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I. INTRODUCTION 1

II

SLAC-PUB%76 In Ref. [1] the utihzation of a broad-band optid amplifier was propowd for the stochastic
LBL 35M9

May lW cooling process in order to enhance the ultimate possibilities of the conventional microwave
(A/T)

stoch~tic cooling technique [2]. It was shown that the radiation of a particle in a q~adrupole
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wiggler can be arnphfied md apphed back to the same particle in a dipole wiggler, producing

therein an ener~ kick in proportion to the particle’s transverse position in the qusdrupole

wiggler. It ww dso shown that this scheme is capable of providng damping for both

transverse md longitudinal oscillations, but that woling takes place only in the case of a

small beam emittance < 10-9 m.

We show how to avoid this limitation by using a different approach.

II.DESC~PTION OF THE WO~ING PWNCIPLE

Typidly, in mnventiond microwave stochastic -Kng, a coohng system is comprised of

a pickup, an amplifier, and a kicker [2]. Although optical stochastic cooling deds with the

same cooling principle as the microwave stochastic woting, dl components of the cooling .

system mentioned above undergo substantial modifications. These modifications, which are

associated with a transition into the optical frequency regime, will be hlghtighted below.

Consider an insertion in a storage ring designed for optid stochastic coohng, which
ABSTRACT

includes two undulatory, an optical amplifier, and a bypass. A schematic drawing of this
A transit-time method for stochastic cooling is extended and developed for optical stochastic

insertionis shownin Fig. 1.
coohng. Limitations on the damping times are analyzed. Illustrative apphmtions of the

As shown elsewhere [3], the stochastic cooling method obeys the principle that, when
method to the wobng of electrons, protons, and heavy ions are mnsidered.

prosing the cooling system, each particle receives a mrrecting kick that is a superimposition

of the ~hant and inwhemnt mmponents. The coherent mmponent is responsible for
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damping, and is proportional to the deviation of the particle from the equtiibrium momentum

or the reference orbit. The incoherent component is due to the effects associated with other

beam particles.
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We first consider how the particle receives a coherent kick in the coofing insertio~ ~hown

in Fig. 1. Moving along the insertion, the particle rdlates an electromagnetic (EM) wave

in the first undulator. Th)s wave goes to the optical amplifier, while the particle follows the

bypass trajectory and meets its amplified radiation in the second unddator. A subsequent
,!

interaction between particle and the EM wave from its own rdlation results in a change of

the particle energy. The amount of the energy change depends on the phase of the EM wave

of the radiation at which the particle enters the undulator.

The variation of this phase from particle to particle is due only to the particle traveling

time in the bypass, since EM waves rdlated by different particles propagate from the first

undulator to the second undulator identicdly. Therefore, in order to have the ener~ change

proportional to, for example, the particle momentum deviation:

● First, adjust the propagation time of the EM wave and the travefing time of a particle

with a zero momentum deviation such that this particle will enter the undulator at a

phase with a zero electric field, ad thus will not undergo any energy change.

. Second, design the bypass optics such that ptiicles with different momenta follow

trajectories with different path lengths, so they will enter the second undulator with

phase shifts (relative to the ph= with zero electric field) proportional to their actual

vrdue of momentum deviation.

A similar approach is applicable to betatron motion. What is required in this case is to

link the particle traveling time in the bypass with some qumtitative char~teristic of the

betatron motion (say, the betatron coordinate or angle, or a linear combination of them) at

the beginning of the bypass, and to install undulatory in a region with a nonzero dispersion

function.

In the general cose, particles can have a momentum deviation and a deviation in betatron

coordinate and angle simultaneously.

We now consider this ~ in more detail. Assume that at the entrance of the cooling

insertion some arbitrary test particle has a momentum deviation 6i = A Pa/P} a betatron

.
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coordinate xi, and a betatron angle z:. Neglecting higher order terms, the length of the

trajectory of this particle in a bypass cotid be written & = 40+~ilu +~Zv + 6i(~1u +q&lv –

ZD) [4], where YO is the trajectory length of the reference particle having mro momentum

deviation and zero betatron coordinate and angle, ~ ad & me the dispetilon fun&ion and

its derivative in the first unddator, and the symbols ZU, ZV, and ZD stand for inkgrds:

J
U(S) dsZu= — Zv =

J
V(s) ds

ZD =
J

D(s) &

L P(S) ‘ Lx’ L-’

where U(s) and V(s) are two independent mine-like and sinelike solutions of the

homogeneous equation of the motion, p is the bending radius of the m~ets, L denotes

the position of the second undtiator with respect to the first undulator, md D(s) represents

the contribution of the bypass magnets to the primary dispersion function.

In the first undulator, the test particle radiates an EM wave propagating in the z-

direction; Ei = EOsin(kz – wt + di) is the electric field of the EM wave with amplitude &

md phase @i,and k = 2m/J and w = kc are the wave number and the frequency, respectively;

A = [AU(1+ K2/2)]/272 is the wavelength, c is the speed of the fight in vacuum, 7 is the

krentz factor, Amis the unddator period, md K is the utiulator pamwter [5]. ThM

rdlation goes to the optical amplifier, while the particle follows the bypass md traverses

it in a time Ati = ei/c . The time At. required for radiation to pass dl the way between

undulatory, including the amplifier delay, must be constrained and maintained by feedbd

system b yield a condition & – CAto = A/4 . Thus, the particle arrives at the second

undtiator with a time delay 6(At) = Ati – At. and with a phsse shift A~i :

A~i = k(e~– ~) = k [~i ZU + Z: ZV + 6i(mzu + d~v – ZD)] , (1)

relative to the phase with zero electric field. In the second undulator, the ptilcle interacts

with the electric field of its own rtilation md changes its momentum by:

(2)



where qis the particle charge, M is the number of undulator periods, g is the amplification

f~tor of the optid arnpfifier, and 6Pi is the amount of the momentum ch~~~ related to

the coherent longitudinal kick A6i = 6Pi/P.

In order to &lculate a trmsverse kick from the energy kick, we define the dispersion

function md its deri&tive in a location of the second unddator. For a lattice with a mirror

symmetry relative to the central point of the bypass, these are ~, ~d –~, so that the

changes of the particle betatron coordinate and angle at the exit of the second unddator
,

~ Axi = –~(6Pi/P) ~d ~ = ~(6~/P).

Thus, after passing the entire moling insertion, the test particle has received coherent

longitudinal and transverse kicks that are proportional to a linear combination of the

particle’s momentum deviation and betatron deviations. We will see in the next section

that a proper choice of the parameters of the bypass lattice makes it possible to use thw

kicks to simdtaneously damp transwrse and longitudinal osci~ations.

The cooling tednique described above has certain similarities with the transit-time

method proposed in ~f. [6] for microwave stochastic cooling. This is why we have chosen

to use the same name for this new method of optid stochastic cooling and refer to it as

the tm~.t-time method of optiml stochastic cooling.

III.COOLING UTES

We have so far considered the interaction of the arbitrary test particle with the EM wave

of its own radiation. However, each particle dm interacts with the EM waves emitt~ by

other particles moving behind it within a distance < MA. These interactions constitute

the incoherent component of the kick received by the particle. Assume that a t=t particle

interacts with N, electromagnetic waves finduding its own wave) and consider again a

change of the particle’s momentum at the exit of the ~ling insertion:

6ti = 6,+ G sin(Ad,) + G & sin(A@i + #ik) . (3)
+i

5

Here, 6k is the relative momentum of the ith ptii~e tier the lo@tu&n~ El&
:

G=g
q~M~K

2C7P .
(4)

In the right-hand part of ~. (3), the contribution of the test particle to the titd ki& is

subtracted from the sum, so that the sum depicts only the incoherent mmpone~t of the ki&.

Expressions similar to ~. (3) ~ dso be written for transverse coordinates. We do

this for a bypass with a mirror syrnmetncd lattice md with a –1 transfer matrix between

undulatory. In this case, Zu = O,Zv = 2D0, md ~ = Do, where 2D0 is a contribution to the

due of the dispersion function in the second unddator coming solely from the elements of

the bypm lattice. Thus, using the above definition of the transverse kick, we write

Xti = xi + Do G tin(A#i) + DoG ~ Sin(A~i– Ak) ,
k~

.
XL = X;– ~ GSi~(A~i)+ ~ G ~ sin(AA+ Oik) . (5)

#i

Here Zti and #ti are the betatron coordinate and angle after correction.

We can now etiuate the averaga of the quantities: A(62) = ~ – 6?, A(z2) =x: – ~,

and A (x’*) = X2 —Z~2taken over the ensemble of N. particl= and over the distribution

of the particles in betatron coordinate and angles and momentum deviations. Then, using

us. (3) and (5) and applying the same technique as in ~f. [3], we can write for damping

decrements:

— —
where @ = k2 [(2Do)2~ + (2D0~ —ZD)2~] andsubstitutions ~ = ~~, z3 = e=~, and

p= ez/~ are used, and where c= is the beam emittance and ~ is the betwfunction in

the undulator. The exponential term appearance in the first. terms of Ms. (6) is due to
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the sine-likedependenceof the coherentkick from the particle’s ph~ shift. We cm now

define the optimal G by maximizing the sum of the d&rements a=+ a6 so that
+

2(ZD -D, 4)2 a; [k exp {-~/2}]2
a=+at = 2

~.[l+&ui(&2+9)] .

(7)

(8)

Consider at this point the limitations on the msximum attainable damping rates. First

of dl, k exp { –A#~/2}keaches its maximum k/~ (e is the bw of the natural logarithm)

at:

(9)

Notice that the reduction of c= and UJduring the damping leads to a decrease of A~~

and, corr=pondlngly, to a decrem in the phase shifts of the individud particles. As a

result, the coherent components of the particl=’ kicks are reduced, whereaa the incoherent

components of the kcks that do not depend upon c= and aJ remain the same. Since only

coherent components of the kicks are responsible for damping, a decrease of A~~ leads to

a slowdown of the damping process. Fortunately, we can prevent this by keeping A~~ at

a constant level, independent from the current tiu= of c= and a$. According to m. (9),

increasing 2D0 md (2D0 q: – ZD) will compensate for the reduction of c= and UJ. In order

to do this, smrdl adjustments in the bypass lattice during the damping process are required.

We tin further simplify Eqs. (8) and (9) by ~suming (vL 06)2 x c=/~ and D: < Pq~2.

For example, for a case of equal decrements, when ZD is adjusted to be equal to 3Do q~,

7
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(lOa)

(lob)

r

We see here that the number of passes through the -ling insertion required for a

l/e reduction of the beam emittance (and the beam energy spread in the second power)

is equal to 2e Ns. Wd that N, is proportional to the number of ptiid- in the bunch

within the ‘distance MA. Addltiondly, N. depen@ upon the beam emittanti ss long as the

transverse beam size in the undulator mceeds the size of the transverse coherence of the EM

waves. One more preuution hsa to be taken in this =, namely the optid system and the

bypass lattice must posses identid focusing properties, including second-order geometric

and chromatic aberrations. Mormver, second~rder aberrations must not significantly effect

the synchronism discussed above between a particle and its own r~ation. Since the fight

ernittanm of the undulator rdlation is equal to 1/2 k (5], a test particle effectively interacts

only with the EM waves emitted by its phase space neighbors, occupyiw the phase space

volume Ac. = 1/2 k. Thus we can ddne:

N,= N=,
2Feb

F = l+2ke. , (11)

where N is a number of particles in the bunch and eb is the bunch length.

For the nat step, we introduceinforrnda(11) the bandwidth of the undulator rfiation

using the well known relation between the number of undtiator periods ad the width of

the spectral fine (FWHM) on the first harmonic r = Aw/ws l/M [5]. Then, the damping

time due to the optical stochastic cooling ~ be written

(12)

where T is the revolution period (we assume only one cooling insertion in the ring).

~uation (12) was derived under the wumption that the bandwidth of the cooling

system is defined by the bandwidth of the undulator r~ation. However,the bmdtidth

of theund~atorradiationcan be made wider than the bandwidth of the optid amplifier.

Therefore, in a more realistic case, the bandwidth of the optical arnphfier shodd replace

r in w. (12).

t
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Although we have considered only the damping of horimntal betatron oscillations and

energy oscillations, the analogous cooling technique muld equafly be used for dbping the

nrtical oscillatio’m. h the latter case, we need vertid dlspemion in the undulatirs, and

the orbit bend bet&n undulatory must be in the vertid plane.

emittance is reached when dl sources of damping are balanced by dl sources of the ernittan~

excitation. After that, the scheme remains stationary. If the optid stochastic ~hng

is the only sourm of damping, then we - define the absolute minimum emittance CP,

co~ponding to the w where the only sours of the emittance excitation is the radiation

fluctuation in the undulatory of the coo~ig scheme

IV.APPLICATION FA~OR

In order to determine the amplification factor of the optical

~. (lOa) using G from ~. (4):

f
q&M~uK _ U6

9 2qP @N8

,

amphfier one mn rewrite

(13)

In ~. (13) the only unknown parameter besid~ the amplification factor is the amplitude

of the electric field of the particle rdlation ~ . We etiuate ~ in the waist of the light

beam where the cross section of the coherent mode of the rdlation (defined at the one

sigma level of the intensity distribution) is A x 2A MA”. During one pass of the undulator

with K = 1 (we azsurne the undulator with the mmimum yield of the photons into the

coherent mode) the particle emits into the coherent mode N q2/hc photons of the energy

- b. Therefore,

(14)

where AtR = MA/c is the duration of the rdlation pulse. Using Eqs. (13,14) and

substitution (12) for N,, we finally find:

(15)

where r. = q2/m& is the classical rdlus of the particle, m is the particle mass, and

~11= 7 ~bad/& iS the invariantlon@tudlnd emittance. Notice that ~11in ~. (15) represents

the current emittance at each moment of the damping process. Therefore, a reduction of

the amplification factor to follow the emittance reduction is required during the damping

process (as well w the adjustments mentioned above in the bypws lattice). The equilibrium

Notice that in this u g = 1.

V.POWER LIMIT

(16)

We haw so far assumti that we are not fimited by amplifier power. Although it is very

likely for electrons, this might not be correct if we try to reach the optimal damping time,

~. (12), working with protons/antiprotons and hwvy ions. If, in order to reach the optimal

damping, the required output power of the amptifier ex- the atiable power, then the

available power of the amplifier would determine the damping times:

(17)

Here ~ is the available average output power of the optid amplifier, Eb is the equilibrium

beam energy, and 20 is the free-space impedance, md K s 1. In deriving Eq. (17), we

~sume r > l/M. Notice that Eb/q N Bp, where Bp is the magnetic rigidity, does not

depend on the particle charge and the atomic number.

VI.NOISE AND MIXING

There are two additional parameters usuatly ~ciated with the stochastic coofing

technique. These are the noise of the amplifier and the ~called mtilng-a pro= of

the re-randornization of the beam on the way from the kicker to the pickup.

9
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The noise of the optical amplifier is due to spontaneous emission from the actimmedium,

and is roughly equitient to one noise photon in the tiue of the coherence at the amphfier

front end. We shodd ~pare it with the noise we have already considered abon the

N, #/k photons radiated by the N. ptiides in the first unddator. CIWly, at this level,

the noise of the mphfier is negligibly smrdl. ~,

As for mixing, the rule here is that the particl~ must not stay together wi$h the same

neighbors more than one turn, since otherwise the inmherent heating wi~ grow up [3]. It

seems relatively easy to comply with this de in the optid stochmtic cooling. A mmplete

re-randomization will bccur if, during the passage from the second undtiator to the first

undtiator, particles @ge positions inside the bunch on w MA. Another poasiblfity for

randomization exists wiien the beam emittance is larger than 1/2 k. In this case, mtilng in

the trmverse phsae spw will dso occur.

VII.EXAMPL~

For purpo~ of illustration, we consider very schematidly the application of optical

stochsatic -hng to three type of particl~: electrons/pmitrons, protons/antiprotons, and

heavy ions.

F

with a central wavelength of 0.8 pm and a bandwidth of 10Yo. With this set of parameters

we dcdated an optimal amplification fwtor of g = 350, the damping time for betatron

&ciUationa of ~=,v= 30 m, and the damping time for ener~ oscillation of TJ x 15 ms.

With one ,bunch in the ring and with the amplification factor specified above, the’ average

output power of the amplifier is about 5 W in euh cooling insertion.

B.Protons

As an example, for the proton/antiproton mtilne we considered the proton-antiproton

colfider TEVATRON (Fermilab). We sasurned two -Iing insertionsane for longitudind-

horizontd coohng and one for longitudind-vertical coohn% six bunches with 1 x 1011

protons/bunch, a relative momentum spread of 3 x 10-4, and a revolution frequency of

47.7 kHz. We dso assumed a dye arnphfierwith an averageoutput power of 100 W and a

central wavelength of A = 0.8 pm. The unddator rdlation with this wavelength could be

obtained in the unddator with a peak magnetic field of 8 T and A. = 1.5 m. For this set of

parameters we intimated damping times. We get N 5 minutes damping time for betatron

osci~ations and N 2.5 minutes damping time for synchrotron oscillations.

C. Heavy ions

A.Electrons

Since electrons already have a good damping mechanism due to the synchrotron

mdiation, we examined what optical stochmtic cooling cm do in the low energy regime,

where synchrotron rdlation damping is weak. Therefore, we considered a 150 MeV ring of

a 80 m circumference having two coohng insertions: one for longitudind-honzont d cooling

and one for longitudind-verticd cooling. We sasurned typical beam parameters based on a

positron beam after the convemion and acceleration h 150 MeV: N = 5 x 109, normalized

honzontd and vertical emittances of 5 x 10-4 m, bunch length eb = 2.5 cm, and a relative

energy spread of 1 x 10-3. For the amplifier, we assumed a Ti:A1203 optid smphfier

11

In this example, we considered damping of lead ions (Z= 82) in the SPS (CERN) at an

ion energy of 32.8 TeV. The following beam paramete~, taken from the LHC d=ign report

[7], were used: 124 bunches of 1 x 106 ions/bunch, a relative momentum spred of 3 x 10-4,

and a revolution frequency of 43 kHz. Assuming two coolirlg in~rtions, an undulator with

a peak magnetic field of 8 T, and ~“ = 0.3 m, and the same optical amplifier as above,

we get N 2 min damping time for betatron oscillations md N 1 minute damping time for

synchrotron oscillations.

12
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