where Ψ =
(
L
R

)
. The field Ψ can be either the field of the down quarks, (d, s, b), or the

field of the up quarks (u, c, t), and in either case is a 3-component spinor in flavor space.
We ignore the small corrections to this equation induced by boosting to the frame of the
bubble wall since they contribute at higher order in the wall velocity. In a flavor basis
which diagonalizes ΩL, this Dirac equation is flavor-diagonal in the symmetric phase
(Mθ(z) = 0). Inside the bubble however, flavors mix via the mass matrix, which is
off-diagonal in such a basis. We treat the mass matrix as a perturbation in order to
make the calculation of the quasiparticle reflection coefficients as physically transparent
as possible. This is an excellent approximation for all quarks other than the top, for which
mt` ∼ 1. We will therefore concentrate on the scattering of down quarks in this Section,
and describe qualitatively how these results would be altered for the scattering of the top
quark. The large top mass does not alter the implications of quasiparticle decoherence
for the generation of a baryon asymmetry.

Multiplying the above Dirac equation by 3/2, it becomes(
PL + i~σ · ~∂ Mθ(z)

M†θ(z) −(PR + i~σ · ~∂)

)
Ψ(z) = 0 , (25)
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where PL and PR are the symmetric-phase complex momenta of the left- and right-handed
quasiparticles, including the imaginary damping terms,

PL = 3(ω − ΩL + iγ) (26)

PR = −3(ω − ΩR + iγ) . (27)

The rescaled mass M is just given by M ≡ 3M/2. We can decompose PL,R into the
physical (hermitian) momenta pL,R, and damping terms inversely proportional to the
coherence length ` = 1/(6γ) introduced in eq. (20):

PL = pL −
i

2`
, pL = 3(ω −ΩL) ; (28)

PR = pR +
i

2`
, pR = −3(ω − ΩR) . (29)

The damping of the quasiparticle waves due to the imaginary parts of PL and PR will be
discussed shortly.

As discussed above, we restrict our attention to quasiparticles with momenta perpen-
dicular to the bubble wall. Referring to the components of Ψ as

Ψ =


ψ1

ψ2

ψ3

ψ4

 , (30)

we introduce spinors χ and χ̃ for quasiparticles with jz = ∓1/2, where jz is the z-
component of their angular momentum:

χ ≡
(
ψ1

ψ3

)
; χ̃ ≡

(
ψ4

ψ2

)
. (31)

Because of angular momentum conservation, the Dirac equation for Ψ decomposes into
two uncoupled equations, one for jz = −1/2 quasiparticles contained in χ,

− i∂zχ(z) =
(

PL Mθ(z)
−M†θ(z) PR

)
χ(z) , (32)

and another for the jz = +1/2 quasiparticles contained in χ̃,

− i∂zχ̃(z) =
( −PR M†θ(z)
−Mθ(z) −PL

)
χ̃(z) . (33)
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In each of χ and χ̃, the upper component represents a quasiparticle moving towards the
wall from the symmetric phase. The lower component represents a quasiparticle reflecting
off the bubble back into the symmetric phase. The jz = −1/2 equation describes a left-
handed quasiparticle reflecting into a right-handed quasiparticle; the jz = +1/2 equation
describes the reversed process.

In the following we concentrate entirely on the scattering of jz = −1/2 quasiparticles
contained in χ. To obtain analogous results for the scattering of jz = +1/2 quasiparticles,
we need only interchange PL ↔ −PR and M ↔M†, as is apparent from eqs. (32) and
(33).

Consider the equation of motion for χ(z), eq. (32), keeping in mind the expressions
for PL,R in (28, 29). As stated above, PL and PR are the symmetric-phase momenta of
the left- and right-handed quasiparticles in χ. The signs of the real parts of either PL
or PR depend on whether the quasiparticle is on the normal or abnormal branches, and
this in turn depends on the value of ω (see Fig. 1). (For example, if ΩR < ω < ΩL, the
left-handed quasiparticle is on the abnormal branch and has negative momentum. The
right-handed quasiparticle is in this case normal, but also has negative momentum.) What
is essential though, is that the sign of the group velocities is independent of energy: the
left-handed quasiparticles move toward the bubble and positive z, and the right-handed
quasiparticles moves away from the bubble and in the direction of negative z.

Now examine the imaginary parts of PL and PR. A left-handed quasiparticle, which
moves towards positive z, has a momentum with a positive imaginary part. Therefore the
wavefunction for left-handed quasiparticles decays as exp(−z/2`) as the quasiparticles
move towards positive z. A right-handed quasiparticle, which moves toward negative z,
has a momentum with a negative imaginary part. Hence the wavefunction for right-handed
quasiparticles decays as exp(−|z|/2`) as the quasiparticles move towards negative z. In
other words, the quasiparticles are damped no matter in which direction they propagate.

Note that we have implicitly chosen ω to be real. With this choice, the momenta
must become complex in order to satisfy the dispersion relations, and propagation of
quasiparticles in space is damped. We have taken ω to be real because energy is conserved
in the scattering process. We can then just ignore the factor exp(−iωt) which describes the
time dependence of the quasiparticle wavefunction, since it does not affect the probabilities
of reflection.

We could have satisfied the dispersion relations with real momenta if we had allowed
ω to be complex. Then we could have observed the decay of the quasiparticles in a
time 1/(2γ). But then the reflection probabilities would have an exponentially decaying
time dependence, which would require us to study the time and space dependence of
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quasiparticle scattering in order to determine the time it takes for a quasiparticle to
scatter off the bubble.

4.2 Diagrammatic Calculation of Reflection Coefficients

We now derive a perturbative expansion for the reflection coefficients. The result is what
one would intuitively expect: a left-handed quasiparticle propagates toward positive z
until its velocity is reversed by scattering in the bubble — an insertion of the quark-mass
matrix — and then becomes a right-handed quasiparticle, propagating towards negative
z, perhaps exiting the bubble and contributing to the reflected quasiparticle wave, or
possibly scattering again, and once more propagating as a left-handed deeper into the
bubble. Throughout, the quasiparticle wave is damped. To generate a phase separation
of baryons, the quasiparticle wave must suffer a sufficient number of scatterings inside
the bubble, both with the neutral Higgs condensate, which gives factors of the quark-
mass matrix, and with charged Higgs in the plasma, in order to produce a CP -violating
observable.

First consider the propagation of quasiparticles in the symmetric phase (again, re-
stricting our attention to the jz = −1/2 quasiparticles contained in χ). For the left- and
right-handed quasiparticles contained in χ we need to find Green’s functions GL and GR

satisfying
(−i∂z − PL,R)GL,R(z − z0) = 1l δ(z − z0) . (34)

In addition we require the boundary conditions

GL(−∞) = GR(+∞) = 0 , (35)

which state that there are no sources of quasiparticles at spatial infinity. The unique
solution is

GL(z − z0) = iθ(z − z0)e
iPL(z−z0) = iθ(z − z0)e−(z−z0)/2`eipL(z−z0) , (36)

GR(z − z0) = −iθ(z0 − z)eiPR(z−z0) = −iθ(z0 − z)e−(z0−z)/2`eipR(z−z0) . (37)

The θ-functions indicate that left-handed quasiparticles move toward positive z while the
right-handed quasiparticles move toward negative z, as expected. We have substituted the
expressions for PL,R (28, 29) to demonstrate that quasiparticle propagation is damped.

Now introduce the quark-mass terms in the bubble as a perturbation, and consider
the reflected wave of right-handed quasiparticles at z = 0 due to a delta-function source
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of left-handed quasiparticles at z = 0. Let

χ =
(
χL
χR

)
. (38)

We thus need to solve (32)

(−i∂z − PL)χL(z) = −iδ(z)χL(0) +Mθ(z)χR(z) , (39)

(−i∂z − PR)χR(z) = −M†θ(z)χL(z) . (40)

From the equations satisfied by the Green’s functions we see that the solution is given by

χL(z) = −iGL(z)χL(0) +
∫
dz0GL(z − z0)Mθ(z0)χR(z0) , (41)

χR(z) =
∫
dz0GR(z − z0)(−M†)θ(z0)χL(z0) , (42)

where the integrals are over all z0. These expressions can be iterated to find the reflected
wave to any order in the quark mass matrix.

The reflection matrix RLR, where the subscript indicates that left-handed quasiparti-
cles are reflected into right-handed quasiparticles, is obtained by considering all possible
flavors of initial and final quasiparticles. For example, Rfi

LR, the reflection coefficient for
scattering of initial flavor i into a final flavor f , is found by calculating the f-component
of χR(0) when the i-component of χL(0) is set equal to one and the other components are
set to zero. From the solution eq. (42), we see that the reflection matrix is given by the
expansion
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Figure 4: First two terms in the expansion for the reflection matrix RLR. The bubble of
broken phase is indicated by the step. An incident left-handed quasiparticle approaches
the bubble from the left, and is scattered by the quark-mass term M in the bubble,
becoming a right-handed quasiparticle which moves back towards the bubble wall. The
right-handed particle can then exit the bubble and contribute to the reflected wave, or
else can scatter again, via M†, leading to a contribution to the reflected wave at higher
order in the quark mass matrix. The full reflected wave is obtained by summing up these
diagrams and integrating over the positions of the scatterings in the bubble.

RLR = −i
∫
dz1GR(−z1)(−M†)θ(z1)GL(z1)

− i
∫
dz1dz2dz3GR(−z3)(−M†)θ(z3)GL(z3 − z2)Mθ(z2)GR(z2 − z1)(−M†)θ(z1)GL(z1)

+ · · · (43)

= i
∫ ∞

0
dz1e

−iPRz1M†eiPLz1

+ i
∫ ∞

0
dz1

∫ 0

z1
dz2

∫ ∞
z2

dz3 e
−iPRz3M†eiPL(z3−z2)MeiPR(z2−z1)M†eiPLz1 + · · · . (44)

This expansion is shown diagrammatically in Fig. 4.

Let us now make explicit the damping of the quasiparticle waves. Decomposing each
of PL and PR into a momentum and a damping term as in eqs. (28, 29), the previous
expression for RLR becomes
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RLR = i
∫ ∞

0
dz1e

−z1/`e−ipRz1M†eipLz1

+ i
∫ ∞

0
dz1

∫ 0

z1
dz2

∫ ∞
z2

dz3 exp[−(z1 + |z2 − z1|+ |z3 − z2|+ z3)/(2`)]

× e−ipRz3M†eipL(z3−z2)MeipR(z2−z1)M†eipLz1 + · · · . (45)

The quasiparticle wave is evidently damped along each leg of its trajectory. The overall
suppression for each term in RLR is just exp(−L/2`), where L is the distance traveled by
a quasiparticle in the barrier. In particular, it is apparent that there will be no significant
contribution to RLR from paths which travel to a depth of more than one coherence length
into the bubble. Hence only an extremely thin outer layer of the bubble contributes to
the coherent reflected wave.

This perturbative expansion for the reflection matrix R is the basis for the calculations
we are about to describe. We will work throughout to lowest nonvanishing order in the
quark mass matrix. This expansion is valid as long as M` � 1. This condition is easily
satisfied for all quarks other than the top, for which the expansion parameter is of order
unity, and for which our results will only be qualitative.

We also work to lowest order in the O(αW ) flavor-dependent terms in pL,R that arise
from Higgs contributions to the thermal self-energy. Decompose pL,R as

pL = p0
L1l + δpL , (46)

pR = p0
R1l + δpR , (47)

where p0
L,R contain the large, flavor-independent terms in pL,R, while δpL,R are propor-

tional to the O (αW ), flavor-dependent pieces in Ω2
L,R that arise from interactions with

Higgs. Examining the expression (12) for Ω2
L, and formula (28) for pL, we see that for

down quarks, δpL is given in a mass-eigenstate flavor basis by

δpL ' −
3παWT 2

16Ω0

K†M2
uK +M2

d

M2
W

. (48)

For the scattering of up quarks, Md and Mu are interchanged, as are K and K†. The
non-commutativity of δpL withM gives rise to flavor mixing in the broken phase.

The thermal masses Ω2
R for right-handed quarks are flavor-diagonal when approxi-

mated for large temperatures, T (13, 14). Hence in this approximation, pR is diagonal
and does not contribute to the flavor mixing required for CP violation. In the broken
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phase, the quarks appearing in the self-energy graphs are massive, and Ω2
R acquires off-

diagonal terms (which are usually neglected at large temperatures). As pointed out by
GHOP, the resulting off-diagonal terms in δpR, which do not commute with the quark
mass matrix, lead to additional contributions to ∆(ω). For down quarks,

δpR = · · ·+ 3αW
32πΩ0

MdK†M2
u log(M2

u/T
2)KMd

M2
W

+ · · · , (49)

where we have omitted the flavor-independent terms of order T 2. All masses are high-
temperature, broken-phase masses. Again, for the scattering of up quarks, Md ↔Mu and
K ↔ K†.

In addition to working to lowest nonvanishing order in the quark-mass matrixM, we
also work to lowest order in δpL,R, which is equivalent to lowest nonvanishing order in
αW . Given that in the range of momentum where our analysis is applicable the diagonal
components of pL,R are much smaller than 1/`, we could justifiably work to lowest order
in p0

L,R as well. However, we list results valid to all orders in p0
L,R in order to show the

energy dependence of ∆(ω).

We find two leading contributions to ∆(ω). The first contribution is the dominant
contribution when quark masses are neglected when calculating the self-energy in the
broken phase. In this case δpR in eq. (47) is diagonal and commutes with the quark mass
matrix. This is the only contribution considered by FS, and comparing our results with
FS we can see the dramatic effect of decoherence. In a second calculation, we calculate
the contribution to ∆(ω) that comes from including the off-diagonal terms in δpR. GHOP
found the largest contribution to ∆(ω) when considering the scattering of up-type quarks
with these terms included. In each case we take into account the finite coherence length
of the quasiparticle by using expansion (44) for the coefficient of reflection.

4.3 Calculation of ∆(ω) Neglecting δpR

The leading contribution to ∆(ω) when δpR is ignored appears at O (M6). In this case
the momentum of the right-handed quasiparticles is diagonal and commutes with the
quark-mass matrix. Then the expression for RLR, eq. (44), can be written as

RLR = i
∫ ∞

0
dz1Me−z1/λ

+ i
∫ ∞

0
dz1

∫ 0

z1
dz2

∫ ∞
z2

dz3 Me−(z3−z2)/λM2e−z1/λ + · · · , (50)
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where 1/λ = 1/` − i(pL − p0
R). For simplicity, we have chosen a mass-eigenstate basis

where M is diagonal. Evaluating the integrals, we find that

RLR = iMλ(1l−M2λ2 +M2λ2M2λ2 +M2λM2λ3 + · · ·) . (51)

To calculate ∆(ω) = Tr(R̄†LRR̄LR − R†LRRLR),3 we need the reflection matrix R̄LR

for the scattering of CP -conjugate particles. The CP -conjugate process differs only in
that the CKM mixing matrix K is replaced with K∗, which means pL is replaced with
p∗L = pTL. Hence the reflection matrix R̄L,R is obtained from RL,R by replacing λ with its
transpose. The O(M2) and O(M4) terms cancel out of the difference in ∆(ω), so that
the leading-order contribution is O (M6):

∆9(ω) = Tr[λλ†2M2λ†M2λ†2M2 + λ2λ†M2λ2M2λM2 + λ2λ†2M2λM2λ†

−λλ†2M2λ†2M2λ†M2 − λ2λ†M2λM2λ2M2 − λ2λ†2M2λ†M2λ] , (52)

where 1/λ† = 1/` + i(pL − p0
R). Notice that each factor of the quark mass matrix is

accompanied by a factor of λ ' `. The productM` is the amplitude for the quasiparticle
to scatter through the quark mass term while propagating for one coherence length, which
is quite small. To lowest order in δpL,

∆9(ω) = 4if9(∆p0`) Tr
[
(δpL)2M4δpLM2 − (δpL)2M2δpLM4

]
`9 (53)

= −4i

3
f9(∆p0`) Tr

[
M2, δpL

]3
`9 , (54)

where ∆p0 ≡ p0
L − p0

R, and f9 is an energy-dependent form factor given by

f9(x) =
1

(1 + x2)6
. (55)

The subscripts “9” indicates that this contribution to ∆(ω) occurs at 9th order in `. It is
the largest contribution to ∆(ω) due to down quarks when δpR is neglected. Again note
that for every factor of the quark mass matrix or δpL, there is an accompanying factor
of `. Scattering from either the Higgs condensate or the the charged Higgs in the plasma
during one coherence length has a very small probability.

Refering to the diagrammatic expansion in Fig. 4, this O(M6) contribution to ∆(ω)
evidently can come from the interference of two paths which each have 3 chirality flips

3The derivation of eq. (4) for ∆(ω) made use of unitarity to relate probabilities of reflection and
transmission. With damping, unitarity might seem to violated. However, the damping corresponds to
decoherence. Baryon number is still conserved throughout the scattering process.
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(via the mass term), or it can come from the interference of a path which has just one
chirality flip with a path that has 5 chirality flips. The 3 factors of δpL are distributed
among the left-handed segments of the two paths.

We now substitute expression (48) for δpL and also ∆p0` ≡ p0
L − p0

R = (ω − Ω0)/γ,
using eqs. (28) and (29), and where Ω0 ' 50 GeV is the left-right average of the flavor-
independent pieces of ΩL,R introduced in eq. (15). Our expression for ∆9(ω) for down
quarks becomes

∆d
9(ω) = −4

(
27παWT 2

64Ω0M2
W

)3 [
1 +

(
ω − Ω0

γ

)2]−6

det C `9 , (56)

The quantity detC is the basis-independent Jarlskog determinant [21],

det C = i det[M2
u , KM

2
dK
†]

= −2J(m2
t −m2

c)(m
2
t −m2

u)(m
2
c −m2

u)(m
2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d) , (57)

where the superscript d indicates that this is the contribution to ∆9(ω) due to the scatter-
ing of down quarks. Here J is the product of CKM angles J = s2

1s2s3c1c2c3 sin δ ∼ 10−5.
Clearly, the largest contribution to ∆d

9(ω) comes from paths involving bottom quarks
(either incident, reflected or virtual).

For the scattering of up quarks our expansion in the quark-mass matrix breaks down
because of the large mass of the top quark. Because of its large mass, the top quark is
far off shell in the broken phase (by mt − Ω0 ' 3γ). We therefore expect that if we did
not treat the top mass as a perturbation, the contributions from paths involving the top
quark would be smaller than the results obtained here. Our results for the up quarks
are thus qualitative, and overestimate their contribution to the asymmetry relative to the
contribution of the down quarks.

As mentioned above, results for the scattering of up quarks can be obtained from
down-quark results by interchanging Md with Mu and K with K†. From the definition of
the Jarlskog determinant in eq. (57), we see that it changes sign under these interchanges.
Hence to lowest order in M, the contribution to ∆9(ω) from up quarks, ∆u

9(ω), differs
only by a sign from the down-quark contribution, ∆d

9(ω). If the top were as light as the
other quarks, the total contribution to ∆9(ω) would vanish (continuing to ignore the off-
diagonal terms in δpR). Because the top is very heavy the dominant terms in ∆u

9(ω), which
come from paths involving top quarks, will be reduced. Therefore, the total contribution
to ∆9, given by ∆d

9 + ∆u
9 , will not vanish.
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We reserve further discussion of this contribution for the final Section, and now de-
scribe our calculation of the leading contribution to ∆(ω) when the off-diagonal terms in
δpR are considered.

4.4 Calculation of ∆(ω) Including δpR

Because δpR contains two factors of M, when δpR is included, we need two fewer fac-
tors of the quark-mass matrix in order to form an invariant analogous to the Jarlskog
determinant. The leading-order term therefore appears at O(M4).

To find ∆(ω) when the off-diagonal terms in δpR in eq. (49) are included, we again
use the expansion for RLR in eq. (44). We can no longer directly evaluate the z-integrals
because of the noncommutativity of δpL and δpR with M. Instead we first expand the
integral expression for ∆(ω) in powers of δpL and δpR, and pick out the lowest-order non-
vanishing terms, of order (δpL)(δpR). It is then possible to evaluate the flavor-independent
integral coefficient. The resulting contribution to ∆(ω), at 7th order in `, is

∆7(ω) = −8i f7(∆p0`) Tr
[
δpLMδpRM3 − δpLM3δpRM

]
`6 , (58)

where f7(∆p0`) is an energy-dependent form factor,

f7(x) =
x

(1 + x2)4
. (59)

Note that ∆7(ω) would vanish if either δpL or δpR commuted with M. Unlike ∆9(ω),
∆7(ω) is an odd function of ∆p0 and so vanishes at ∆p0 = 0. This is because in order to
discern the CP -odd phase in the CKM matrix, we need a CP -even phase, as is apparent in
eq. (17). Examining eq. (45) for RLR, the only sources of relative phases are the factors of
the form exp(ipz). To get a nontrivial CP -even phase, we evidently need an odd number
of factors of ip. While the trace in ∆9(ω) contains three δp’s, the trace in ∆7(ω) contains
just two, so we need a factor of ∆p0 to have a nontrivial CP -even phase.

Because ∆7(ω) is an odd function of ∆p0, it vanishes at ω = Ω0, in the middle
of the energy range where light quarks are totally reflected. This is where Farrar and
Shaposhnikov saw the generation of a large baryon asymmetry, and where on a much
smaller scale, ∆9(ω) is peaked. We expect that contributions to the integrated asymmetry
from ω < Ω0 will largely cancel against contributions from ω > Ω0, and leaving a very
small contribution to the integrated asymmetry from ∆7(ω) for light quarks.

This contribution to the asymmetry arises from the interference of a path that has
three chirality flips with a path having one chirality flip. The factor of δpL can occur
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along any of the left-handed segments of the two paths, and similarly the factor of δpR
can occur along any of the right-handed segments.

Substituting the expressions for δpL,R for down quarks in eqs. (48, 49), and substituting
∆p0` = (ω − Ω0)/γ as before, expression (58) for ∆7(ω) simplifies to

∆d
7(ω) = 2

(
27αWT

32Ω0M2
W

)2

f7

(
ω − Ω0

γ

)
Dd `6 . (60)

The superscripts d again indicates that this contribution is due to the scattering of down
quarks. The quantityDd is an invariant measure of CP violation analogous to the Jarlskog
determinant:

Dd = Im Tr
[
M2

u logM2
u KM4

d K
†M2

u KM2
d K

†
]

= J

[
m2
tm

2
c log

m2
t

m2
c

+m2
tm

2
u log

m2
u

m2
t

+m2
cm

2
u log

m2
c

m2
u

]
×(m2

b −m2
s)(m

2
b −m2

d)(m
2
s −m2

d) . (61)

Here we have used Im(KαjK
†
jβKβkK

†
kα) = J

∑
γ,l εαβγεjkl [21]. Like the Jarlskog determi-

nant, Dd vanishes if any two quarks of equal charge have the same mass.

Recall that the Jarlskog determinant (57) simply changes sign under the simultaneous
interchanges Md ↔ Mu and K ↔ K†. By contrast, Dd does not treat the up-quark and
down-quark mass matrices symmetrically, and becomes a new quantity, Du, under these
interchanges. This new quantity contains two more powers of mt, and is roughly −1000
times Dd. Hence the contribution to ∆7(ω) due to up-quark scattering, ∆u

7 , obtained
from the down-quark contribution by replacing Dd with Du, will be much larger than ∆d

7.
Given that contributions from paths including top quarks should be reduced when the
off-shellness of the tops is taken into account, the value for ∆u

7 obtained here serves as an
upper bound for ∆7.

We now discuss our results for ∆(ω) and their implications for the size of the baryon
asymmetry.

5 Presentation and Discussion of the Results

5.1 Results

In the previous Section we computed the energy-dependent reflection asymmetry ∆(ω).

This asymmetry is the difference of Tr
[
R̄†LRR̄LR

]
and Tr

[
R†LRRLR

]
, the probabilities for
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a left-handed quark and its CP -conjugate to be reflected off the bubble, summed over
all quark flavors. We calculated the reflection probabilities by solving an effective Dirac
equation including all relevant plasma effects as self-energy corrections, in the presence
of the space-dependent mass term.

The real part of the self-energy accounts for the gluon interactions which control the
kinematical properties of the quarks. It accounts for the interactions with the W ’s which
differentiate between quarks with different chiralities, as well as interactions with the
charged Higgs which provide the flavor-changing processes needed for the generation of
a CP -violating observable. These effects are embodied in the concept of quasiparticles
which was used in the mechanism of Farrar and Shaposhnikov.

The novelty of our calculation resides in our treatment of the imaginary part of the
self-energy. We interpreted the latter as a measure of the coherence of the wave function of
the quasiparticle, and we introduced the concept of the coherence length, `. We extracted
Green’s functions which, in conjunction with chirality flips due to the mass term and flavor
changes due to interactions with the charged Higgs, lead to the construction of all possible
paths contributing to the reflection coefficients (Fig. 4). It is the interference between these
paths which survives in the asymmetry, as expected from the general principles described
in Sections 2 and 3. An important feature is that each path has an amplitude proportional
to exp(−L/2`), where L is the length of the path. This confines the scattering to a layer of
thickness ` at the surface of the bubble, a property already predicted on physical grounds
in Section 3. The asymmetry results from processes which involve a sufficient number
of changes of flavor as well as a sufficient number of factors of the quark mass matrix,
every one of which brings along a factor of `. Consequently, the asymmetry is suppressed
by many powers of M`, the dimensionless product of the quark-mass matrix and the
coherence length of the quasiparticle, `, and powers of (δpL)` and (δpR)`, products of the
coherence length with the flavor-dependent terms in the momentum matrices for left- and
right-handed quasiparticles.

Specifically, we find the asymmetry dominated by: (i) Contributions at order `7 from
processes involving the scattering of up quarks, with two flavor mixings, proportional to
(δpL)(δpR), and given in eq. (60):4

∆u
7(ω) = −16 f7

(
6`(ω − Ω0)

)
Im Tr[δpLMδpRM3] `9 (62)

4For our numerical results we set T = 100 GeV. We take the broken-phase W mass as MW = T/2,
and scale the broken-phase quark masses accordingly. We use a generous value for the product of sines
and cosines of CKM angles: J = 5× 10−5.
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= 2

(
27αWT

32Ω0M2
W

)2

× f7

(
6`(ω − Ω0)

)
× Du `6 (63)

= 10−18 f7

(
6`(ω − Ω0)

)
,

where
f7(x) =

x

(1 + x2)4
; (64)

and (ii) Contributions at order `9 from processes involving the scattering of down quarks,
with three flavor mixings, proportional to (δpL)3, and given in eq. (56):

∆d
9(ω) = −8 f9

(
6`(ω −Ω0)

)
Im Tr[(δpL)2M4δpLM2] `9 (65)

= −4

(
27παWT 2

64Ω0M2
W

)3

× f9

(
6`(ω −Ω0)

)
× det C `9 (66)

= 4× 10−22 f9

(
6`(ω −Ω0)

)
,

where

f9(x) =
1

(1 + x2)6
. (67)

The contribution to ∆7(ω) from down quarks is ' 10−21f7

(
6`(ω−Ω0)

)
, while the contri-

bution to ∆9(ω) from up quarks is smaller than the down-quark contribution.

Our results for up quarks should be regarded as upper bounds. In the broken phase,
the kinematics of the top quark is determined entirely by its large mass, as opposed to
the light quarks, whose kinematical properties are dominated by their interaction with
the plasma in both phases. The reflection asymmetry is produced in an energy range
near where level-crossing occurs, well below the top quark mass. At these energies the
top quark can only propagate far off-shell. As discussed in Section 4, this diminishes
the amplitude for any path which involves flavor changing from or to the top quark. In
consequence, the up-quark contribution to ∆9(ω) is suppressed relative to the down-quark
contribution, and the up quark contribution to ∆7(ω) given in eqs. (62) and (63) is an
upper bound.

The two contributions ∆u
7(ω) and ∆d

9(ω) decompose naturally into a product of three
factors, as given in eqs. (63, 66), each of which reflects an important aspect of the physics
involved. Let us consider them separately.

The first factor contains powers of αW /M2
W , which originate from the flavor changing

insertions δpL or δpR on the path of the scattered quasiparticle.

29



The second factor is an energy-dependent function f(x). Although, the precise form
of this function is sensitive to the details of the calculation, its general shape is not. This
function is a form factor which reflects the increased likelihood of chirality flips at energies
for which the various flavors involved have similar momenta. That occurs in the region
of level crossing around ω ∼ Ω0 ' 50 GeV (Fig. 2). The form factor peaks at a value
of order one, and have a width of order the quasiparticle width, γ. These properties are
apparent in Fig. 5. Note that f9 is peaked at ω = Ω0, while f7, though centered about the
same energy, actually vanishes there as the result of the vanishing of the CP -even phase
at that energy, as described in Section 4.4.

Finally, the third terms on the right-hand sides of eqs. (63) and (66) are the Jarlskog
determinant det C and another CP -violating invariant, Du, which are given explicitly in
eqs. (57) and (61) respectively. They contain the expected dependence on the flavor
mixing angles and vanish in the limit where any two quarks with the same charge have
equal masses. We have already argued that in general a CP-violating observable such as
∆(ω) is the result of quantum interference between amplitudes with different CP -even
and CP -odd phases. These physical processes can easily be identified from the structure
of the traces in eq. (62) and (65). To do so, we represent each of these traces as a closed
fermion path with various mass insertions (Md) and flavor changing insertions (δpL and
δpR) in the order they appear in the trace. The mass operator changes the chirality of the
quark but not its flavor while the flavor changing operator leaves the chirality intact. Any
cut performed across two portions of the loop with opposite chirality, divides the loop
into two open paths whose interference contributes to the asymmetry. This is illustrated
in Fig. 6. These paths are in one-to-one correspondence with the paths constructed with
the Green’s functions method elaborated in Section 4.

We now calculate the contributions to nB/s. The contribution from ∆d
9(ω) is, from

eq. (18),

nB
s

∣∣∣∣∣
9

' 10−3 αW
1

T

∫ dω

2π
n0(ω)(1− n0(ω)) ∆9(ω)

' 10−25 1

T

∫ dω

2π
n0(ω)(1− n0(ω)) f9(6`(ω − Ω0)) (68)

' 2× 10−28 . (69)
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Similarly, for the contribution from ∆u
7(ω) we find5

nB
s

∣∣∣∣∣
7

' −6× 10−27 . (70)

Because of the peculiarities of top quark kinematics, we cannot say whether the up quark
contribution to nB/s is in fact larger than the contribution from down quarks given in
eq. (69). We therefore quote the result (70) as an upper bound on the magnitude of the
integrated asymmetry: ∣∣∣∣∣nBs

∣∣∣∣∣ < 6× 10−27 . (71)

In Section 3, we advertised another method of computing the asymmetry using a
model in which the essentially infinitely thick bubble is replaced with a thin layer of
thickness `. We referred to this model as the “soap bubble” model. This model implements
quantum decoherence in scattering in the simplest way and provides an analytic form of
the asymmetry which has exactly the same structure as the ones obtained in eq. (63) and
(66). In fact, the only difference relative to the results for ∆(ω) obtained via the “Green’s
function” method is that for the “soap bubble” model, the energy-dependent form factors
f7 and f9 are replaced with form factors f̂7(x) and f̂9(x), where

f̂7(x) =
2x

3

1− 1
243

(23x2 + 7x4 − 3x6)

(1 + x2)4(1 + (x/3)2)3
, (72)

f̂9(x) = =
1

54

{
1− 1

3
x2

[(1 + x2)(1 + (x/3)2)]3
+ · · ·

}
. (73)

The terms omitted in f̂9(x) are of order 1% of the term listed. These form factors differ
slightly in form and magnitude from their counterparts obtained via the “Green’s func-
tion” method, but have the same overall shape. For example, f̂9(6`(ω−Ω0)) is peaked at
ω = Ω0, while f̂7(6`(ω −Ω0)) vanishes at that energy. This model leads to a baryon-per-
photon ratio comparable in magnitude to the values found in eqs. (69) and (70). We do
not present the calculations for this model in order to avoid redundancy.

Our results ought to be compared to the results of Farrar and Shaposhnikov. They
calculated ∆(ω) without taking into account quasiparticle decoherence. They found a

5The corresponding contribution to nB/s|7 from down quarks is only 10−29. Hence the largest con-
tribution to nB/s from the scattering of down quarks comes from at O(`9). For up quarks the O(`7)
contribution to nB/s is larger than the O(`9) contribution.
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significant baryon asymmetry nB/s of order 10−11 from a region of energy for which the
strange quark is totally reflected. Taking into account the decoherence of the quasipar-
ticles, we find such total reflection to be impossible and the asymmetry to be reduced
to a negligible amount. This conclusion corroborates the findings of Gavela, Hernández,
Orloff and Pène (GHOP) [8].

Finally, we would like to comment on the more realistic situation of quasiparticles
interacting with a wall of nonzero thickness. Typically, in the Standard Model and in
most of its extensions, the wall thickness δ is of order 10-100/T , much larger than the
coherence length ` ∼ 1/T and other typical mean free paths.6 As the wall thickness
increases from 0 to a value a few times `, the increment of mass over the latter distance
is reduced by a factor `/δ which has the effect to reducing the reflection probabilities
accordingly as a power law. As the thickness increases further to a distance of a few
wavelengths k−1 ∼ 5/T , a WKB suppression of order exp(−kδ) is expected to turn on
and to suppress the process further. Clearly, the interior of a thick wall is not a suitable
environment for the occurrence of the subtle quantum-mechanical phenomena which are
to take place in order to generate a CP -violating observable.

5.2 Conclusions

We have demonstrated that the FS mechanism operating at the electroweak phase tran-
sition cannot account for the baryon asymmetry of the universe. Our conclusions agree
with the results obtained in Ref. [8].

Our arguments are powerful enough to establish more generally that the complex
phase allowed in the CKM mixing matrix cannot be the source of CP violation needed by
any mechanism of electroweak baryogenesis in the minimal Standard Model or any of its
extensions. Indeed, the generation of a CP -odd observable requires the quantum interfer-
ence of amplitudes with different CP -odd and CP -even properties and whose coherence
persists over a time of at least 1/mq . On the other hand, QCD interactions restrict the
coherence time to be at most ` ∼ 1/(g2

sT ), typically three orders of magnitude too small.
It is clear from the interpretation of the Jarlskog determinant or any other CP - violating
invariant we gave in Section 5.1 and Fig. 6, that the processes necessarily proceed through
interference between amplitudes with multiple flavor mixings and chirality flips; as a re-
sult, the asymmetry between quarks and antiquarks appears to be strongly suppressed by
many powers of `mq. This line of argument does not rely on the details of the mechanism

6Although, according to the authors of ref. [6], the possibility of a thin wall is not ruled out.
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considered and can be applied to rule out any scenario of electroweak baryogenesis which
relies on the phase of the CKM matrix as the only source of CP violation.

QCD decoherence might be avoided in mechanisms which do not involve light quarks.
For example, the effect of decoherence is negligible for the top quark: `mt ' 1. A
mechanism which involves the scattering of only the top quark is viable, but at the cost of
introducing a new source of CP violation [22]. Other scenarios based on various extensions
of the minimal standard model such as the two-Higgs doublets [23] or SUSY [24] are also
negligibly affected by the above considerations.

Although the Standard Model contains all three ingredients required by Sakharov, it
proves to be too narrow a framework for an explanation of the baryon asymmetry of our
universe.
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Figure Captions

Figure 1. Schematic picture of the dispersion relations for a fermionic quasiparticle in a
hot plasma. The upper curve represents the normal branch. The lower curve
represents the abnormal branch, which corresponds to the propagation of a
“hole.” The abnormal branch becomes completely unstable when it passes
through the light cone ω = p (dotted line) [19].

Figure 2. Dispersion curves linearized for small momentum p. Because the W and Z
bosons in the plasma only interact with left-handed quasiparticles, the disper-
sion relations for left- and right-handed quasiparticles are distinct. For a given
chirality, the dispersion relations are as shown in Fig. 1, with both a normal
branch and an abnormal branch. (These curves are only shown for a single, light
flavor. The curves for other light flavors would be shifted slightly in energy.)
In the unbroken phase, the left-handed abnormal branch intersects the right-
handed normal branch; in the broken phase, the nonzero quark mass connects
the two chiralities and level crossing occurs, as indicated by the dashed lines
(here illustrated for the charm quark). The result is a mass gap with thickness
of order the quark mass [7].

Figure 3. a) Graph contributing to the real part of the quasiparticle self-energy. The
dashed lines represent either gluons, electroweak gauge bosons, or Higgs bosons
from the plasma. These graphs are responsible for the thermal masses Ω of
the quasiparticles, shown in Fig. 1. b) Graph describing a collision of a quasi-
particle (solid line) with a quark or gluon (dashed line) in the plasma. This
graph contributes to the imaginary part of the self-energy, and leads to the
decoherence of quasiparticle waves.

Figure 4. First two terms in the expansion for the reflection matrix RLR. The bubble of
broken phase is indicated by the step. An incident left-handed quasiparticle
approaches the bubble from the left, and is scattered by the quark-mass term
M in the bubble, becoming a right-handed quasiparticle which moves back
towards the bubble wall. The right-handed particle can then exit the bubble and
contribute to the reflected wave, or else can scatter again, viaM†, leading to a
contribution to the reflected wave at higher order in the quark mass matrix. The
full reflected wave is obtained by summing up these diagrams and integrating
over the positions of the scatterings in the bubble.

Figure 5. The energy-dependent form factors f7 and f9, evaluated at (ω−Ω0)/γ = 6`(ω−
Ω0). Note that f9 is peaked at ω = Ω0 ' 50 GeV, while f7 vanishes there.
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Figure 6. This loop summarizes all the contributions to ∆9(ω), and corresponds to the
trace in eq. (65). (An analogous loop summarizes the contributions to ∆7(ω).)
The solid blobs represent insertions of δpL, which describes the mixing of quark
flavors through interaction with the charged Higgs bosons. The crosses stand
for insertions of the quark mass matrix. The loop is then a trace in flavor space
of the product of all the insertions. Any individual contribution to the reflection
asymmetry can obtained by cutting across two segments of the loop of opposite
chirality. This produces two open paths whose interference contributes to the
asymmetry, as shown in the right side of the figure.
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