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observe specular scattering by resonant nuclei to peak at the critical angle and

decrease at smaller angles.  This is the result of the influence of the electronic

scattering on the nuclear response of the system and is explained using an optical

model.  A distorted wave Born approximation shows the specular nuclear signal

should be large at angles where the electronic reflectivity varies rapidly with angle.
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Synchrotron radiation studies of resonant nuclear systems [1] combine the inherent

collimation of a synchrotron source with the sensitivity of the nuclear resonance to its atomic

environment.  Thus, there is tremendous potential for these experiments to provide both the

structural information that accompanies a well defined photon momentum, and the chemical,

magnetic and motional information of resonant nuclear (Mössbauer) studies.  In particular, the

conventional (electronic) x-ray scattering techniques used to investigate thin films and surfaces

may be applied to resonant nuclear systems.  These techniques frequently employ a grazing

incidence geometry which increases the path length of x-rays in a thin sample and permits use of

total external reflection [2][3] and related phenomena [4][5] that occur because the index of

refraction for materials at x-ray frequencies is less than one.  In fact, the change in penetration

depth with grazing angle has been applied in some Mössbauer studies of thin layers using highly

collimated radioactive sources [6][7][8].  Here we describe an interesting new effect observed at

grazing incidence in synchrotron Mössbauer experiments.

Synchrotron resonant nuclear scattering experiments are unique in that they allow resonant

scattering events to be separated from non-resonant ones by gating in time.  The synchrotron

provides a short pulse [9] of x-rays so the scattering may be divided into prompt and delayed

events.  If the photon arrival time at the detector is delayed (relative to the transit time through

vacuum) then it must have interacted resonantly with the sample.  Furthermore, in a kinematic

limit, any non-resonant interaction leads to instantaneous scattering, so gating in time permits

resonant processes to be separated from non-resonant ones.  However, in the dynamical system

discussed here, the non-resonant scattering strongly influences the angular dependence of the

delayed scattering.  This has not been observed previously because most synchrotron resonant

nuclear scattering experiments have used electronically forbidden (pure nuclear) Bragg reflections,

largely to reduce the background of non-resonantly scattered x-rays.  Improvements in optics

[10][11][12] and detectors [13][14] now allow experiments to be done in the presence of large

background from electronic scattering, both in a Bragg geometry [15] and near the region of total

external reflection [16][17].  Thus, it is possible to study a much wider variety of samples, in
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particular thin films and surfaces.  However, the effects of strong electronic scattering into the

reflected beam must be recognized.

We consider the effect of the electronic scattering on the delayed component of the specular

(or coherent) scattering from a thin layer of 57Fe.  This may be thought of as a simple prototype

for future investigation of thin films and surfaces.  We observe the delayed or resonant signal from

a sample with strong electronic scattering is maximized at angles where the non-resonant scattering

varies rapidly with angle, or, in the case of grazing incidence, at the critical angle.

Like the other grazing incidence phenomena mentioned above, this one may be understood

using a simple optical model.  The reflected amplitude for x-rays incident on a planar vacuum-

material interface at grazing angle θ is the described by the Fresnel (amplitude) reflection

coefficient [18]
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where β δ θ≡ − [ / ] /1 2 2 1 2 and δ is the complex decrement of the index of refraction of the material

from one, δ = 1 - n .  The reflectivity, |Rθ|2, is shown in Fig. 1 for a material with

δ δ= = +− −
e x x7 4 10 3 4 106 7. .i , appropriate for bulk density iron and 14.4 keV x-rays [19].  The

reflectivity saturates at angles below the critical angle, θc = (2 Re{δe})1/2, at 3.8 mrad.

The effect of the nuclear resonance is included by adding a frequency dependent nuclear

contribution to δ.  Taking δ = δ(ω) = δe + δn(ω), Rθ becomes Rθ(ω).  For an isolated resonance,

the nuclear contribution, δn, has a complex Lorentzian frequency dependence, δn(ω) ∝ (  h (ω-

ω0) - iΓ/2) -1, where ω0 is the resonance frequency and Γ is the line width (Γ = 4.7x10-9 eV and

  hω0 = 14.4 keV in 57Fe).  More generally, δn is a sum over all the hyperfine components of a

transition, with appropriate weighting for their angular momenta and the photon polarization.

The time response to an impulse excitation is the Fourier transform of the frequency

response.  Therefore, the delayed response of a system should be related to the frequency varying
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part of the reflectivity; any frequency independent contribution appears in the impulse response

only at t=0.  Mathematically, the impulse response is
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The (integrated) delayed intensity after pulse excitation at t=0 is proportional to
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+
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2
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where 0+ indicates the limit is to be taken from positive times.  We write Rθ(ω) = Re
θ  + R'θ(ω),

where Re
θ  is the reflectivity for frequencies far from the nuclear resonance frequency (the

electronic reflectivity in the absence of nuclei) and R'θ(ω) is a frequency dependent part which goes

to zero at large frequencies.  Inserting this into Eq. (2), the Re
θ  term is seen to have a delta function

dependence on time so that it drops out of Eq. (3) because of the 0+ integration limit.  Since G(t) is

causal (G(t<0) = 0), Parseval's theorem gives
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At large angles (θ2 >> 2|δ(ω)|), the scattering is kinematic and Rθ(ω) separates into a sum

of two terms; one corresponding to scattering by nuclei without electrons present and one for

scattering by electrons without nuclei present.  The electronic part drops out of Eq. (4) so the

delayed signal decouples from all electronic scattering.  This demonstrates the earlier statement that

resonant interactions may be separated from non-resonant interactions in kinematic time domain

experiments.

In regions of high reflectivity, such as near the electronic critical angle, separation into a

sum of a nuclear part and an electronic part is not possible, but one may numerically integrate Eq.

(4) to give the result shown in Fig. 2.  The delayed reflectivity peaks at the electronic critical angle

[20].  This follows from Eq. (4): the delayed reflectivity will be high when the magnitude of the

difference, |Rθ(ω)- Re
θ |, is large over an appreciable frequency range.  Since Rθ(ω) depends on
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frequency only through the parameter δ(ω)/θ2, one would expect the difference to be most

sensitive to changes in frequency at angles where Re
θ  is most sensitive to changes in angle.  More

formally, expansion to first order in δn(ω)/δe (the validity of this expansion will be discussed

below) gives

R R
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which explicitly shows the dependence on the derivative of the electronic reflectivity with angle.

The separation of the frequency and angular dependence means it is reasonable to think of the

integral in Eq. (4), the delayed intensity, as being large where there is a fast change in the electronic

reflectivity with angle (i.e. at the critical angle).  Note that in the case of Bragg diffraction from a

perfect crystal, the formula analogous to Eq. (5) also goes as dR de
θ θ/ .

Evaluation of the derivative in Eq. (5) gives
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where β δ θe e= − [ / ] /1 2 2 1 2 ,  Te=2/(1+βe) is the (Fresnel) amplitude transmission coefficient

into the electronic solid (without nuclei present), and T'e=2βe/(1+βe) is the transmission back out.

R̃=δn/2θ2βe2  is the reflection coefficient for an interface between the electronic material, index 1-

δe, and a material with index of refraction 1-δe-δn(ω).  R̃  has the characteristic 1/q2 amplitude

dependence (1/q4 intensity) of kinematic small angle scattering, where q is the momentum transfer

in the material (q ∝θβe=[θ2-2δ]1/2).  This quickly reduces the coherent scattering at higher angles.

Below the critical angle, the intensity is reduced both due to the reduced transmission into the

material (Te becomes small) and due to the fact that q in R̃  becomes large, though imaginary (the

extinction of the wave field due to electronic scattering reduces the illumination of the nuclei).



6

Investigation of Eq. (6) shows it to be a distorted wave Born approximation [21].  It

explicitly includes multiple electronic scattering, which generates the distorted wave, and the

nuclear scattering is added in a kinematic limit.  This is different than the fully kinematic situation,

mentioned above, where the electronic and nuclear scattering are both small and decouple so that

the delayed scattering is not at all influenced by the non-resonant interaction.  In this distorted wave

approximation, the amount of nuclear scattering is dependent on the electronic scattering, but the

shape of the impulse response is not affected since Eq. (6) is linear in δn(ω).  Inclusion of terms

of higher order in δn(ω) would lead to changes in the time response.

Figure 3 shows the delayed intensity reflected from a 240 Å film of 95% enriched 57Fe

deposited on a smooth glass substrate.  The solid line is a dynamical calculation carried out to all

orders in δn.  It is based on a recursive optical approach for layered structures [22] and uses a

carefully developed model of the layer.  The slight tail of the delayed reflectivity at higher angles

results from the layered nature of the sample and is analogous to the Kiessig interference fringes

observed in electronic x-ray scattering from thin films[23].  The rounding of the peak, relative to

Fig. 2, arises due to the fact that integration of delayed intensity began at t = 4 ns after the

synchrotron pulse, not the limiting t = 0+ used in Eq. (4).

It remains to comment on the validity of the first order approximation used in Eqs. (5) and

(6).  For the enriched sample used here, |δn(ω)|~|δe| for frequencies near resonance.  Therefore,

although the first order discussion is useful for qualitative understanding, it is necessary to go

higher orders to obtain good quantitative agreement.  This is illustrated by the dashed line in Fig. 3,

which is calculated to first order in δn.  The peak in this calculation is both shifted from the data

[24] and much narrower.

Effects due to higher order terms may be expected to fall into two broad categories: those

due to multiple nuclear scattering and those that may result from having both dynamical nuclear

and dynamical electronic scattering in the same system.  The former have been investigated

previously using pure nuclear (electronically forbidden) reflections [25][26] and one such effect,

coherent enhancement or speedup of the time response, has been observed in previous work with
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this sample [16][27].  As for the latter, we note that although the original resonant reflectivity

studies using a radioactive source[28] were used to demonstrate interference between nuclear and

electronic scattering, the mere presence of a peak at the critical angle in this work is not evidence of

interference, since Eqs. (5) and (6) are insensitive to the nuclear phase (after squaring).

At grazing incidence, coherent nuclear scattering is maximized at the critical angle for

external reflection.  This may be explained in the context of a distorted wave Born approximation.

However, for quantitative agreement with this enriched sample, it is necessary to include higher

order terms.  The presence of both strong nuclear and electronic scattering into the reflected beam

is a somewhat novel situation in the context of synchrotron work.  However, as the field develops,

and, as new beamlines devoted to nuclear scattering become operative at 3rd generation

synchrotron facilities [29], such situations will become more common.  Accordingly, the

enhancement of the resonant nuclear signal where the electronic scattering changes rapidly with

angle will have some practical importance.
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Fig. 1.  Specular reflectivity of iron for 14.4 keV x-rays.
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Fig. 2.  Delayed intensity specularly reflected by a material with a single nuclear transition.
Calculated from Eq. (4) using δ = δe = 7.4x10-6 + i 3.4x10-7 ,  δn(ω0)= i 10-5

and Γ=4.7x10-9 eV.
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Fig. 3.  Measured delayed intensity reflected from a thin layer of 57Fe (points).  The solid line
is a calculation based of the full theory while the dashed line is a first order calculation.


