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1. Introduction: What is Hard Di�raction?

Since the advent of hard-collision physics, the study of di�ractive processes|

\shadow physics"|has been less prominent than before. However, there is now

a renewed interest in the subject, especially in that aspect which synthesizes

the short-distance, hard-collision phenomena with the classical physics of large

rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic

scattering from HERA, as well as the theoretical work which relates to it.

The word \di�raction" is sometimes used by high-energy physicists in a loose

way. So I here begin by de�ning what I mean by the term:

A di�ractive process occurs if and only if there is a large rapidity gap in

the produced-particle phase space which is not exponentially suppressed.

Here a rapidity gap means essentially no hadrons produced into the rapidity

gap (which operates in the \lego" phase-space of pseudo-rapidity and azimuthal

angle). And non-exponential suppression implies that the cross-section for creating

a gap with width �� does not have a power-law decrease with increasing subenergy

bs = e��, but behaves at most like some power of pseudorapidity �� � log bs.
The term \hard di�raction" shall simply refer to those di�ractive processes

which have jets in the �nal-state phase-space. We may also distinguish, if desired,

two subclasses, as suggested by Ingelman: [1]

i) Di�ractive hard processes have jets on only one side of the rapidity gap.

ii) Hard di�ractive processes have jets on both sides of the rapidity gap.
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2. Reggeons and Pomerons

Rapidity gap processes are conveniently described in the language of complex

angular-momentum theory, i.e. Regge-pole theory and its generalizations [2]. While

this subject is not very much in fashion, there is no reason for this. Its foundations

are as solid as QCD itself. The Regge phenomenology for deep-inelastic scattering

is in fact not too unfamiliar. The basic results are contained in the properties of

the moments of the structure functions

M(n;Q2) =

1Z
0

dxxn�1F2(x;Q
2) : (1)

For Ren large enough M(n;Q2) clearly exists. As Ren decreases, eventually M

becomes singular. It turns out that this singularity can typically be identi�ed

with the analytically continued angular momentum J(t) of the system which is

exchanged between the virtual photon and the nucleon. (Recall that F2 represents

the absorptive part of the forward elastic scattering amplitude of the virtual photon

from the nucleon.) The relationship is

n = J(0)� 1 : (2)

For example, for I = 1 exchange (relevant for the nonsinglet structure function

F2p � F2n), the exchanged object is the � and its orbital excitations. The angular

momentum versus mass (or t) is exhibited in Fig. 1. From experiment, one knows

quite accurately J versus t and

J(0) = 0:45 : (3)

For a clean two-body bound state, the singularity in the n-plane of M(n;Q2) is in
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fact a pole, so that as n! J(0)

M(n;Q2)!
�
(Q2)�nucleon
n� J(0)

(4)

and

F2 ! x1�J(0) : (5)

In this case it is essential to realize that the location of the singularity is indepen-

dent of Q2; in fact the coe�cient must factorize into the product of the coupling

of nucleon to Reggeon, and of the Q2-dependent photon-Reggeon coupling.

The physics of the singularity corresponding to \singlet exchange" is less clear.

However Donnachie and Landsho� [3] do quite well in assuming a pole singularity in

the n-plane (or better, J -plane) at n = 0:08, as well as factorization of the residues.

Indeed they argue that this exchanged object, the \soft Pomeron," couples to

consistent quarks in a simple way. However the dependence of J upon t (or M2) is

known to be quite di�erent (cf. Fig. 1) than for the ordinary Reggeons, suggesting

a distinctly di�erent dynamical origin.

While the \soft-Pomeron" exchange describes photoproduction and hadron-

hadron collisions well, it fails to describe the sharp rise of F2 at small x and large

Q2 seen at HERA. Here the structure anticipated from perturbative QCD [4], the

\BFKL Pomeron," is the prime candidate. This singularity is not a pole but a cut

in the n plane, starting at

n = +!p (6)

with

!p =
12�s`n 2

�
� 0:4 : (7)
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Figure 1. Regge trajectories: J versus M2 for the �, the \soft Pomeron", and the \pertur-
bative Pomeron."

The behavior predicted for F2(x) is

F2 �
x�!pp
`n(1=x)

(8)

leading to

M(n;Q2) �
M(Q2)p
(n� !p)

: (9)

Note that !p may depend upon Q2; there is no contradiction with general

Regge theory because the singularity is a cut, not a pole.
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The physics of the BFKL Pomeron is glori�ed 2-gluon exchange; roughly speak-

ing (and only roughly) it is exchange of a gluon ladder. The physics of the ordinary

Reggeon (such as the �) is exchange of a ladder, for which the sides are generally

regarded to be constituent quarks. The rungs of the ladder represent the binding

potential between quarks (non-perturbative gluons?).

The physics of the \soft-Pomeron" is much less clear. Most theorists nowadays

also consider it as derived from two-gluon exchange [5]; indeed in principle it need

not be a singularity distinct from the BFKL singularity. But if soft and BFKL

Pomerons have a common origin, the discontinuity across the cut in the n-plane

must have a quite strong Q2 dependence (cf. Fig. 2); it will be a challenge to

theory to exhibit how this comes about.
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Figure 2. Schematic of the discontinuity across the n-plane (or J-plane) singularities for soft
and hard Pomerons.

An alternative view which in my opinion is also worth consideration [6] is
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that the soft Pomeron has little to do with gluons but much to do with constituent

quarks and the spontaneously broken chiral phase of QCD. Manohar and Georgi [7]

have argued that at energy scales below 1 GeV (distance scales greater than 0.2f),

the appropriate description of the strong interaction is an e�ective action built

of constituent quarks, Goldstone pions, and a small amount of gluons. Such a

picture is motivated by the success of the additive quark model for spectroscopy

and soft-collision dynamics, as well as by the small size of the constituent quarks

(as measured by �qq � 4 mb). It is certainly not obvious that the Manohar-Georgi

e�ective action is capable of producing the needed soft-Pomeron s-dependence. If

so, I would suspect that the (quite old-fashioned) ladders with pions (and �?) as

elements (cf. Fig. 3) have to be main ingredients in building up such a Pomeron.

A fresh look at this very old question may be of use.

π

7665A34–94

ρ

γ γ

ρ

π
ρ

γ

ρ

π π

π π

γ

σ

σ

Figure 3. Soft-Pomeron forward scattering amplitude for scattering of real photons.
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3. The S-Channel View of Hard Di�raction

Traditionally ladder-exchanges are best described in t-channel Regge terms.

But it seems to be the case that most|but not all|of the physics of the perturba-

tive BFKL Pomeron is more transparent in s-channel language. This is especially

evident of the work of Nikolaev and Zakharov [8], and of Mueller [9]. The reason for

this can be traced back to the basics of light-cone quantization [10]. For di�ractive

processes there always exists a reference frame such that zero pseudorapidity oc-

curs in the center of the rapidity gap. Consequently in such a frame all �nal-state

particles have small production angles; they are unambiguously either left-movers

or right-movers. This will be true at the parton level as well; wee partons play a

relatively inconsequential role.

In perturbative QCD, as in QED, the essential interaction between the left-

movers and right-movers will be instantaneous Coulomb gluon-exchange. The dy-

namics is the Coulomb interaction. During this interaction the number and impact

parameters of the incident partons do not change. Most complications are asso-

ciated with the formation of the parton con�gurations. With the exception of

e�ects related to ultraviolet-divergence renormalizations, these occur on a long

(time-dilated) time scale.

Because impact-parameter is conserved during the collision (impact-parameter

is the high energy limit of orbital angular momentum), it is advantageous to

Fourier-transform out of transverse-momentum space and into impact-space as

much as possible. It is also convenient to use color singlet projectiles as well, so

that the basic interaction is between color-dipoles. We shall hereafter consider

scattering of a virtual, highly spacelike photon on another less virtual, but space-

like photon. The process is double pair production of quarks QQ and qq via single
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gluon exchange. The amplitude in impact space is easily written down (cf. Fig. 4

for some notation)

T (Q;Qjq; q) = 	(Q;Q; z`)V (Q;Qjq; q) (q; q; zr) : (10)

Here, in an obvious notation, QQQ;QQQ;qqq; qqq represent impact parameters, not momenta,

and z`; zr are longitudinal fractions of the quarks. The potential V is a dipole-dipole

potential. Recalling that a Coulomb potential in momentum space is

V (t) =
4� �s
t

(11)

and that the Fourier transform of such a V is a logarithm

V (b) =

Z
d2k

(2�)2
eik�b �

4��s
k2

= ��s`n b
2 (12)

we get for the dipole-dipole force

V (Q;Qjp; p) = �s[`n(Q� q)2 + `n(Q� q)2 � `n(Q� q)2 � `n(Q� q)2]

) 2�s(QQQ�QQQ) �

�
(qqq �QQQ)

(qqq �QQQ)2
�

(qqq �QQQ)

(qqq �QQQ)2

� (13)

where the last step is appropriate if (QQQ�QQQ)2 � (qqq � qqq)2.

For the latter case we can expect a pair of left-moving, nearly balanced high-pT

dijets with p2t � (Q � Q)�2. On the other hand, if there is a close collision, say,

between Q and q, because

(Q� q)2 � (Q� q)2 � (Q� q)2 � (Q� q)2 � R: (14)

then

V (Q;Q) ' �s`n
(Q� q)2

R2
(15)

and the process is just quark-quark \Coulomb"-scattering from the contents of
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Figure 4. Double pair production via gluon exchange in the collision of two spacelike virtual
photons.

somewhat \resolved" virtual photons (cf. Fig. 5), leading to nearly coplanar dijets

with a large rapidity interval between them.

γ∗ Q

7665A5

q

q

γ∗

4–94

Q

Figure 5. \Coulomb" interaction of two quarks via single gluon exchange.

We do not detail the nature of the wave functions (basically Fourier transforms

of old-fashioned-perturbation-theory energy denominators); this can be found else-

where [8,11]. We do however make mention of color-factors. In what follows, it

will be useful not to sum colors early. A good rule is to specify the color of each

outgoing quark (as opposed to antiquark) and the color of the quark-index of each

10



outgoing gluon. Once the color-
ow diagram for the amplitude is drawn, the colors

of outgoing \antiquark" lines are �xed. When we deal with multigluon �nal states

these details will be very important.

So far, constructing the impact-space amplitude does not look too vital. How-

ever when one considers multigluon production the bene�ts multiply. In any case,

to go back to a momentum-space amplitude one writes

eT (P;P ; p; p) = Z d2Qd2q d2q

(2�)6
ei(P �Q+p�q+p�q)T (0; Q; q; q) : (16)

Setting Q = 0 and not integrating over P avoids extraneous �-functions and/or

areas of the universe. Evidently momentum conservation is implied, so

P + P + p+ p = 0 : (17)

η4–94 7665A6

φ

Q

Q ��
q

q

���
�

Figure 6. Final-state con�guration corresponding to the process in Fig. 5.

We now consider a simple hard-di�raction process, corresponding to the �nal

state shown in Fig. 6. A simpler electroweak prototype is obtained by replacing

each photon by a W+ and considering the Coulomb contribution shown in Fig. 7.
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Figure 7. Modi�cation of the process in Fig. 5 by replacement of virtual photons with virtual
W 's, and the exchanged gluon with an exchanged photon.

The �nal state morphology is clearly what is shown in Fig. 8 and the amplitude

in impact space is just

T =
4

9
� �  (Q;Q)`n

�
(Q�Q)2

R2

�
 (p; p) : (18)

Hadronization, according to the \antenna rules," is localized to the regions al-

lowed by the radiation from the color dipoles. This is to be contrasted with the

hadronization from single gluon exchange, most conveniently described in terms of

a \double-sided lego plot" (Figs. 9 and 10) [12].

η4–94 7665A8

φD��
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��
��
�
�

U��
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�
�
�

�
�
�
�

d

Green

�
�
������

Figure 8. Final state hadronization appropriate to the process in Fig. 7. The red color
dipole radiates gluons (and hadrons) only into the phase-space labeled \Red."
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Figure 9. Color-
ow diagram corresponding to the strong process in Fig. 5.
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Figure 10. \Double-sided" lego plot describing the hadronization from the strong Coulomb-

gluon exchange process down in Fig. 9. In the large Nc limit the contributions from front and
back sides are incoherently added.

In order to obtain a QCD di�ractive amplitude, two Coulomb gluons must

be exchanged. In impact-space, this is immediate. In order to restore the color

singlet structure, both gluons must be exchanged between the quarks; thus the

replacement is simply (cf. Fig. 11)

V = �s`n
(Q� q)2

R2
)

�
�s`n

(Q� q)2

R2

�2
: (19)
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The �nal-state morphology of this two-gluon exchange process should be essentially

the same as that for the photon exchange process illustrated in Fig. 7 and 8. The

nonlocality of the two-gluon system is limited to a small space-time region; there is

no large \antenna" available to produce leading-log soft radiation. This assertion

has been in fact checked by Zeppenfeld [13].

In any case, to logarithmic accuracy, �s � log�1 so that Eq. (19) implies that

the single-gluon exchange amplitude is modi�ed by a constant factor [�s log]. Thus

the ratio of the cross-section with gap to the cross-section without gap should not

depend on the external details of positions and transverse momenta of tagging-

jets unless there is a gross change in the external parameters relative to what we

speci�ed [14]. The result is roughly, when the color factors, etc., are more carefully

considered

�gap

�no gap

� 0:1


jSj2

�
(20)

with


jSj2

�
an absorption correction arguably not too important for this case [15].

D

7665A11

d

U (green)

4–94

U (red)W
+

W
+

Figure 11. Color-
ow structure of the two-gluon-exchange amplitude.

Gross changes in the external parameters, however, can be of interest. If we

change the kinematics to what was discussed at Eq. (13), where (Q�Q)2 � (q�q)2,
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then the exchanged gluon sees a small QQ color dipole, and the modi�cation is

V = �s(QQQ�QQQ) � ddd ) V 2 =
h
�s(QQQ�QQQ) � ddd

i2
: (21)

where d is the (large) dipole-moment provided by q and q. The ratio of second-order

to �rst-order amplitudes is suppressed by a factor

�s(QQQ�QQQ) � ddd � �s

���� ptPt
���� (22)

where P 2
t � (Q�Q)�2 � p2t � (q � q)�2. Consequently

�gap

�no gap

� �2s
p2t
P 2
t

(23)

is power-law suppressed. This is actually very relevant to the HERA processes.

The above argument is due to Collins, Frankfurt, and Strikman [16], and detailed

calculations are provided by Donnachie and Landsho� [17].

But within these caveats, the proportionality of two-gluon and one-gluon ex-

changes argues that (to logarithmic accuracy) the two-gluon-exchange \Pomeron"

in general acts the same way as a single gluon. If this is interpreted, as �rst

suggested by Ingelman and Schlein [18], in terms of a \parton-distribution of the

Pomeron," it implies [19] there will be a super-hard component � �(1 � x) or

(1� x)�1 corresponding to this notion of \Pomeron = gluon."
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4. Multijet Final States

We now generalize these ideas to multigluon �nal states. Our formalism rests

heavily on recent work by Nikolaev, Zakharov, and Zoller [20], Mueller and Pa-

tel [21], Del Duca [22], and of course Lipatov [23].

Our goal is to deconstruct the BFKL Pomeron as much as possible. That is, we

would like to understand as explicitly as possible the structure in impact-parameter

space of the multijet production amplitudes and multijet �nal states which build

the BFKL cross-section. As will become quite obvious, the arguments are still

sketchy and far from rigorous. In what follows, we simplify to the large Nc limit

of QCD.

We again consider the collision of virtual 
's with production of two pairs of

quark-antiquark jets. Now consider the modi�cation of the original amplitude

T0 =  (Q;Q)V (QQjqq) (q; q) (24)

due to the emission of an extra soft gluon into the middle of the lego plot. We

assume \multi-Regge kinematics," i.e. that all extra gluons are well-separated from

each other in the lego plot, as well as from the leading tagging-jets. They there-

fore will not in
uence the conservation of energy and longitudinal momentum.

Only transverse momentum balance will matter; we will usually assume all emit-

ted gluons have transverse momenta (and/or impact parameters) comparable in

magnitude.

Just as in Weiszacker-WilliamsQED, the momentum-space amplitude for emis-

sion of a soft (left-moving) gluon from a (left-moving) quark is just � � k� � k� � k?=k
2
?
.

16



Fourier transformation to impact space leaves this structure the same

Z
d2k

(2�)2
� � k� � k� � k

k2
eik�b =

�i

(2�)2
� � r� � r� � rb

Z
d2k

k2
eik�b =

�i

4�
� � r� � r� � rb`n b

2 =
�i

2�

� � b� � b� � b

b2
: (25)

It is therefore clear that the appropriate modi�cation to the impact-space left-

moving amplitude is

	(Q;Q)) 	(Q;Q; g)

"
��� � (ggg �QQQ)

(ggg �QQQ)2
�
��� � (ggg �QQQ)

(ggg �QQQ)2

#

= 	(Q;Q; g) � � rgV (Q; gjgQ)

(26)

where g = g is the transverse coordinate of the gluon. We now scatter this left-

moving system with the right-moving system by Coulomb-gluon exchange. There

are two ways of doing this corresponding to the gluon jet being either on the front

side or the back side of the lego plot. In accordance with Figs. 12 and 13 we obtain

two terms. T01 has the gluon emitted onto the front side of the lego plot:

T01 = 	(Q;Q; g)V (Qgjqq) (qq)

= 	(QQ)
�
� � r� � r� � rg V (QQjgq)

�
V (Qqjqq) (qq) :

(27)

The rear-side amplitude T10 is (cf. Fig. 13):

T10 = 	(Q;Q; g)V (gQjqq) (qq) = 	(QQ)
�
� � r� � r� � rg V (QQjqg)

�
V (gQjqq) (qq) :

(28)

Notice these two amplitudes will not interfere; the color structure of the �nal states

is totally di�erent. This will be true in general and leads to important di�erences

from the structure of QED intermediate states.
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Figure 12. Color-
ow diagram for single-gluon production; structure of the lego plot.

Note also that in the above expressions for T10 and T01 we have considerable

symmetry. It should be the case that we get the same answer no matter whether g

is associated with the wave function of the right-moving system or the left-moving

system. While it is tempting to assume that a parts-integration allows the gradient

operation � � r� � r� � rg to be performed either to the right or to the left, this is not quite

the case.

The residual dependence is probably compensated by similar dependencies of

virtual corrections. We set this problem aside; regrettably the virtual-correction

issue is beyond the scope of this talk.

In any case, when we generalize to production of n gluons a di�erent formal
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Figure 13. The amplitude for gluon g emitted onto the rear of the lego plot.

structure is convenient. We consider the transverse x; y plane to be the complex

plane, and replace the impact parameter bbb by its complex representation

bbb (x; y)) (x+ iy) � b (29)

with

b� = (x� iy) : (30)

Then for a circularly polarized gluon our generic \antenna amplitude" is simply

� � r� � r� � rV =
� � b� � b� � b

jbbbj2
�
� � b� � b� � b 0

jbbb
0
j2

=
1

b
�

1

b 0
=

(b� b 0)

bb 0
: (31)
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If the other circular polarization is chosen, then one simply complex-conjugates

the expression. But in general none of the multigluon amplitudes we consider will

interfere with any other multigluon amplitude. So only one convenient polarization

need be chosen, as long as one remembers at the appropriate times a factor 2 for

sum over polarizations as well as the factor 3 for the sum over colors.
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φ���
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��
�
��
�
�
�
������
�
��
���
�

q

g1 g2
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g
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g
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Figure 14. Two-gluon emission amplitude.

Upon writing down T02 (cf. Fig. 14, and recognize that g = g) we see a pattern
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of cancellation emerge:

T02 = 	(QQ)
�
� � r� � r� � r1 V (QQjg1; q)

�
[� � r� � r� � r2 V (Qg1jg2q)] V (Qg2jqq) (qq)

= 	(QQ)

�
1

Q� g1
�

1

Q� g1

� �
1

(Q� g2)
�

1

(g1 � g2)

�
V (Qg2jqq) (qq)

= 	(QQ)
(Q�Q)

(Q� g1)(g1 � g2)
V (Qg2jqq) (qq)

(32)

and evidently

T0n = 	(QQ)
(Q�Q)V (Qgnjqq)

(Q� g1)(g1 � g2) . . . (gn�1 � gn)
 (qq) : (33)

There is only one simple denominator-factor for each color-dipole associated with

the front side of the lego plot [24]. This simpli�cation allows an easy generalization

for inclusion of gluons emitted onto the back of the lego plot as well. For example

for emission of one gluon on the backside, with rapidity between the �rst and

second of two front-side gluons, we get

T12 = 	(QQ)

�
@

@f1
V (QQjf1b)

� �
@

@b
V (Qf1jf2b)

� �
@

@f2
V (bf1jf2q)

�
V (bf2jqq) (qq)

= 	(QQ)
(Q�Q)

(f1 �Q)(f1 �Q)
�

(Q� f1)

(b�Q)(b� f1)
�

(b� f1)

(b� f2)(f1 � f2)

� V (bf2jqq) (qq)

=
	(QQ)(Q�Q)V (bf2jqq) (q; q)

[(b�Q)(b� f2)]
�
(Q� f1)(f1 � f2)

� :
(34)

The important feature of this structure is that the answer does not depend upon

whether the rapidity of gluon b is large or small compared to f1|or for that matter

f2. The transverse dynamics on the front of the lego plot is decoupled from the
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transverse dynamics on the rear. With this example it should be clear what the

general amplitude with m gluons b1 . . . bm on the back of the lego plot and n gluons

f1 . . .fn on the front:

Tmn =
	(QQ)(Q�Q)2V (bmfnjqq) (qq)

(Q�Q)(Q� f1) . . . (fn�1 � fn)(fn � bm)(bm � bm�1) . . . (b1 �Q)
: (35)

This expression is constructed for the case in which all partons except q and q are

left-movers. We are motivated to describe the more general case, since it would

clearly allow generalization of the rapidity gap theorem described in the previous

section. This invites the following restructuring

Tmn =
	(QQ)(Q�Q)2C(bmfnjqq)(q � q)2 (qq)

(Q�Q)(Q� f1) . . . (fn � q)(q � q)(q � bm) . . . (b1 �Q)
: (36)

The \Coulomb kernel" C which must be inserted, in a reference frame in which

� = 0 lies between gluons b = bk; b
0 = bk+1 and f = f`; f

0 = f`+1 is de�ned as

C(b; f jf 0; b
0
) =

(f 0 � f)(b 0 � b)

(f � b)(f 0 � b 0)
log

(b� f 0)(f � b 0)

(f � f 0)(b� b 0)
(37)

The �nal form of the amplitude is thus

T = 	(Q;Q)(Q�Q)2C(bf jf 0b
0
)(q � q)2 (q; q)S (38)

where the string function S is just the product of denominator factors around the

entire color loop. It is perhaps more suggestive to write

S = e�F F =
X

i2 loop

`n(gi � gi+1) (39)

exhibiting a string-like, nearest-neighbor Coulomb interaction between neighboring

gluons in impact space. The \Coulomb operator" C acting on S cuts the single
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closed loop into two loops, one left-moving and one right-moving, which locally

interact with each other via the dipole-dipole potential (cf. Fig. 15).

Again the structure of Eq. (38) invites the supposition that the amplitude

as written does not depend upon which choice of reference frame one makes, i.e.

which of the gluons are right movers. It is not hard to show that if one changes

frames so that one of the gluons, say f , is turned from left-mover into right-mover,

then the di�erence of amplitudes is a total derivative with respect to f . However

we have not succeeded in arguing away the surface-term. The omission of virtual

corrections is, at the least, one possible reason for the failure.

With all these preliminaries and caveats it is now immediate to generalize the

rapidity gap theorem stated in the previous section. The amplitude with one-gluon

exchange is of the form
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Tmn =
	(QQ)(Q�Q)2

(Q�Q)(Q� f1) � � � (f � b) � � � (b1 �Q)

�
�s log

(b� f 0)(f � b 0)

(f � f 0)(b� b 0)

�

�

�
(q � q)2 (qq)

(q � q)(q � b) � � � (b 0 � f 0) � � � (f1 � q)

�
:

(40)

The color structure is totally explicit here, so that it is now trivial to see that just

as before, the second gluon is inserted between the interacting left-moving and

right-moving dipoles in order to create the gap. Again the result is

T gap
mn = T no gap

mn �

�
�s`n

(b� f 0)(f � b 0)

(f � f 0)(b� b 0)

�
: (41)

Is the argument of the logarithm large or small? For it to be large one pair of

partons must have a close encounter while the others do not. From the structure

of the amplitude Tmn, Eq. (40), it would appear that if Q and q are close together

while Q and q are much further apart then the ratio of the pt scale on the back

side of the lego plot to that on the front will go as the ratio of jQ� qj to jQ� qj.

This follows from the scale-invariance of the underlying dynamics. It seems in fact

reasonable that most of the time this will be the case and that on average, it is

unlikely that both sides of the lego plot get populated with BFKL jets of comparable

pt. It will be interesting to examine this assertion in a more quantitative and

systematic manner.

In any case, the estimate of rapidity gap fraction made in the previous section

can be applied directly here. The ratio of gap-cross-section to that without a gap

(for a given choice of gap) is

d�gap(�1 . . . �n; pt1 . . . ptN )

d�no gap(�1 . . .�n; pt1 . . .ptN )
� �2s

�
log

p2t front

p2t rear

�2

: (42)

This estimate must still be scrutinized with respect to additional non-perturbative

(or higher-order) corrections. We will return to this question later.
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We have in this section claimed that these tree-approximation amplitudes build

the BFKL cross section. This is an oversimpli�cation, because virtual corrections

(in particular ultraviolet renormalizations) have been ignored. We believe these

corrections do not greatly modify the conclusions drawn here, because we take

ratios of amplitudes to make the argument, and the renormalizations can be ex-

pected, to good approximation, to drop out. It is actually very interesting to

take the amplitudes as constructed, square them, integrate over gluon phase space

and sum over m and n. As is clear from Eq. (35) in�nities will occur when

impact-parameters of neighboring gluons (on the same side of the lego plot) coin-

cide. A regularization procedure is needed. Nikolaev, Zakharov, and Zoller [20]

have introduced a regularization prescription which su�ces to produce the energy-

dependence of the BFKL cross section. Their regularization is very close to the

( )+ recipe often used to regularize collinear divergences in the more conventional

DGLAP evolution equation [25]. However the corresponding ( )+ operation is

here carried out not in momentum space, but in impact space, and regularizes

(box-diagram) ultraviolet divergences.

5. The Nature of the Virtual Photon

In most of the previous discussion we have assumed the applicability of per-

turbative QCD. This, even for the scattering of spacelike virtual photons from

each other, is inadequate. There are good reasons, both experimental and theo-

retical, for expecting the virtual photon at very small x to have nonperturbative

structure. From the experimental side, one sees an A-dependence of deep-inelastic

scattering at very small x which goes as A2=3, indicative of a nontrivial photon

substructure which can be geometrically absorbed on a large nucleus [26]. This is
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also a reasonable expectation from the theoretical side [27]. We now review these

arguments.

At very small x, generalized vector-dominance arguments, as we used in the

previous sections, are correct as a matter of kinematics, not dynamics. The ba-

sic issue, as addressed at length in the previous subsection within the context of

perturbative QCD, is what constitutes the substructure of the components of the

photon wave function on arrival at the target (which here we take as a nucleus,

in the �xed-target reference frame). There are two important cases, as we might

already anticipate from the discussion in Section 4.

1. The simpler case: The photon converts virtually to a symmetric high-pt QQ

pair (plus BFKL extras), which on arrival at the nucleus is a small pene-

trating color-dipole, and which leaves leading dijets in the lego plot. Such

a mechanism leads to a virtual photon cross-section �T which scales and is

proportional to A:

� � �2s �
1

Q2
�A : (43)

2. The less-simple case: In this case the photon converts virtually to an asym-

metric QQ pair; so asymmetric (in z and (1 � z)) that the Q and Q \jets"

have pT < 1 GeV . This con�guration is unlikely (the probability is roughly

1 GeV=Q2), but when it does happen there is so much color separation

that non-perturbative parton evolution occurs between the Q and Q. On

arrival the distribution of partons in the virtual photon, up to a parton en-

ergy � (1 GeV=x), is arguably as nonperturbative as those in an ordinary

hadron [28]. This is quite su�cient to allow such a virtual photon to be

absorbed in nuclear matter in a way not dissimilar to how a � or other ordi-
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nary hadron is absorbed. The cross-section �T in this case is �R2
�A2=3, the

geometrical cross section, multiplied by (1 GeV 2=Q2), the probability of the

aligned con�guration

�T �

 
M2

p

Q2

!
� �R2

�A2=3 : (44)

In the generic case, no jets will be seen in the lego plot.

This less-simple case is in fact the vector-dominant description of the �nal state

to be expected in the old-fashioned, pre-QCD parton model. It is still the most

reasonable description outside the kinematic region of BFKL enhancement. And

even within the BFKL framework discussed in Section 4, the \back side of the lego

plot" could still be at|or beyond|the edge of applicability of perturbative QCD

when, for example, the pT of the tagging jets Q and q becomes small, but when

the pT of jets Q and q remain large.

The best test for distinguishing the two cases is clearly to look for the leading

Q�Q dijets as tags.

6. Hard Di�raction at HERA

Finally we reach the territory of greatest contemporary experimental interest.

There are several mechanisms for di�ractive �nal states in deep-inelastic processes.

For the \simple" photon con�guration we may entertain the di�ractive �nal states

shown in Fig. 16. Cases (a) and (b) are di�ractive hard processes; it is reasonable

to use the two-gluon exchange picture for these cases. Cases (c) and (d) are hard

di�ractive processes, and for this situation again the two-gluon exchange picture

(with BFKL enhancement if necessary) is appropriate.
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Figure 16. Examples of hard di�raction relevant to HERA. The mechanisms of creation of
a dijet from a small QQ color-dipole (a) coherent from the proton, (b) incoherent but soft, (c)
incoherent but harder, (d) via a mechanism analogous to that exhibited in Figs. 8 and 11. The
lego plots are drawn for reference frames for which the virtual photon and proton are collinear.

We must distinguish whether the momentum-transfer t is large or small com-

pared to Q2. If t is small, there can be expected to be, for balanced dijets, the

suppression of the di�racted �nal state, as discussed in Section 3 (Eq. (23)). If

t � Q2 the di�ractive cross-section may be small, but the ratio of one-gluon ex-

change may be enhanced (cf. Eq. (23)).

Most of these cases are already reasonably well-studied by others and in any
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case not well-studied by myself. The only additional comment to make here is that

in all the cases discussed above, the characteristic mass of the di�racted system

(the virtual-photon fragments) is <�
p
Q2. This will be in contrast to the situation

for the structured virtual photon (case 2 in the previous section).
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Figure 17. Single and double soft di�raction.

The generic �nal state for the \not-so-simple" aligned-jet photon con�guration

is a uniform distribution not too dissimilar from hadron-nucleon scattering. If the

virtual-photon is just as opaque as a pion, we could expect di�raction-dissociation,

via the non-perturbative \soft-Pomeron" physics, to occur just as often. This

happens a large fraction of the time, � 10%. The �nal state, shown in Fig. 17,

typically will have a di�racted mass M2
x large compared with Q2; because the gap

width is not exponentially suppressed

M2
X

d�

dM2
X

=
d�

d�gap
� constant : (45)
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However, it is not clear how structured the \aligned-jet" virtual photon really

is. But a reasonable guess is that it is as opaque as a single constituent quark.

The picture is that the slow member of the pair has time to be \fully dressed,"

while the fast member does not, and acts as a pointlike parton. If this notion is

true, one might be able to obtain information on constituent-quark opacity from

deep-inelastic scattering from nuclei.

Of this profusion of options for di�ractive �nal states, one discriminant stands

out rather clearly:

For the color-dipole, simple \direct" mechanism, the distribution of di�racted

masses is peaked near Q2, while for the aligned jet mechanism it is broader. I

would suggest plotting M2
XdN=dM

2
X versus M2

X=Q
2. Here

dN =
1

�
d� (46)

is di�erential in other phase space variables as appropriate. If the variable

� =
Q2

M2
X +Q2

(47)

is preferred, one might try �dN=d� versus � instead. The generic behavior for

the two cases are sketched in Fig. 18. Especially interesting will be to map the

transition from the photoproduction limit, where some soft di�raction should exist,

to the BFKL region of Q2 >
� 10 GeV 2 seen in the HERA data.

It is clear that this �eld is making great progress both theoretically and exper-

imentally. We can expect major advances in the understanding of the nature of

the virtual photon and of hard di�raction in the near future.
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